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Abstract

Accurate inference of genomic ancestry is critically important in human genetics, epidemiology, and
related fields. Geneticists today have access to multiple heterogeneous population-based datasets
from studies collected under different protocols. Therefore, joint analyses of these datasets require
robust and consistent inference of ancestry, where a common strategy is to yield an ancestry space
generated by a reference dataset. However, such a strategy is sensitive to batch artefacts introduced
by different protocols. In this work, we propose a novel robust genome-wide ancestry inference
method; referred to as SUGIBS, based on an unnormalized genomic (UG) relationship matrix whose
spectral (S) decomposition is generalized by an Identity-by-State (IBS) similarity degree matrix. SUGIBS
robustly constructs an ancestry space from a single reference dataset, and provides a robust
projection of new samples, from different studies. In experiments and simulations, we show that,
SUGIBS is robust against individual outliers and batch artifacts introduced by different genotyping
protocols. The performance of SUGIBS is equivalent to the widely used principal component analysis
(PCA) on normalized genotype data in revealing the underlying structure of an admixed population
and in adjusting for false positive findings in a case-control admixed GWAS. We applied SUGIBS on the
1000 Genome project, as a reference, in combination with a large heterogeneous dataset containing
auxiliary 3D facial images, to predict population stratified average or ancestry faces. In addition, we
projected eight ancient DNA profiles into the 1000 Genome ancestry space and reconstructed their
ancestry face. Based on the visually strong and recognizable human facial phenotype, comprehensive
facial illustrations of the populations embedded in the 1000 Genome project are provided.
Furthermore, ancestry facial imaging has important applications in personalized and precision
medicine along with forensic and archeological DNA phenotyping.

Author Summary

Estimates of individual-level genomic ancestry are routinely used in human genetics, epidemiology,
and related fields. The analysis of population structure and genomic ancestry can yield significant
insights in terms of modern and ancient population dynamics, allowing us to address questions
regarding the timing of the admixture events, and the numbers and identities of the parental source
populations. Unrecognized or cryptic population structure is also an important confounder to correct
for in genome-wide association studies (GWAS). However, to date, it remains challenging to work with
heterogeneous datasets from multiple studies collected by different laboratories with diverse
genotyping and imputation protocols. This work presents a new approach and an accompanying open-
source software toolbox that facilitates a robust integrative analysis for population structure and
genomic ancestry estimates for heterogeneous datasets. Given that visually evident and easily
recognizable patterns of human facial characteristics covary with genomic ancestry, we can generate
predicted ancestry faces on both the population and individual levels as we illustrate for the 26 1000
Genome populations and for eight eminent ancient-DNA profiles, respectively.
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Introduction

Scientists today have access to large heterogeneous datasets from many studies collected by different
laboratories with diverse genotyping and imputation protocols. The joint analysis of these datasets
requires a robust and consistent inference of ancestry across all datasets involved, where one
common strategy is to yield an ancestry space generated by a reference set of individuals (1). Based
on open-research initiatives such as the 1000 Genome project (1KGP) (2), HapMap project (3), Human
Genome Diversity project (HGDP) (4), and the POPRES dataset (5), the potential exists to create
reference ancestry latent-spaces at different levels of interest, from worldwide inter-continental to
fine-scale intra-continental ancestry. A reference ancestry space allows the researcher to collate
multiple datasets facilitating analyses that are more advanced. For example, reference ancestry
spaces can be used to infer the population structure of samples with family structure or cryptic
relatedness (1) and to investigate the genetic similarity between ancient DNA and modern human
genomes (6). They also have the potential to correct for population structure in a genome-wide
association study (GWAS) on heterogeneous and admixed samples. Of final interest is the association
of auxiliary data (e.g. specific phenotypes, such as 3D facial shape used in this work) present in
internally collected datasets with ancestral variations captured by a reference space. This requires the
projection of the collected datasets into a reference space, followed by an association of the
projection scores with the auxiliary data presented.

Methodologically, the idea is to construct an ancestry latent-space from a reference dataset and to
enable the projection of new cases from other datasets that follow the mainstream of the reference
dataset. Starting from genome-wide single nucleotide polymorphisms (SNPs), PCA and analogous
dimension reduction techniques on normalized genotype data are popular strategies used in this
context (7,8). However, in construction of an ancestry space, these approaches are known to be
sensitive to outliers (7,9). In addition and more importantly, in projecting new cases onto an ancestry
space, PCA produces patterns of misalignment (for example, “shrinkage” patterns where projected
cases tend to falsely gravitate towards the center of the ancestry space) due to missing data, missing
heterozygotes, and genotyping along with imputation errors, which is misleading without careful
interpretation (1). Therefore, stringent quality control and data filters are typically in place to remove
individual outliers and SNP data with high missing rates or not in Hardy-Weinberg equilibrium (HWE).
However, in heterogeneous datasets, in contrast to homogeneous datasets, such data filters are
harder to define, and potentially remove SNP data related to population structure. Furthermore,
genotyping and imputation batch artefacts, not detected by quality control and different from one
protocol to another, typically remain and still affect an integrative analysis of ancestry.

In this work, we propose a novel robust genome-wide ancestry inference (referred to as SUGIBS)
based on the spectral (S) decomposition of an unnormalized genomic (UG) relationship matrix
generalized by an Identity-by-State (IBS) similarity degree of individuals’ matrix. Robustness against
outliers, during ancestry space construction, is obtained by absence of specific sample statistics (e.g.
allele frequencies). Furthermore, SUGIBS provides a robust projection of new samples, from different
studies, onto a reference SUGIBS space. During projection, the IBS similarity degree of individuals to
project to individuals in the reference dataset acts as a correcting term for missing genotypes and
errors, and most interestingly this correction is on an individual-by-individual basis. We test the
robustness of SUGIBS and compare its performance to PCA and Multi-Dimensional Scaling (MDS) in
revealing the underlying structure of an admixed population and adjusting for false positive findings
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in a simulated case-control admixed GWAS. Using the 1KGP as reference dataset, and an additional
heterogeneous dataset containing 3D facial images, we apply SUGIBS to construct ancestry faces that
illustrate the ancestral variation captured in the 1KGP. Additionally, we reconstruct the ancestry faces
for eight high-coverage ancient DNA genomes further illustrating the potential of the work. Based on
the results, our method facilitates a robust integrative analysis for ancestry estimation in
heterogeneous datasets.

Results

In the first experiment, we investigated the robustness of SUGIBS in comparison to traditional
approaches, in particular PCA using normalized or unnormalized genotype data and MDS using IBS
distances as they are implemented in PLINK 1.9 (10), against individual outliers in a reference dataset.
For this purpose, we first selected all unrelated individuals from the CEU and TSI populations in the
HapMap 3 project (Belmont et al., 2003) and used SUGIBS, PCA, unnormalized PCA (UPCA) and MDS
to illustrate the first and second latent dimensions as ancestry components (Figure 1, top row). In
contrast to the traditionally used normalized genotypes in PCA, UPCA used unnormalized genotypes
that were not centralized around the mean and were not standardized to a variance equal to one. As
expected, PCA, MDS and SUGIBS are able to differentiate between both populations along the first
ancestry component. The first component of UPCA seems to aggregate the average pattern of SNPs
instead of the differentiation between two groups. Surprisingly, with PCA a single outlier (NA11917)
that was not expected during the selection of both populations already affected the second ancestry
component. Subsequently, we randomly selected one individual from four different and additional
populations (CHB, GIH, MEX and YRI) as “outliers” in the dataset. Figure 1, bottom row, illustrates the
first two ancestry components of the four methods constructed on the dataset with outliers, where
all four approaches clearly separate the outliers. Using PCA, in contrast to MDS, UPCA and SUGIBS the
clear distinction between CEU and TSl is lost within the first two ancestry components, as they mainly
capture variations due to the outliers. The main reason for robustness in UPCA, MDS and SUGIBS is
that these three methods use unnormalized genotype data and therefore do not rely on specific
sample statistics (e.g. allele frequencies), that otherwise increase the influence of outlier variation.
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Figure 1: Robustness against individual outliers during the construction of an ancestry space. Top row,
the first two ancestry components for A) PCA, B) MDS, C) UPCA and D) SUGIBS using the CEU and TSI

4



132
133
134
135

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

populations from the HapMap 3 project. Bottom row, the first two ancestry components for E) PCA, F)
MDS, G) UPCA and H) SUGIBS using the CEU and TSI populations from the HapMap 3 project, but with
randomly selected single individuals from four different and additional populations (CHB, GIH, MEX
and YRI) as “outliers”.

In a second experiment, we projected (Methods, equation 4) new samples on an ancestry space, based
on the 1KGP as reference dataset, to investigate the robustness of SUGIBS in comparison to PCA and
UPCA against typical artifacts of different laboratory protocols. Note that, since the first component
of UPCA just aggregated the average pattern as seen in experiment 1, we started UPCA from the
second component onwards. Also note that, MDS does not allow for a straightforward projection of
new samples on a reference space and was therefore excluded. As samples to project, we randomly
assigned all 1,043 individuals of 51 populations from the HGDP dataset (4) into two equally-sized
samples, one unchanged and one modified, respectively. To investigate the influence of different rates
of missing data, we randomly masked 5% of the SNP genotypes as missing in the modified population
(See Methods). For the influence of different rates of errors, we partially changed SNP genotypes with
minor allele frequency (MAF) less than 5% in the modified population (See Methods). Note that this
was done knowing that more imputation errors are observed in SNPs with a MAF of 5% and less (11).
We projected both HGDP populations onto the PCA, UPCA and SUGIBS reference spaces as defined by
the 1KGP. In PCA, the simulated artefacts generated “shrinkage” and “shifting” patterns of
misalignment in the first two projected ancestry components (Figure 2, top row), for missing and
erroneous genotypes, respectively. UPCA was only influenced by missing genotypes (Figure 2, middle
row). In contrast, SUGIBS was not influenced by missing or erroneous genotypes (Figure 2, bottom
row). Figure 3 summarizes the normalized root-mean-square deviations (NRMSD) of the first eight
axes of SUGIBS, UPCA and PCA of the modified HGDP population over 100 simulations. SUGIBS is
significantly more robust than PCA in the presence of missing and genotyping/imputation errors in
new data for which ancestry needs to be inferred, by projecting it into a reference space.
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Figure 2: Robustness against batch artefacts during the projection of samples onto an ancestry space.
Top row, the first two ancestry components of PCA using the original genotypes A), missing genotypes
B) and modified genotypes C). Middle row, the second and third ancestry components of UPCA using
the original genotypes D), missing genotypes E) and modified genotypes F). Bottom row, the first two

ancestry components of SUGIBS using the original genotypes G), missing genotypes H) and modified
genotypes I).
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Figure 3: Normalized root-mean-square deviation (NRMSD) of the top eight axes of PCA, UPCA and
SUGIBS. NRMSD measures the root-mean-square differences (RMSD), for the modified HGDP
population only between the scores on ancestry axes generated using the original genotypes (error
free) and the modified genotypes (with simulated errors, A) missing genotypes and B) erroneous
genotypes). The RMSD values were normalized by the range of the ancestry axes generated using the
original genotypes, so that NRMSD of the three methods (PCA, UPCA and SUGIBS) are comparable.

In a third experiment, following the work of Galinsky et al. (12), we investigated the ability of SUGIBS
compared to PCA and MDS in representing admixture. We simulated data at 10,000 random
independent SNPs for 1,000 individuals from a recent admixture of two populations, 50% from each
population on average with divergences Fy; = {0.001,0.005,0.01,0.05,0.1}, from an intra-European
difference to an intercontinental difference (13). Because the admixture contains only one dimension
of population structure, only the first component of variation is of interest. Figure 4 presents the
absolute correlations between the first component of PCA, MDS and SUGIBS and the simulated
ancestry proportions over 100 runs. When the Fg; divergence between two populations is lower than
0.05, the correlation between the SUGIBS component and the ancestry proportion is similar to that of
MDS, but a little lower than PCA. We noticed that when Fg; < 0.01, all three methods have a reduced
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performance to reveal the underlying admixture and when Fg; > 0.01, all three methods perform
perfectly.
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Figure 4: Capturing simulated admixture in function of Fg;. X-axis represents the different levels of Fst
investigated. The Y-axis represents the absolute correlation of the first component in PCA, MDS and
Spectral-IBS with the simulated ancestry proportion. The higher the correlation the better a method is
able to capture the underlying admixture.

Following the work of Price et al. (14), we also simulated a case-control GWAS to investigate if the
population structure inferred by SUGIBS can be used for correcting population stratification as a
confounder. Only low divergences between the two populations Fg; = {0.001,0.005,0.01}, were
tested, because for larger divergences all three methods would perform the same as deducted from
the previous experiment. Tests were conducted with a logistic regression under four different
correction scenarios: 1) no population for stratification correction (Naive), 2) PCA, 3) MDS and 4)
SUGIBS, using a likelihood ratio test for the significance of each genetic marker. The experiment was
conducted 100 times, with average proportions of SNPs detected as significant shown in Table 1.
These results indicate that in a single dimensional population structure, correcting using MDS, SUGIBS
and PCA perform similarly, both in terms of Type | error and power. All three methods failed to correct
the population stratification when Fy; = 0.001, which is consistent with the failure of the three
methods in revealing the admixture structure in the previous experiment. Finally, these results are in
line with the results in (14).
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Naive PCA MDS SUGIBS

Fg; =0.001
Random 0.0002 0.0001 0.0001 0.0001
Differentiated 0.9960 0.4483 0.6370 0.5200
Causal 0.5295 0.4779 0.4865 0.4807
Fg, = 0.005
Random 0.0009 0.0001 0.0001 0.0001
Differentiated 0.9980 0.0002 0.0003 0.0002
Causal 0.5226 0.4249 0.4255 0.4253
F,, =0.01
Random 0.0030 0.0001 0.0001 0.0001
Differentiated 0.9971 0.0001 0.0001 0.0001
Causal 0.5166 0.4227 0.4230 0.4229

Table 1: Proportion of associations reported as statistically significant (P < 0.0001) by logistic
regression using a likelihood ratio test. Random SNPs with no association to the disease were
generated by simulating random drift with F,, divergence. Differentiated SNPs with no association to
the disease were generated by assuming population allele frequencies of 0.8 of ancestry 1 and 0.2 of
ancestry 2. Causal SNPs were generated by combining a multiplicative disease risk model while
simulating the random drift with the same Fs; as the random SNPs. See methods for more details on
the parameters.

Putting SUGIBS to practice, we projected 2,882 unrelated individuals from a large admixed and
heterogeneous dataset containing individuals from varying ancestries (the PSU cohort, see Methods)
and eight famous ancient DNA samples onto the first 25 SUGIBS axes established from the 26
populations in the 1KGP. Shown in Figure 5 and S1 (a), the first two ancestry components separate
the African (AFR) and East Asian (ESA) populations from the remaining populations, as indicated by
the population labels given in the 1KGP. The next two ancestry components in Figure 5 and S1 (b)
separate the South Asian (SAS) population and visualizes the admixture in the Admixed American
(AMR) population, respectively. In figure 5 and S1 (c), the sixth ancestry component captures different
subpopulations in the EAS population. In Figure 5 and S1 (d), the seventh ancestry component is driven
by African subpopulations and the separated European subpopulation on the eighth ancestry
component is the population from Finland (FIN). The projected PSU cohort is indicated by gray dots in
Figure 5 and S1 and overall it is observed that they overlay well with a wide range of ancestry variations
in the 1KGP confirming the heterogeneous and admixed nature of the PSU dataset. However, some
populations in the 1KGP are less covered by the PSU cohort, such as the population of Finland in
Europe and some African subpopulations on ancestry components seven and eight (Figure 5 d).
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Figure 5: Top eight SUGIBS axes of 1KGP and projections of the PSU cohort. Grouped populations of
the 1KGP are coloured dots. The projected PSU cohort are represented by grey dots. The faces illustrate
opposing variations along each of the ancestry components and are not associated to any of the 1kG
populations in particular (these are shown in Figure 6).

Based on the visually strong and recognizable human facial phenotype, we generated comprehensive
illustrations of the population structure embedded in the 1KGP. Using the first 25 SUGIBS scores of
the PSU cohort onto the ancestry components of the 1KGP, we fitted a partial least squares regression
(PLSR) to model facial variations in function of each of the first eight ancestry components (Figure 5).
Strong facial differences are observed for ancestry components 1-4, whilst perceptually smaller
differences occur in components 5-8. This is most likely due to a lower overlap of the PSU cohort with
these ancestry components. Subsequently, we reconstructed the ancestry population average face
from each of the 26 populations in the 1KGP (Figure 6), and ancestry faces specific for eight high-
coverage ancient DNA profiles (Figure 7). The facial images in Figures 5, 6 and 7, are perceptually easy
to confirm the expected variations in facial shape in function of genetic ancestry including admixtures.
For the ancient DNA profiles labeled in Figure 7, it is observed that their projections within the 1kG
ancestry is consistent with the geographical locations where these samples were discovered and what
is currently known about these samples (Supplementary Table S1).
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Discussion

Accurate inference of population structure and individual global ancestry is of critical importance in
human genetics, epidemiology, and related fields (15,16). The analysis of population structure in itself
can yield significant insights in terms of population dynamics, both in modern and ancient populations
(17-19). Through inspection of ancestry components as well as distances in genetic latent spaces
created by, for example, Principal Component Analysis (PCA), it is possible to infer patterns of gene
flow and population movements through time. Furthermore, the inclusion of various populations in
genome-wide association studies (GWAS) could increase statistical power and make a better
contributions to our understanding of the genetics of complex traits for the human population as a
whole (20). However, the widely used approach of PCA and analogous techniques are sensitive to
outliers, when constructing ancestry spaces, and produce patterns of misalighment due to artifacts of
different laboratory protocols when new samples are projected onto a reference ancestry space
(1,7,9). We propose a robust alternative for genome-wide ancestry inferencing, referred to as SUGIBS.
Our results confirm the erroneous influences in PCA based ancestry estimations that are misleading
without careful interpretation. In constructing an ancestry space SUGIBS, shares the same robustness
against individual outliers as MDS or related spectral graph approaches (21). Furthermore, and more
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importantly, during dataset projections SUGIBS is robust against typical artefacts from different
laboratory protocols. In addition, SUGIBS achieved the same performance, under error-free conditions,
as PCA in revealing the underlying structure of an admixed population and avoiding false positive
findings in a simulated case-control GWAS with an admixed population.

Like MDS and SUGIBS, PCA is also a “spectral” method, in which the edge similarity between
individuals is simply the covariance of normalized genotypes, commonly referred to as the genomic
relationship matrix (22). However, this covariance similarity used in PCA depends on the allele
frequencies as a non-robust sample statistic to normalize the genotypes, which causes sensitivity to
individual outliers. Note that in our experiments on PCA without using allele frequencies (UPCA)

|”

robustness against individual outliers was observed. Among the “spectral” methods, some other
robust alternatives were introduced to infer population structure, including a modified genomic
relationship (21,23). MDS or related spectral graph approaches (21) using IBS and Allele Sharing
Distance (ASD) similarities between individuals (available in PLINK (10)) are also a robust alternative
against individual outliers, as illustrated in our results. IBS and ASD are unnormalized distances, and
thus less influenced by outliers. However, MDS and the modified genomic relationship used in (21,23),
both lack the ability to project new samples on an already established reference ancestry space.
Alternatively, it might be possible to use one of the many robust PCA approaches that have been
investigated for general data (24-26) as well as genetic data (27). However, in most study data
processing protocols, robust approaches are usually used for outlier detection rather than inferring
population structure, which is done by classical PCA after excluding outliers (27). This is for example,
a standardly used option in the popular EIGENSOFT software (7). Note that, when establishing an
ancestry space from a reference dataset, it remains good practice to identify and remove individual
outliers, if they are of no further interest.

The main contribution of SUGIBS is robustness against batch artifacts of different laboratory and data
processing protocols when projecting new samples onto a reference ancestry space. In the case of
missing genotypes, smaller absolute PC scores, and smaller UPC scores are wrongfully generated
during the projection of samples. These smaller and decreased scores lead to the “shrinking” and
“shifting” patterns as observed in the results. (Note that this is not to be confused with PCA shrinkage
due to high dimensional and large-scale data, which is dealt with using shrinkage eigenvalue
estimations as recently implemented in EIGENSOFT). However, to correct for this, the projected
SUGIBS score matrix is weighted by the reference degree matrix, which captures the similarity
between the data to be projected and the reference data (see Methods). This weighting of projected
SUGIBS scores equally corrects for the effects of genotyping and imputation errors, as demonstrated
in the results. To the best of our knowledge, we are currently not aware of another related approach
that offers the same robustness. Based on the results, we argue that SUGIBS is a solid alternative to
PCA and MDS and requires less stringent data filters to operate. Our implementation of SUGIBS uses
the randomized singular value decomposition algorithm (28), that is also used in FastPCA (12). This
makes the algorithm computationally tractable for datasets with tens of thousands of individuals and
millions of SNPs. SUGIBS is available as part of an open-source in-house Matlab™ library, referred to
as SNPLIB, in which we used PLINK binary file formats as input, and provide FastPCA, logistic GWAS
and all other methods and simulations mentioned throughout this work. Furthermore, SUGIBS can
easily be incorporated into existing and interesting extensions to derive common ancestry estimations
in datasets with non-overlapping genetic variants (1), or genotyping-by-sequencing data (29), or

13
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population structure inference in presence of relatedness (30), or in iterative schemes to obtain global
to fine-scale ancestry estimations (31).

There are a few points of discussion and future investigations. First, a genetic similarity measure
between pairs of individuals aims to identify how they are related and different measures exist for
ancestry estimations (e.g. IBS, ASD, Identity-by-descent, normalized covariance) (22). Commonly used
similarity measures are normalized, just like the traditional approach of PCA on normalized genotype
data, to take the genetic composition of individuals along with the rest of the sample into account. A
normalization does have the advantage that individuals within the same population are more similar
to each other than to individuals in other populations (22). In other words, the distinction between
populations increases, which improves population identification by clustering algorithms. However,
when the normalization is performed incorrectly clustering efforts might be inaccurate. Furthermore,
as seen in our results, such a normalization increases the influence of individual outliers. Finally, in
contrast to homogeneous datasets, normalization of genotype data in heterogeneous datasets is
challenging depending on whether the dataset is unlabeled or not, imbalanced or not, and with high
admixture or not. Starting from unlabeled data, unsupervised clustering approaches such as
ADMIXTURE (32) and STRUCTURE (33), iteratively identify the populations individuals belong to and
update the normalization accordingly. However, this involves additional parameters to set and tune,
the most important one being the amount of clusters expected in the data. Without prior knowledge
on how to set these parameters, this can turn into a challenging task. With highly admixture data, any
clustering of global ancestry into populations is even questionable. In these situations, only local
ancestry estimations, using chromosome painting approaches (34) for example, are meaningful.
Alternatively, in the future, we want to investigate the use of a reference ancestry space as
constructed in this work, without assigning individuals to specific populations, in estimating
normalized genotype data on an individual-by-individual basis. l.e., an ancestry space from
unnormalized genotype data is a good first step unbiased by any sample statistics, to further deduct
statistics related to individual genotype profiles. For example, (35) propose the Robust Unified Test
for Hardy-Weinberg Equilibrium in the context of an admixed population, which also makes use of
individual-level adjustments for ancestry. Second, future investigations of the methodology also
include the influence of LD pruning and data filtering for SNP selection. Population admixture is one
of the main sources for LD between SNPs, therefore we prefer to avoid excessive LD pruning before
applying SUGIBS. As stated in (22) any data pruning or filtering is bound to loose information related
to population structure. For example, less common variants are typically lost in data filtering, but
these might contain valuable information about population structure (22). Since SUGIBS is robust and
computationally tractable, any data filtering can be minimized. Third, another future investigation
involves the determination of the number of relevant or significant components in SUGIBS, for which
we provide a preliminary suggestion that compares the spectrum of the data observed with that of a
simulated homogenous dataset assuming linkage equilibrium (LE) and Hardy-Weinberg Equilibrium
(Supplementary Text S1).

In application of SUGIBS we used the human face, which is a powerful phenotype to visualize and
illustrate underlying genetic ancestry variations. Indeed, faces are easy to recognize, interpret, and
validate the outcomes based on everyone’s expert knowledge in facial perception. The faces
illustrating the ancestry components of the 1KGP in this work overlay well with the provided
population labels. Therefore, they can also provide a means to interpret ancestry variations in a
heterogeneous dataset in absence of population labels. It is important to note that an ancestry face,
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as referred to in this work, for each of the 26 1kG populations and ancient DNA profiles are faces that
reflect a population’s or an individual’s genetic background and sex. In other words, ancestry faces
are not individually specific faces, but average faces that simply visualize the ancestry background of
a DNA profile. Related work on facial prediction from DNA (36,37), also show that sex and ancestry
are the primary factors driving the estimation of facial shape from DNA.

Ancestry facial predictions have good value in a range of applications. In archeology, ancestry faces
reconstructed from ancient DNA profiles, as done in this work, is of strong interest. Generally, for
ancient DNA profiles, missing data is abundantly present, making SUGIBS an interesting technique to
be used. Note that, the ancestry faces are limited to modern facial constructs, due to the
contemporary facial data used. However, they can help to bring ancient DNA profiles into the context
of present-day populations for which facial images (e.g. open-source facial databases, Google images,
etc.) are available but DNA is not. Furthermore, there is a good relationship between the face and the
skull (38,39), such that ancestry faces can be used to compare against skeletal remains. In the future,
it is of interest to deploy our work on datasets of 3D skeletal craniofacial surfaces extracted from
Computer Tomography (CT) or Magnetic Resonance Imaging (MRI). In medicine, and more particularly
in oral and maxillofacial surgery, the surgical reconstruction of a patient’s face benefits from a proper
notion of normal facial shape (40). In the next five to 20 years, whole genome sequencing will become
the standard of care in clinics and a patient-specific ancestry face provides a personalized norm of
facial shape towards precision medicine in surgical planning. Finally, in forensics, an ancestry facial
prediction circumvents the often legally debated reporting of ancestry proportions of a probe DNA
profile in a criminal investigation. In France, for example, DNA phenotyping of externally visible traits
is legally allowed, since such traits are considered to be public. However, and in contrast, genomic
ancestry proportions, as typically reported in forensic DNA testing, is considered to be private
information and cannot be used during criminal investigations. We agree that ancestry proportions
are not an externally visible characteristic of an individual. The construction of ancestry proportions
is also inherently flawed by labelling the individual into so-called parental populations. Furthermore,
such numeric information is hard to interpret and use by a forensic investigator. The reconstruction
of an ancestry face on the other hand, avoids needing to explicitly label a DNA profile in function of
parental populations and provides a visual feedback to an investigator that is perceptually useful, even
in admixed cases. A future challenge in forensics does involve the ability to reconstruct ancestry faces
using often limited and contaminated DNA material.

In conclusion, SUGIBS is a novel approach to construct an ancestry space from a reference dataset and
to project new samples from heterogeneous datasets for a consistent and robust inference of
individual ancestry. The main contributions involve robustness against outliers during the construction
of an ancestry space, and robustness against batch artefacts during the projection of new samples
into an ancestry space. Therefore, SUGIBS is a solid alternative to PCA and MDS and facilitates a robust
integrative analysis for population structure and ancestry estimations for heterogeneous datasets.
Based on the visually strong and recognizable human facial phenotype, comprehensive illustrations of
genomic ancestry variations were provided for different populations in the 1KGP and for eight
eminent ancient-DNA profiles. Ancestry facial imaging from genome data has interesting future
applications in personalized and precision medicine along with forensic and archeological DNA
phenotyping.
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Materials and Methods

SUGIBS latent-space construction: Given a dataset with N individuals and M SNPs, we first create an
unnormalized genotype (UG) matrix X« With additive genotype coding (aa =-1, Aa=0,AA=1and

missing = 0). The UG relationship matrix is then defined as G = %XTX. Note that an unnormalized

additive genotype coding has only three values (-1, 0, 1) and does not produce extreme values, which
occurs with normalized additive genotype encoding schemes (typically used in PCA) due to small minor
allele frequencies and in the context of individual outliers.

From Wy, the IBS similarity matrix of the same dataset used to create G, the similarity degree of
an individual can be defined as d;; = Z?’=1 w;j. We followed the algorithm implemented in PLINK to

calculate the IBS similarity so that:
IBS AA Aa aa
AA 2 1 0
Aa 1 2 1
aa o 1 2

NJA O 0 O

However, in contrast to the calculations in PLINK, we do not normalize the IBS similarity matrix with
missingness scores. This results in a similarity degree matrix D defined as the diagonal matrix with
dq1, ..., dyy on the diagonal. We use D to define generalized eigenvectors vy, = (Vyq, ..., Vxn)” Of G
with corresponding generalized eigenvalues A, ,and 4, = 1, > 13 > ...

G'Uk = Avak (1)

Similar to UPCA, the first generalized eigenvector of D and G simply represents the average pattern
of all SNPs. Therefore, we start from the second generalized eigenvector and define the kth
component of SUGIBS to be the k 4+ 1th generalized eigenvector of G and D, vy, ;.

1
By multiplying D™z on both sides of equation (1), we obtain:

111 1
D ZGD 2D2vk_ :Ak+1D ka (2)

1 1 1

1 1 1
Subsequently, we observe that the eigenvector v}, = Dzv, of D 26D"z = =D 2X" XDz can be

M
- 1

obtained from the singular value decomposition (SVD) of the matrix X = XDz = UXV'T, where v},
is also the ith right singular vector with singular value g, = \/MA,, 4, Zisa N X N diagonal matrix, U
isaM x N matrix with all the left singular vectors and V' is a N X N matrix with all the right singular
vectors.

Denoting Uy, = {u,, ..., uy,1} and X, = diag{oy, ..., 0x4+1}, the corresponding left singular vectors

1 1

and the singular values of the first k SUGIBS components V; = D2V}, = D" 2{v,, ..., Vx41}, We have

the following equation:
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1
Vi.=D"2V) =D7'S, = D"'XTL, = D' X"U, 5! (3)

Thus, we denote L;, = Ukzgl as the SUGIBS loading matrix for the first k SUGIBS components and
Sk = XTU,Z; ! as the unnormalized SUGIBS score matrix.

We proposed a preliminary method to select proper number of components which compared the
spectrum of the observed data with that of the simulated data, assuming HWE and Linkage Equilibrium
(see Supplement note).

SUGIBS dataset projection: Given the SUGIBS loadings L from a reference dataset with N individuals
and M SNPs and given a new dataset with N individuals and the same set of SNPs as the reference
sample, we denote the unnormalized genotype matrix of the new dataset as X. We then define the
reference degree d;; = Z?’ W;j, where W;; is denoted as the IBS similarity between the ith individual
in the target dataset and the jth individual in the reference dataset. The reference similarity degree
matrix D of the new dataset is a diagonal matrix with d;1, ..., dyy on the diagonal. For the first k
SUGIBS components, the projected score matrix of the target dataset is then obtained as:

Vy=D15,=D"'X"L, =D 'X"U,2;! (4)
In equation (4), the reference similarity degree matrix D acts as a normalization term correcting the
missing genotypes and errors in the samples to be projected. As an example, consider a rare SNP with
major allele A and minor allele G, and an individual with true genotype AA that is wrongfully coded as
GG for that particular SNP. Since the major genotype in the reference data of this SNP is AA, the
number of shared alleles of this SNP between this individual to the majority of individuals in the
reference dataset would reduce from 2 to 0. The unnormalized genotype coding of this person also
changes from 1 to -1. Thus, the influence of such a genotyping error on the unnormalized SUGIBS
score matrix §), and the reference similarity degree matrix D are along the same direction so that the
final SUGIBS scores are corrected by D~1. Other typical batch artefact errors and missing genotypes
in the new dataset are corrected for in a similar way and, most interestingly, this correction is provided
on an individual by individual basis.

Genome-wide common SNP selection across datasets: We recommend the following procedure to
extract a common set of SNPs between a reference dataset and another dataset being projected, for
constructing SUGIBS ancestry spaces. First, we exclude all the indel, monomorphic, and multi-allelic
SNPs in both the reference dataset and the dataset to project. Subsequently, we extract the list of
SNPs common in both datasets. Based on this list, we further recommend a minor allele frequency
(MAF) filtering with a MAF threshold of 0.01 on the reference dataset using PLINK (10) as a quality
control step. We do not recommend Hardy-Weinberg disequilibrium (HWD) filtering since it is
probably the result of population admixture and thus useful for our purposes (41). Although
population admixture is one of the main sources for LD between SNPs, we still recommend LD pruning
since it is not unusual to have non-uniformly genotyped genomes. Similar to PCA, SUGIBS do not
explicitly model LD between SNPs so that misleading results might be generated without LD pruning.

Individual outlier robustness: The basic dataset that was used to investigate robustness against
individual outliers in a reference dataset, consists of the individuals from the CEU population (111
individuals) and the TSI population (102 individuals) from the HapMap 3 dataset (3), after excluding
non-founders. We randomly selected one individual as outlier from four other populations (CHB, MEX,
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GIH, and YRI). These individuals specifically are NA18798 (CHB), NA19740 (MEX), NA21124 (GIH), and
NA19262 (YRI). After removing the monomorphic SNPs in each of these three datasets, we built
SUGIBS, MDS, UPCA and PCA spaces using 892,338 autosomal SNPs remaining in all three datasets.
We intentionally did not perform either minor allele frequency (MAF) filtering or HWE filtering on the
SNPs since many rare SNPs and SNPs violating HWE are due to the outliers and were therefore not
checked for during the testing for robustness.

Simulated laboratory artefacts: We used the 1000 Genomes Project dataset (2,504 unrelated
individuals from 26 populations) as the reference dataset to infer a PCA, UPCA and SUGIBS based
ancestry space. We used the HGDP dataset that analyzed genomic data from 1,043 individuals from
around the world as the dataset to project. First, we remapped the HGDP dataset from the NCBI36
(hg18) assembly to the GRCh37 (hgl9) assembly using the NCBI Genome Remapping Service. Based
on the SNP selection procedure for SUGIBS as explained previously, we further performed a LD pruning
with a window size of 50, a moving step of 5 and a threshold 72 > 0.2 for several times until no more
SNPS were excluded, following (12). LD pruning is a common practice when using PCA. Therefore, we
followed this additional step to make the results based on PCA, UPCA and SUGIBS comparable. We
finally selected 154,199 autosomal SNPs to construct the PCA, UPCA and SUGIBS ancestry spaces. We
then extracted the first eight PCA, UPCA and SUGIBS ancestry components from the reference dataset.
After extracting the same set of SNPs in the HGDP dataset, we took care to ensure that the alternate
alleles were the same as in the reference dataset.

Since PLINK binary file format stores the genotypes of four consecutive individuals in a single byte, we
assigned one of every two “bytes” (four individuals) into Population A and the other individuals into
Population B of the HGDP dataset. This resulted in 523 individuals for Population A and 520 individuals
for Population B. In order to simulate laboratory artefacts, we randomly masked 5% genotype calls as
missing and changed 5% genotype calls (e.g., from AA to Aa or aa) of the rare SNPs (MAF < 0.05) in
Population A. Random genotype masking and changing were also performed on the “byte” level, i.e.
four individuals at a time. For both genotyping masking and changing, we generated 100 datasets to
project on the 1kG reference ancestry space. Subsequently, we calculated the root-mean-square
deviations (RMSD) between the scores of the top eight PCA, UPCA and SUGIBS axes generated using
the original genotypes and the modified genotypes in Population A and further normalized them by
the range of the axes generated using the original genotypes so that normalized root-mean-square
deviations (NRMSD) across methods are comparable.

Simulated admixed population: Our admixture simulations were adapted from the section
“Simulation Framework” in (12). For a given SNP i, the ancestral allele frequency p; was sampled from
a Uniform(0.1,0.9) distribution. Population allele frequencies were generated by simulating random
drift in two populations of fixed effective size N, for T generations as p;; and p;,, whose initial values
were set to p;. In each generation, the number of alternate alleles z;; and z;, were sampled from two
binomial distributions with 2N, number of trials and p;; and p;, success probabilities. The population

. Zj Zi . . .
allele frequencies were then updated by p;; = # and p;; = # For all simulations, population allele
e e

frequency simulations were run for 20 generations and the effective population size N, was calculated
for a target Fy; by Fy = —log(1 — ) (42). This was done for Fy, = {0.001,0.005,0.01,0.05,0.13,

N, ~ {10k, 2k, 1k, 200,100} with T = 20.
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The ancestry proportions a; were sampled from a beta(0.5,0.5) distribution so that the proportion
from each ancestry is 50% on average. For a given individual j with ancestry proportion of ; from

Population one and (1 - a]-) from Population two, the individual allele frequency for SNP i was pij =

ajpir + (1 - aj)piz and the genotype was sampled from a binomial distribution with 2 trials and pij
success probability. The Matlab™ implementations for these simulations are also provided in our
SNPLIB library.

Simulated GWAS: Our GWAS simulation is similar to the one carried out in (14). To simulate a case-
control GWAS, we generated 1,000 individuals from a population admixed from two ancestries. The
case-control status was simulated using a disease risk proportional to 7%, based on an ancestral risk
of r = 3. We generated three categories of SNPs (random, differentiating and causal) to compare the
performance of PCA, MDS, and SUGIBS in correcting for population stratification. For the first category
(random SNPs with no association to the disease), we generated the SNPs by simulating random drift
with a certain Fy; divergence. For the second category (differentiated SNPs with no association), we
assumed population allele frequencies of 0.8 for ancestry one and 0.2 for ancestry two. For the third
category (causal SNPs), we generated SNPs by combining a multiplicative disease risk model while
simulating the random drift with the same F; as the random SNPs.

We simulated the case-control status according to (7). For individuals with an ancestry proportion of
a from population one and (1 — a) from population two, the case-control status was simulated with

log(r)r¢

the probability of disease equal to 2r—D)

of a (7).

, Which ensures an average value of 0.5 across all the values

For the case individuals, the population allele frequencies p;; and p;, of the causal SNP i were further

Rp; Rp; . . . H
— fPin ——P2__ \yith a relative risk of R = 3, respectively. The
1-pi1+RDi1 1-pi2+RDi>2

Matlab™ implementations for these simulations are also provided in our SNPLIB library.

updated to p;; = and p;; =

PSU cohort and 3D facial images: Study participants in the PSU cohort were recruited in the United
States through several studies based at The Pennsylvania State University under Institutional Review
Board (IRB) approved protocols (IRB #44929, #45727, #2503, #4320, #32341). 3D facial images were
taken using the 3dMD Face (3dMD, Atlanta, GA) and the Vectra H1 (Canfield, Parsippany, NJ) imaging
systems. Height and weight were measured using an Accustat stadiometer (Genentech, San Francisco,
CA), a clinical scale (Tanita, Arlington Heights, IL), or by self-report. Genotyping was conducted by
23andMe (23andMe, Mountain View, CA) on the v4 genome-wide SNP array and on the Illumina Multi-
Ethnic Global Array (MEGA). After filtering out SNPs with more than 10% missing genotypes, the
intersection of these two arrays compromised of approximately 600K SNPs. We removed individuals
with misclassified sex information, missing covariate data, and those with more than 10% missing
genotypes. Relatives were identified as pairs of individuals with an identity-by-state (IBS) value of at
least 0.8, after which one of each pair was randomly removed, resulting in a set of 2,882 individuals.
Genotypes were imputed to the 1000 Genomes Project Phase 3 reference panel, using SHAPEIT2
(Delaneau, Marchini, & Zagury, 2012) for prephasing of haplotypes and imputed using the Sanger
Imputation Server PBWT pipeline (Durbin, 2014; McCarthy et al., 2016).

3D facial images were imported into Matlab™ 2016b in .obj wavefront format to perform spatially
dense registration (MeshMonk). After importing the images, five positioning landmarks were
indicated in the corners of the eye, the tip of the nose and the corners of the mouth to roughly align
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the images into the same position. Subsequently, the images were cleaned by removing hair, ears,
and any dissociated polygons. A symmetrical anthropometric mask (43) of 7,160 landmarks was then
mapped onto the pre-processed images (44). This resulted in homologous spatially dense
configurations of quasi-landmarks per facial image. Reflected images were created by changing the
sign of the x-coordinate of the original mapped images. Both the original and the reflected remapped
faces were then superimposed following a generalized Procrustes superimposition to eliminate
differences in orientation, position and scale (45). Symmetrized images were created by averaging the
original and the reflected images.

Image quality control was performed to identify poorly remapped faces using two approaches. First,
as described in (46), outlier faces were identified by calculating Z-scores from the Mahalanobis
distance between the mean face and each individual face. Faces with Z-scores higher than 2 were
manually checked. Second, a score was calculated that reflects the missing data present in the image
due to holes, spikes, and other mesh artefacts that can be caused by facial hair or errors during the
pre-processing steps, for example. Images with scores indicating a high amount of missing data,
indicating large gaps in the mesh, were also manually checked. During the manual check, the images
were either classified as images of poor quality or were pre-processed again if possible and mapped
again.

Prediction of ancestry faces: Using 69,194 autosomal SNPs overlapping with the PSU cohort and the
ancient-DNA profiles, we constructed 25 SUGIBS ancestry components, which is theoretically
sufficient to separate 26 populations, from the 1000 Genomes project. Subsequently, we projected
the individuals from the PSU cohort and the ancient-DNA profiles onto the 1kG ancestry components.
Then, we fitted a partial least-squares regression (PLSR) model using the superimposed 3D facial
images with 7,160 quasi-landmarks collected in the PSU cohort as the response variables and the 25
projected SUGIBS scores of the PSU cohort together with three covariates (age, sex, and BMI) as the
explanatory variables.

Given specific ancestry scores on the ancestry components of the 1kG ancestry space, together with
age, BMl and sex (-1 (male), 0 (neutral sex) or 1 (female)), the PLSR model was used to predict ancestry
faces. To illustrate the ancestry components in Figure 7, we simply varied a single score along each
ancestry component separately, while keeping the scores on the other ancestry components fixed and
equal to the overall average scores in the PSU cohort together with values for age = 25, BMI = 20, and
sex = 0. For each of the 26 populations in the 1KGP, we calculated the average scores on each SUGIBS
ancestry component per population. These average scores together with values for age = 25, BMI =
20, and sex =0, were used in the PLSR model to reconstruct the average ancestry faces for each of the
26 populations in the 1KGP. Diploid genotypes for the ancient genomes were called using GATK as
described in (47). The projected scores of the ancient-DNA profiles were used together with the
genome-derived sex values of each of the ancient individuals to reconstruct their ancestry faces in
Figure 7.
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Figure Captions:

Figure 1: Robustness against individual outliers during the construction of an ancestry space. Top

row, the first two ancestry components for A) PCA, B) MDS, C) UPCA and D) SUGIBS using the
CEU and TSI populations from the HapMap 3 project. Bottom row, the first two ancestry
components for E) PCA, F) MDS, G) UPCA and H) SUGIBS using the CEU and TSI populations
from the HapMap 3 project, but with randomly selected single individuals from four different
and additional populations (CHB, GIH, MEX and YRI) as “outliers”.

Figure 2: Robustness against batch artefacts during the projection of samples onto an ancestry

space. Top row, the first two ancestry components of PCA using the original genotypes A),
missing genotypes B) and modified genotypes C). Middle row, the second and third ancestry
components of UPCA using the original genotypes D), missing genotypes E) and modified
genotypes F). Bottom row, the first two ancestry components of SUGIBS using the original
genotypes G), missing genotypes H) and modified genotypes I).

Figure 3: Normalized root-mean-square deviation (NRMSD) of the top eight axes of PCA, UPCA and

SUGIBS. NRMSD measures the root-mean-square differences (RMSD), for the modified HGDP
population only between the scores on ancestry axes generated using the original genotypes
(error free) and the modified genotypes (with simulated errors, A) missing genotypes and B)
erroneous genotypes). The RMSD values were normalized by the range of the ancestry axes
generated using the original genotypes, so that NRMSD of the three methods (PCA, UPCA and
SUGIBS) are comparable.

Figure 4: Capturing simulated admixture in function of F. X-axis represents the different levels of F

investigated. The Y-axis represents the absolute correlation of the first component in PCA, MDS
and Spectral-IBS with the simulated ancestry proportion. The higher the correlation the better
a method is able to capture the underlying admixture.

Figure 5: Top eight SUGIBS axes of 1KGP and projections of the PSU cohort. Grouped populations of

the 1KGP are coloured dots. The projected PSU cohort are represented by grey dots. The faces
illustrate opposing variations along each of the ancestry components and are not associated to
any of the 1kG populations in particular (these are shown in Figure 6).

Figure 6: Ancestry population average faces for each of the 26 populations in the 1KGP positioned

according to geographical origin. The values for sex, BMI and age in the PLSR model were set to
0 (sexless), 20 and 25, respectively.

Figure 7: Ancestral facial reconstructions for eight ancient DNA profiles. For these reconstructions,

the sex was known from the DNA profile and taken into account in the PLSR model. The values
for BMI and age were 20 and 25, respectively.
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