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Abstract 23 

Accurate inference of genomic ancestry is critically important in human genetics, epidemiology, and 24 

related fields. Geneticists today have access to multiple heterogeneous population-based datasets 25 

from studies collected under different protocols. Therefore, joint analyses of these datasets require 26 

robust and consistent inference of ancestry, where a common strategy is to yield an ancestry space 27 

generated by a reference dataset. However, such a strategy is sensitive to batch artefacts introduced 28 

by different protocols. In this work, we propose a novel robust genome-wide ancestry inference 29 

method; referred to as SUGIBS, based on an unnormalized genomic (UG) relationship matrix whose 30 

spectral (S) decomposition is generalized by an Identity-by-State (IBS) similarity degree matrix. SUGIBS 31 

robustly constructs an ancestry space from a single reference dataset, and provides a robust 32 

projection of new samples, from different studies. In experiments and simulations, we show that, 33 

SUGIBS is robust against individual outliers and batch artifacts introduced by different genotyping 34 

protocols. The performance of SUGIBS is equivalent to the widely used principal component analysis 35 

(PCA) on normalized genotype data in revealing the underlying structure of an admixed population 36 

and in adjusting for false positive findings in a case-control admixed GWAS. We applied SUGIBS on the 37 

1000 Genome project, as a reference, in combination with a large heterogeneous dataset containing 38 

auxiliary 3D facial images, to predict population stratified average or ancestry faces. In addition, we 39 

projected eight ancient DNA profiles into the 1000 Genome ancestry space and reconstructed their 40 

ancestry face. Based on the visually strong and recognizable human facial phenotype, comprehensive 41 

facial illustrations of the populations embedded in the 1000 Genome project are provided. 42 

Furthermore, ancestry facial imaging has important applications in personalized and precision 43 

medicine along with forensic and archeological DNA phenotyping. 44 

Author Summary    45 

Estimates of individual-level genomic ancestry are routinely used in human genetics, epidemiology, 46 

and related fields. The analysis of population structure and genomic ancestry can yield significant 47 

insights in terms of modern and ancient population dynamics, allowing us to address questions 48 

regarding the timing of the admixture events, and the numbers and identities of the parental source 49 

populations. Unrecognized or cryptic population structure is also an important confounder to correct 50 

for in genome-wide association studies (GWAS). However, to date, it remains challenging to work with 51 

heterogeneous datasets from multiple studies collected by different laboratories with diverse 52 

genotyping and imputation protocols. This work presents a new approach and an accompanying open-53 

source software toolbox that facilitates a robust integrative analysis for population structure and 54 

genomic ancestry estimates for heterogeneous datasets. Given that visually evident and easily 55 

recognizable patterns of human facial characteristics covary with genomic ancestry, we can generate 56 

predicted ancestry faces on both the population and individual levels as we illustrate for the 26 1000 57 

Genome populations and  for eight eminent ancient-DNA profiles, respectively.  58 
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Introduction 59 

Scientists today have access to large heterogeneous datasets from many studies collected by different 60 

laboratories with diverse genotyping and imputation protocols. The joint analysis of these datasets 61 

requires a robust and consistent inference of ancestry across all datasets involved, where one 62 

common strategy is to yield an ancestry space generated by a reference set of individuals (1). Based 63 

on open-research initiatives such as the 1000 Genome project (1KGP) (2), HapMap project (3), Human 64 

Genome Diversity project (HGDP) (4), and the POPRES dataset (5), the potential exists to create 65 

reference ancestry latent-spaces at different levels of interest, from worldwide inter-continental to 66 

fine-scale intra-continental ancestry. A reference ancestry space allows the researcher to collate 67 

multiple datasets facilitating analyses that are more advanced. For example, reference ancestry 68 

spaces can be used to infer the population structure of samples with family structure or cryptic 69 

relatedness (1) and to investigate the genetic similarity between ancient DNA and modern human 70 

genomes (6). They also have the potential to correct for population structure in a genome-wide 71 

association study (GWAS) on heterogeneous and admixed samples. Of final interest is the association 72 

of auxiliary data (e.g. specific phenotypes, such as 3D facial shape used in this work) present in 73 

internally collected datasets with ancestral variations captured by a reference space. This requires the 74 

projection of the collected datasets into a reference space, followed by an association of the 75 

projection scores with the auxiliary data presented.  76 

Methodologically, the idea is to construct an ancestry latent-space from a reference dataset and to 77 

enable the projection of new cases from other datasets that follow the mainstream of the reference 78 

dataset. Starting from genome-wide single nucleotide polymorphisms (SNPs), PCA and analogous 79 

dimension reduction techniques on normalized genotype data are popular strategies used in this 80 

context (7,8). However, in construction of an ancestry space, these approaches are known to be 81 

sensitive to outliers (7,9). In addition and more importantly, in projecting new cases onto an ancestry 82 

space, PCA produces patterns of misalignment (for example, “shrinkage” patterns where projected 83 

cases tend to falsely gravitate towards the center of the ancestry space) due to missing data, missing 84 

heterozygotes, and genotyping along with imputation errors, which is misleading without careful 85 

interpretation (1). Therefore, stringent quality control and data filters are typically in place to remove 86 

individual outliers and SNP data with high missing rates or not in Hardy-Weinberg equilibrium (HWE). 87 

However, in heterogeneous datasets, in contrast to homogeneous datasets, such data filters are 88 

harder to define, and potentially remove SNP data related to population structure. Furthermore, 89 

genotyping and imputation batch artefacts, not detected by quality control and different from one 90 

protocol to another, typically remain and still affect an integrative analysis of ancestry. 91 

In this work, we propose a novel robust genome-wide ancestry inference (referred to as SUGIBS) 92 

based on the spectral (S) decomposition of an unnormalized genomic (UG) relationship matrix 93 

generalized by an Identity-by-State (IBS) similarity degree of individuals’ matrix. Robustness against 94 

outliers, during ancestry space construction, is obtained by absence of specific sample statistics (e.g. 95 

allele frequencies). Furthermore, SUGIBS provides a robust projection of new samples, from different 96 

studies, onto a reference SUGIBS space. During projection, the IBS similarity degree of individuals to 97 

project to individuals in the reference dataset acts as a correcting term for missing genotypes and 98 

errors, and most interestingly this correction is on an individual-by-individual basis. We test the 99 

robustness of SUGIBS and compare its performance to PCA and Multi-Dimensional Scaling (MDS) in 100 

revealing the underlying structure of an admixed population and adjusting for false positive findings 101 



4 
 

in a simulated case-control admixed GWAS. Using the 1KGP as reference dataset, and an additional 102 

heterogeneous dataset containing 3D facial images, we apply SUGIBS to construct ancestry faces that 103 

illustrate the ancestral variation captured in the 1KGP. Additionally, we reconstruct the ancestry faces 104 

for eight high-coverage ancient DNA genomes further illustrating the potential of the work. Based on 105 

the results, our method facilitates a robust integrative analysis for ancestry estimation in 106 

heterogeneous datasets. 107 

Results 108 

In the first experiment, we investigated the robustness of SUGIBS in comparison to traditional 109 

approaches, in particular PCA using normalized or unnormalized genotype data and MDS using IBS 110 

distances as they are implemented in PLINK 1.9 (10), against individual outliers in a reference dataset. 111 

For this purpose, we first selected all unrelated individuals from the CEU and TSI populations in the 112 

HapMap 3 project (Belmont et al., 2003) and used SUGIBS, PCA, unnormalized PCA (UPCA) and MDS 113 

to illustrate the first and second latent dimensions as ancestry components (Figure 1, top row). In 114 

contrast to the traditionally used normalized genotypes in PCA, UPCA used unnormalized genotypes 115 

that were not centralized around the mean and were not standardized to a variance equal to one. As 116 

expected, PCA, MDS and SUGIBS are able to differentiate between both populations along the first 117 

ancestry component. The first component of UPCA seems to aggregate the average pattern of SNPs 118 

instead of the differentiation between two groups. Surprisingly, with PCA a single outlier (NA11917) 119 

that was not expected during the selection of both populations already affected the second ancestry 120 

component. Subsequently, we randomly selected one individual from four different and additional 121 

populations (CHB, GIH, MEX and YRI) as “outliers” in the dataset. Figure 1, bottom row, illustrates the 122 

first two ancestry components of the four methods constructed on the dataset with outliers, where 123 

all four approaches clearly separate the outliers. Using PCA, in contrast to MDS, UPCA and SUGIBS the 124 

clear distinction between CEU and TSI is lost within the first two ancestry components, as they mainly 125 

capture variations due to the outliers. The main reason for robustness in UPCA, MDS and SUGIBS is 126 

that these three methods use unnormalized genotype data and therefore do not rely on specific 127 

sample statistics (e.g. allele frequencies), that otherwise increase the influence of outlier variation. 128 

 129 

Figure 1: Robustness against individual outliers during the construction of an ancestry space. Top row, 130 

the first two ancestry components for A) PCA, B) MDS, C) UPCA and D) SUGIBS using the CEU and TSI 131 
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populations from the HapMap 3 project. Bottom row, the first two ancestry components for E) PCA, F) 132 

MDS, G) UPCA and H) SUGIBS using the CEU and TSI populations from the HapMap 3 project, but with 133 

randomly selected single individuals from four different and additional populations (CHB, GIH, MEX 134 

and YRI) as “outliers”. 135 

In a second experiment, we projected (Methods, equation 4) new samples on an ancestry space, based 136 

on the 1KGP as reference dataset, to investigate the robustness of SUGIBS in comparison to PCA and 137 

UPCA against typical artifacts of different laboratory protocols. Note that, since the first component 138 

of UPCA just aggregated the average pattern as seen in experiment 1, we started UPCA from the 139 

second component onwards. Also note that, MDS does not allow for a straightforward projection of 140 

new samples on a reference space and was therefore excluded. As samples to project, we randomly 141 

assigned all 1,043 individuals of 51 populations from the HGDP dataset (4) into two equally-sized 142 

samples, one unchanged and one modified, respectively. To investigate the influence of different rates 143 

of missing data, we randomly masked 5% of the SNP genotypes as missing in the modified population 144 

(See Methods). For the influence of different rates of errors, we partially changed SNP genotypes with 145 

minor allele frequency (MAF) less than 5% in the modified population (See Methods). Note that this 146 

was done knowing that more imputation errors are observed in SNPs with a MAF of 5% and less (11). 147 

We projected both HGDP populations onto the PCA, UPCA and SUGIBS reference spaces as defined by 148 

the 1KGP. In PCA, the simulated artefacts generated “shrinkage” and “shifting” patterns of 149 

misalignment in the first two projected ancestry components (Figure 2, top row), for missing and 150 

erroneous genotypes, respectively. UPCA was only influenced by missing genotypes (Figure 2, middle 151 

row). In contrast, SUGIBS was not influenced by missing or erroneous genotypes (Figure 2, bottom 152 

row). Figure 3 summarizes the normalized root-mean-square deviations (NRMSD) of the first eight 153 

axes of SUGIBS, UPCA and PCA of the modified HGDP population over 100 simulations. SUGIBS is 154 

significantly more robust than PCA in the presence of missing and genotyping/imputation errors in 155 

new data for which ancestry needs to be inferred, by projecting it into a reference space. 156 
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 157 

Figure 2: Robustness against batch artefacts during the projection of samples onto an ancestry space. 158 

Top row, the first two ancestry components of PCA using the original genotypes A), missing genotypes 159 

B) and modified genotypes C). Middle row, the second and third ancestry components of UPCA using 160 

the original genotypes D), missing genotypes E) and modified genotypes F). Bottom row, the first two 161 

ancestry components of SUGIBS using the original genotypes G), missing genotypes H) and modified 162 

genotypes I). 163 

  164 
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 165 

 166 

Figure 3: Normalized root-mean-square deviation (NRMSD) of the top eight axes of PCA, UPCA and 167 

SUGIBS. NRMSD measures the root-mean-square differences (RMSD), for the modified HGDP 168 

population only between the scores on ancestry axes generated using the original genotypes (error 169 

free) and the modified genotypes (with simulated errors, A) missing genotypes and B) erroneous 170 

genotypes). The RMSD values were normalized by the range of the ancestry axes generated using the 171 

original genotypes, so that NRMSD of the three methods (PCA, UPCA and SUGIBS) are comparable.  172 

In a third experiment, following the work of Galinsky et al. (12), we investigated the ability of SUGIBS 173 

compared to PCA and MDS in representing admixture. We simulated data at 10,000 random 174 

independent SNPs for 1,000 individuals from a recent admixture of two populations, 50% from each 175 

population on average with divergences 𝐹𝑠𝑡 = {0.001,0.005,0.01,0.05,0.1}, from an intra-European 176 

difference to an intercontinental difference (13). Because the admixture contains only one dimension 177 

of population structure, only the first component of variation is of interest. Figure 4 presents the 178 

absolute correlations between the first component of PCA, MDS and SUGIBS and the simulated 179 

ancestry proportions over 100 runs. When the 𝐹𝑠𝑡 divergence between two populations is lower than 180 

0.05, the correlation between the SUGIBS component and the ancestry proportion is similar to that of 181 

MDS, but a little lower than PCA. We noticed that when 𝐹𝑠𝑡 ≤ 0.01, all three methods have a reduced 182 



8 
 

performance to reveal the underlying admixture and when 𝐹𝑠𝑡 > 0.01, all three methods perform 183 

perfectly. 184 

 185 

Figure 4: Capturing simulated admixture in function of 𝐹𝑠𝑡. X-axis represents the different levels of Fst 186 

investigated. The Y-axis represents the absolute correlation of the first component in PCA, MDS and 187 

Spectral-IBS with the simulated ancestry proportion. The higher the correlation the better a method is 188 

able to capture the underlying admixture. 189 

Following the work of Price et al. (14), we also simulated a case-control GWAS to investigate if the 190 

population structure inferred by SUGIBS can be used for correcting population stratification as a 191 

confounder. Only low divergences between the two populations 𝐹𝑠𝑡 = {0.001,0.005,0.01}, were 192 

tested, because for larger divergences all three methods would perform the same as deducted from 193 

the previous experiment. Tests were conducted with a logistic regression under four different 194 

correction scenarios: 1) no population for stratification correction (Naïve), 2) PCA, 3) MDS and 4) 195 

SUGIBS, using a likelihood ratio test for the significance of each genetic marker. The experiment was 196 

conducted 100 times, with average proportions of SNPs detected as significant shown in Table 1. 197 

These results indicate that in a single dimensional population structure, correcting using MDS, SUGIBS 198 

and PCA perform similarly, both in terms of Type I error and power. All three methods failed to correct 199 

the population stratification when 𝐹𝑠𝑡 = 0.001, which is consistent with the failure of the three 200 

methods in revealing the admixture structure in the previous experiment. Finally, these results are in 201 

line with the results in (14).  202 

  203 
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 Naive PCA MDS SUGIBS 

𝑭𝒔𝒕 = 𝟎. 𝟎𝟎𝟏 
  Random 0.0002 0.0001 0.0001 0.0001 

  Differentiated 0.9960 0.4483 0.6370 0.5200 

  Causal 0.5295 0.4779 0.4865 0.4807 

𝑭𝒔𝒕 = 𝟎. 𝟎𝟎𝟓 
  Random 0.0009 0.0001 0.0001 0.0001 

  Differentiated 0.9980 0.0002 0.0003 0.0002 

  Causal 0.5226 0.4249 0.4255 0.4253 

𝑭𝒔𝒕 = 𝟎. 𝟎𝟏 
  Random 0.0030 0.0001 0.0001 0.0001 

  Differentiated 0.9971 0.0001 0.0001 0.0001 

  Causal 0.5166 0.4227 0.4230 0.4229 

Table 1: Proportion of associations reported as statistically significant ( 𝑃 < 0.0001 ) by logistic 204 

regression using a likelihood ratio test. Random SNPs with no association to the disease were 205 

generated by simulating random drift with 𝐹𝑠𝑡 divergence. Differentiated SNPs with no association to 206 

the disease were generated by assuming population allele frequencies of 0.8 of ancestry 1 and 0.2 of 207 

ancestry 2. Causal SNPs were generated by combining a multiplicative disease risk model while 208 

simulating the random drift with the same 𝐹𝑠𝑡 as the random SNPs. See methods for more details on 209 

the parameters. 210 

Putting SUGIBS to practice, we projected 2,882 unrelated individuals from a large admixed and 211 

heterogeneous dataset containing individuals from varying ancestries (the PSU cohort, see Methods) 212 

and eight famous ancient DNA samples onto the first 25 SUGIBS axes established from the 26 213 

populations in the 1KGP. Shown in Figure 5 and S1 (a), the first two ancestry components separate 214 

the African (AFR) and East Asian (ESA) populations from the remaining populations, as indicated by 215 

the population labels given in the 1KGP.  The next two ancestry components in Figure 5 and S1 (b) 216 

separate the South Asian (SAS) population and visualizes the admixture in the Admixed American 217 

(AMR) population, respectively. In figure 5 and S1 (c), the sixth ancestry component captures different 218 

subpopulations in the EAS population. In Figure 5 and S1 (d), the seventh ancestry component is driven 219 

by African subpopulations and the separated European subpopulation on the eighth ancestry 220 

component is the population from Finland (FIN). The projected PSU cohort is indicated by gray dots in 221 

Figure 5 and S1 and overall it is observed that they overlay well with a wide range of ancestry variations 222 

in the 1KGP confirming the heterogeneous and admixed nature of the PSU dataset. However, some 223 

populations in the 1KGP are less covered by the PSU cohort, such as the population of Finland in 224 

Europe and some African subpopulations on ancestry components seven and eight (Figure 5 d). 225 
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 226 

Figure 5: Top eight SUGIBS axes of 1KGP and projections of the PSU cohort. Grouped populations of 227 

the 1KGP are coloured dots. The projected PSU cohort are represented by grey dots. The faces illustrate 228 

opposing variations along each of the ancestry components and are not associated to any of the 1kG 229 

populations in particular (these are shown in Figure 6). 230 

Based on the visually strong and recognizable human facial phenotype, we generated comprehensive 231 

illustrations of the population structure embedded in the 1KGP. Using the first 25 SUGIBS scores of 232 

the PSU cohort onto the ancestry components of the 1KGP, we fitted a partial least squares regression 233 

(PLSR) to model facial variations in function of each of the first eight ancestry components (Figure 5). 234 

Strong facial differences are observed for ancestry components 1-4, whilst perceptually smaller 235 

differences occur in components 5-8. This is most likely due to a lower overlap of the PSU cohort with 236 

these ancestry components. Subsequently, we reconstructed the ancestry population average face 237 

from each of the 26 populations in the 1KGP (Figure 6), and ancestry faces specific for eight high-238 

coverage ancient DNA profiles (Figure 7). The facial images in Figures 5, 6 and 7, are perceptually easy 239 

to confirm the expected variations in facial shape in function of genetic ancestry including admixtures. 240 

For the ancient DNA profiles labeled in Figure 7, it is observed that their projections within the 1kG 241 

ancestry is consistent with the geographical locations where these samples were discovered and what 242 

is currently known about these samples (Supplementary Table S1). 243 
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 244 

 245 

Figure 6: Ancestry population average faces for each of the 26 populations in the 1KGP positioned 246 

according to geographical origin. The values for sex, BMI and age in the PLSR model were set to 0 247 

(sexless), 20 and 25, respectively. 248 
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 249 

Figure 7: Ancestral facial reconstructions for eight ancient DNA profiles. For these reconstructions, the 250 

sex was known from the DNA profile and taken into account in the PLSR model. The values for BMI and 251 

age were 20 and 25, respectively. 252 

Discussion 253 

Accurate inference of population structure and individual global ancestry is of critical importance in 254 

human genetics, epidemiology, and related fields (15,16). The analysis of population structure in itself 255 

can yield significant insights in terms of population dynamics, both in modern and ancient populations 256 

(17–19). Through inspection of ancestry components as well as distances in genetic latent spaces 257 

created by, for example, Principal Component Analysis (PCA), it is possible to infer patterns of gene 258 

flow and population movements through time. Furthermore, the inclusion of various populations in 259 

genome-wide association studies (GWAS) could increase statistical power and make a better 260 

contributions to our understanding of the genetics of complex traits for the human population as a 261 

whole (20). However, the widely used approach of PCA and analogous techniques are sensitive to 262 

outliers, when constructing ancestry spaces, and produce patterns of misalignment due to artifacts of 263 

different laboratory protocols when new samples are projected onto a reference ancestry space 264 

(1,7,9). We propose a robust alternative for genome-wide ancestry inferencing, referred to as SUGIBS. 265 

Our results confirm the erroneous influences in PCA based ancestry estimations that are misleading 266 

without careful interpretation. In constructing an ancestry space SUGIBS, shares the same robustness 267 

against individual outliers as MDS or related spectral graph approaches (21). Furthermore, and more 268 
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importantly, during dataset projections SUGIBS is robust against typical artefacts from different 269 

laboratory protocols. In addition, SUGIBS achieved the same performance, under error-free conditions, 270 

as PCA in revealing the underlying structure of an admixed population and avoiding false positive 271 

findings in a simulated case-control GWAS with an admixed population. 272 

Like MDS and SUGIBS, PCA is also a “spectral” method, in which the edge similarity between 273 

individuals is simply the covariance of normalized genotypes, commonly referred to as the genomic 274 

relationship matrix (22). However, this covariance similarity used in PCA depends on the allele 275 

frequencies as a non-robust sample statistic to normalize the genotypes, which causes sensitivity to 276 

individual outliers. Note that in our experiments on PCA without using allele frequencies (UPCA) 277 

robustness against individual outliers was observed. Among the “spectral” methods, some other 278 

robust alternatives were introduced to infer population structure, including a modified genomic 279 

relationship (21,23). MDS or related spectral graph approaches (21) using IBS and Allele Sharing 280 

Distance (ASD) similarities between individuals (available in PLINK (10)) are also a robust alternative 281 

against individual outliers, as illustrated in our results. IBS and ASD are unnormalized distances, and 282 

thus less influenced by outliers. However, MDS and the modified genomic relationship used in (21,23), 283 

both lack the ability to project new samples on an already established reference ancestry space. 284 

Alternatively, it might be possible to use one of the many robust PCA approaches that have been 285 

investigated for general data (24–26) as well as genetic data (27). However, in most study data 286 

processing protocols, robust approaches are usually used for outlier detection rather than inferring 287 

population structure, which is done by classical PCA after excluding outliers (27). This is for example, 288 

a standardly used option in the popular EIGENSOFT software (7). Note that, when establishing an 289 

ancestry space from a reference dataset, it remains good practice to identify and remove individual 290 

outliers, if they are of no further interest.  291 

The main contribution of SUGIBS is robustness against batch artifacts of different laboratory and data 292 

processing protocols when projecting new samples onto a reference ancestry space. In the case of 293 

missing genotypes, smaller absolute PC scores, and smaller UPC scores are wrongfully generated 294 

during the projection of samples. These smaller and decreased scores lead to the “shrinking” and 295 

“shifting” patterns as observed in the results. (Note that this is not to be confused with PCA shrinkage 296 

due to high dimensional and large-scale data, which is dealt with using shrinkage eigenvalue 297 

estimations as recently implemented in EIGENSOFT). However, to correct for this, the projected 298 

SUGIBS score matrix is weighted by the reference degree matrix, which captures the similarity 299 

between the data to be projected and the reference data (see Methods). This weighting of projected 300 

SUGIBS scores equally corrects for the effects of genotyping and imputation errors, as demonstrated 301 

in the results. To the best of our knowledge, we are currently not aware of another related approach 302 

that offers the same robustness. Based on the results, we argue that SUGIBS is a solid alternative to 303 

PCA and MDS and requires less stringent data filters to operate. Our implementation of SUGIBS uses 304 

the randomized singular value decomposition algorithm (28), that is also used in FastPCA (12). This 305 

makes the algorithm computationally tractable for datasets with tens of thousands of individuals and 306 

millions of SNPs. SUGIBS is available as part of an open-source in-house MatlabTM library, referred to 307 

as SNPLIB, in which we used PLINK binary file formats as input, and provide FastPCA, logistic GWAS 308 

and all other methods and simulations mentioned throughout this work. Furthermore, SUGIBS can 309 

easily be incorporated into existing and interesting extensions to derive common ancestry estimations 310 

in datasets with non-overlapping genetic variants (1), or genotyping-by-sequencing data (29), or 311 

https://github.com/jiarui-li/SNPLIB
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population structure inference in presence of relatedness (30), or in iterative schemes to obtain global 312 

to fine-scale ancestry estimations (31).  313 

There are a few points of discussion and future investigations. First, a genetic similarity measure 314 

between pairs of individuals aims to identify how they are related and different measures exist for 315 

ancestry estimations (e.g. IBS, ASD, Identity-by-descent, normalized covariance) (22). Commonly used 316 

similarity measures are normalized, just like the traditional approach of PCA on normalized genotype 317 

data, to take the genetic composition of individuals along with the rest of the sample into account. A 318 

normalization does have the advantage that individuals within the same population are more similar 319 

to each other than to individuals in other populations (22). In other words, the distinction between 320 

populations increases, which improves population identification by clustering algorithms. However, 321 

when the normalization is performed incorrectly clustering efforts might be inaccurate. Furthermore, 322 

as seen in our results, such a normalization increases the influence of individual outliers. Finally, in 323 

contrast to homogeneous datasets, normalization of genotype data in heterogeneous datasets is 324 

challenging depending on whether the dataset is unlabeled or not, imbalanced or not, and with high 325 

admixture or not. Starting from unlabeled data, unsupervised clustering approaches such as 326 

ADMIXTURE (32) and STRUCTURE (33), iteratively identify the populations individuals belong to and 327 

update the normalization accordingly. However, this involves additional parameters to set and tune, 328 

the most important one being the amount of clusters expected in the data. Without prior knowledge 329 

on how to set these parameters, this can turn into a challenging task. With highly admixture data, any 330 

clustering of global ancestry into populations is even questionable. In these situations, only local 331 

ancestry estimations, using chromosome painting approaches (34) for example, are meaningful. 332 

Alternatively, in the future, we want to investigate the use of a reference ancestry space as 333 

constructed in this work, without assigning individuals to specific populations, in estimating 334 

normalized genotype data on an individual-by-individual basis. I.e., an ancestry space from 335 

unnormalized genotype data is a good first step unbiased by any sample statistics, to further deduct 336 

statistics related to individual genotype profiles. For example, (35) propose the Robust Unified Test 337 

for Hardy-Weinberg Equilibrium in the context of an admixed population, which also makes use of 338 

individual-level adjustments for ancestry. Second, future investigations of the methodology also 339 

include the influence of LD pruning and data filtering for SNP selection. Population admixture is one 340 

of the main sources for LD between SNPs, therefore we prefer to avoid excessive LD pruning before 341 

applying SUGIBS. As stated in (22) any data pruning or filtering is bound to loose information related 342 

to population structure. For example, less common variants are typically lost in data filtering, but 343 

these might contain valuable information about population structure (22). Since SUGIBS is robust and 344 

computationally tractable, any data filtering can be minimized. Third, another future investigation 345 

involves the determination of the number of relevant or significant components in SUGIBS, for which 346 

we provide a preliminary suggestion that compares the spectrum of the data observed with that of a 347 

simulated homogenous dataset assuming linkage equilibrium (LE) and Hardy-Weinberg Equilibrium 348 

(Supplementary Text S1).  349 

In application of SUGIBS we used the human face, which is a powerful phenotype to visualize and 350 

illustrate underlying genetic ancestry variations. Indeed, faces are easy to recognize, interpret, and 351 

validate the outcomes based on everyone’s expert knowledge in facial perception. The faces 352 

illustrating the ancestry components of the 1KGP in this work overlay well with the provided 353 

population labels. Therefore, they can also provide a means to interpret ancestry variations in a 354 

heterogeneous dataset in absence of population labels. It is important to note that an ancestry face, 355 
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as referred to in this work, for each of the 26 1kG populations and ancient DNA profiles are faces that 356 

reflect a population’s or an individual’s genetic background and sex. In other words, ancestry faces 357 

are not individually specific faces, but average faces that simply visualize the ancestry background of 358 

a DNA profile. Related work on facial prediction from DNA (36,37), also show that sex and ancestry 359 

are the primary factors driving the estimation of facial shape from DNA.   360 

Ancestry facial predictions have good value in a range of applications. In archeology, ancestry faces 361 

reconstructed from ancient DNA profiles, as done in this work, is of strong interest. Generally, for 362 

ancient DNA profiles, missing data is abundantly present, making SUGIBS an interesting technique to 363 

be used. Note that, the ancestry faces are limited to modern facial constructs, due to the 364 

contemporary facial data used. However, they can help to bring ancient DNA profiles into the context 365 

of present-day populations for which facial images (e.g. open-source facial databases, Google images, 366 

etc.) are available but DNA is not. Furthermore, there is a good relationship between the face and the 367 

skull (38,39), such that ancestry faces can be used to compare against skeletal remains. In the future, 368 

it is of interest to deploy our work on datasets of 3D skeletal craniofacial surfaces extracted from 369 

Computer Tomography (CT) or Magnetic Resonance Imaging (MRI). In medicine, and more particularly 370 

in oral and maxillofacial surgery, the surgical reconstruction of a patient’s face benefits from a proper 371 

notion of normal facial shape (40). In the next five to 20 years, whole genome sequencing will become 372 

the standard of care in clinics and a patient-specific ancestry face provides a personalized norm of 373 

facial shape towards precision medicine in surgical planning. Finally, in forensics, an ancestry facial 374 

prediction circumvents the often legally debated reporting of ancestry proportions of a probe DNA 375 

profile in a criminal investigation. In France, for example, DNA phenotyping of externally visible traits 376 

is legally allowed, since such traits are considered to be public. However, and in contrast, genomic 377 

ancestry proportions, as typically reported in forensic DNA testing, is considered to be private 378 

information and cannot be used during criminal investigations. We agree that ancestry proportions 379 

are not an externally visible characteristic of an individual. The construction of ancestry proportions 380 

is also inherently flawed by labelling the individual into so-called parental populations. Furthermore, 381 

such numeric information is hard to interpret and use by a forensic investigator. The reconstruction 382 

of an ancestry face on the other hand, avoids needing to explicitly label a DNA profile in function of 383 

parental populations and provides a visual feedback to an investigator that is perceptually useful, even 384 

in admixed cases. A future challenge in forensics does involve the ability to reconstruct ancestry faces 385 

using often limited and contaminated DNA material. 386 

In conclusion, SUGIBS is a novel approach to construct an ancestry space from a reference dataset and 387 

to project new samples from heterogeneous datasets for a consistent and robust inference of 388 

individual ancestry. The main contributions involve robustness against outliers during the construction 389 

of an ancestry space, and robustness against batch artefacts during the projection of new samples 390 

into an ancestry space. Therefore, SUGIBS is a solid alternative to PCA and MDS and facilitates a robust 391 

integrative analysis for population structure and ancestry estimations for heterogeneous datasets. 392 

Based on the visually strong and recognizable human facial phenotype, comprehensive illustrations of 393 

genomic ancestry variations were provided for different populations in the 1KGP and for eight 394 

eminent ancient-DNA profiles. Ancestry facial imaging from genome data has interesting future 395 

applications in personalized and precision medicine along with forensic and archeological DNA 396 

phenotyping. 397 

  398 
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Materials and Methods 399 

SUGIBS latent-space construction: Given a dataset with 𝑁 individuals and 𝑀 SNPs, we first create an 400 

unnormalized genotype (UG) matrix 𝑿𝑀×𝑁 with additive genotype coding (aa = -1, Aa = 0, AA = 1 and 401 

missing = 0). The UG relationship matrix is then defined as 𝑮 =
1

𝑀
𝑿𝑇𝑿. Note that an unnormalized 402 

additive genotype coding has only three values (-1, 0, 1) and does not produce extreme values, which 403 

occurs with normalized additive genotype encoding schemes (typically used in PCA) due to small minor 404 

allele frequencies and in the context of individual outliers. 405 

From 𝑾𝑁×𝑁, the IBS similarity matrix of the same dataset used to create 𝑮, the similarity degree of 406 

an individual can be defined as 𝑑𝑖𝑖 = ∑ 𝑤𝑖𝑗
𝑁
𝑗=1 . We followed the algorithm implemented in PLINK to 407 

calculate the IBS similarity so that: 408 

IBS AA Aa aa 

AA 2 1 0 

Aa 1 2 1 

aa 0 1 2 

N/A 0 0 0 

 409 

However, in contrast to the calculations in PLINK, we do not normalize the IBS similarity matrix with 410 

missingness scores. This results in a similarity degree matrix 𝑫 defined as the diagonal matrix with 411 

𝑑11, … , 𝑑𝑁𝑁 on the diagonal. We use 𝑫 to define generalized eigenvectors 𝒗𝑘 = (𝑣𝑘1, … , 𝑣𝑘𝑛)𝑇 of 𝑮 412 

with corresponding generalized eigenvalues 𝜆𝑘 , and 𝜆1 ≥  𝜆2 ≥ 𝜆3 ≥  …: 413 

𝑮𝒗𝑘 = 𝜆𝑘𝑫𝒗𝑘 (1) 414 

Similar to UPCA, the first generalized eigenvector of 𝑫 and 𝑮 simply represents the average pattern 415 

of all SNPs. Therefore, we start from the second generalized eigenvector and define the 𝑘 th 416 

component of SUGIBS to be the 𝑘 + 1th generalized eigenvector of 𝑮 and 𝑫, 𝒗𝑘+1.  417 

By multiplying 𝑫−
1

2 on both sides of equation (1), we obtain: 418 

𝑫−
1
2𝑮𝑫−

1
2𝑫

1
2𝒗𝑘 = 𝜆𝑘+1𝑫−

1
2𝒗𝑘 (2) 419 

Subsequently, we observe that the eigenvector 𝒗𝑘
′ = 𝑫

1

2𝒗𝑘  of 𝑫−
1

2𝑮𝑫−
1

2 =
1

𝑀
𝑫−

1

2𝑿𝑇𝑿𝑫−
1

2  can be 420 

obtained from the singular value decomposition (SVD) of the matrix  𝑿̂ = 𝑿𝑫−
1

2 = 𝑼𝚺𝑽′𝑇, where 𝒗𝑘
′  421 

is also the 𝑖th right singular vector with singular value 𝜎𝑘 = √𝑀𝜆𝑘+1, 𝚺 is a 𝑁 × 𝑁 diagonal matrix, 𝑼 422 

is a 𝑀 × 𝑁  matrix with all the left singular vectors and 𝑽′ is a 𝑁 × 𝑁 matrix with all the right singular 423 

vectors.  424 

Denoting 𝑼𝑘 = {𝒖2, … , 𝒖𝑘+1} and 𝜮𝑘 = 𝑑𝑖𝑎𝑔{𝜎2, … , 𝜎𝑘+1}, the corresponding left singular vectors 425 

and the singular values of the first 𝑘 SUGIBS components 𝑽𝑘 = 𝑫−
1

2𝑽𝑘
′ = 𝑫−

1

2{𝒗2, … , 𝒗𝑘+1}, we have 426 

the following equation: 427 
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 𝑽𝑘 = 𝑫−
1
2𝑽𝑘

′ = 𝑫−1𝑺𝑘 = 𝑫−1𝑿𝑇𝑳𝑘 = 𝑫−1𝑿𝑇𝑼𝑘𝚺k
−𝟏 (3) 428 

Thus, we denote 𝑳𝑘 = 𝑼𝑘𝚺k
−𝟏 as the SUGIBS loading matrix for the first 𝑘 SUGIBS components and 429 

𝑺𝑘 = 𝑿𝑇𝑼𝑘𝚺k
−𝟏 as the unnormalized SUGIBS score matrix.  430 

We proposed a preliminary method to select proper number of components which compared the 431 

spectrum of the observed data with that of the simulated data, assuming HWE and Linkage Equilibrium 432 

(see Supplement note). 433 

SUGIBS dataset projection: Given the SUGIBS loadings 𝑳𝑘 from a reference dataset with 𝑁 individuals 434 

and 𝑀 SNPs and given a new dataset with 𝑁̃ individuals and the same set of SNPs as the reference 435 

sample, we denote the unnormalized genotype matrix of the new dataset as  𝑿̃. We then define the 436 

reference degree 𝑑̃𝑖𝑖 = ∑ 𝑤̃𝑖𝑗
𝑁
𝑗 , where 𝑤̃𝑖𝑗 is denoted as the IBS similarity between the 𝑖th individual 437 

in the target dataset and the 𝑗th individual in the reference dataset. The reference similarity degree 438 

matrix 𝑫̃ of the new dataset is a diagonal matrix with 𝑑̃11, … , 𝑑̃𝑁̃𝑁̃  on the diagonal. For the first 𝑘 439 

SUGIBS components, the projected score matrix of the target dataset is then obtained as: 440 

𝑽̃𝑘 = 𝑫̃−𝟏𝑺̃𝑘 = 𝑫̃−𝟏𝑿̃𝑇𝑳𝑘 = 𝑫̃−𝟏𝑿̃𝑇𝑼𝑘𝚺k
−𝟏 (4) 441 

In equation (4), the reference similarity degree matrix 𝑫̃ acts as a normalization term correcting the 442 

missing genotypes and errors in the samples to be projected. As an example, consider a rare SNP with 443 

major allele A and minor allele G, and an individual with true genotype AA that is wrongfully coded as 444 

GG for that particular SNP. Since the major genotype in the reference data of this SNP is AA, the 445 

number of shared alleles of this SNP between this individual to the majority of individuals in the 446 

reference dataset would reduce from 2 to 0. The unnormalized genotype coding of this person also 447 

changes from 1 to -1. Thus, the influence of such a genotyping error on the unnormalized SUGIBS 448 

score matrix 𝑺̃𝑘 and the reference similarity degree matrix 𝑫̃ are along the same direction so that the 449 

final SUGIBS scores are corrected by 𝑫̃−𝟏. Other typical batch artefact errors and missing genotypes 450 

in the new dataset are corrected for in a similar way and, most interestingly, this correction is provided 451 

on an individual by individual basis. 452 

Genome-wide common SNP selection across datasets: We recommend the following procedure to 453 

extract a common set of SNPs between a reference dataset and another dataset being projected, for 454 

constructing SUGIBS ancestry spaces. First, we exclude all the indel, monomorphic, and multi-allelic 455 

SNPs in both the reference dataset and the dataset to project. Subsequently, we extract the list of 456 

SNPs common in both datasets. Based on this list, we further recommend a minor allele frequency 457 

(MAF) filtering with a MAF threshold of 0.01 on the reference dataset using PLINK (10) as a quality 458 

control step. We do not recommend Hardy-Weinberg disequilibrium (HWD) filtering since it is 459 

probably the result of population admixture and thus useful for our purposes (41). Although 460 

population admixture is one of the main sources for LD between SNPs, we still recommend LD pruning 461 

since it is not unusual to have non-uniformly genotyped genomes. Similar to PCA, SUGIBS do not 462 

explicitly model LD between SNPs so that misleading results might be generated without LD pruning. 463 

Individual outlier robustness: The basic dataset that was used to investigate robustness against 464 

individual outliers in a reference dataset, consists of the individuals from the CEU population (111 465 

individuals) and the TSI population (102 individuals) from the HapMap 3 dataset (3), after excluding 466 

non-founders. We randomly selected one individual as outlier from four other populations (CHB, MEX, 467 
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GIH, and YRI). These individuals specifically are NA18798 (CHB), NA19740 (MEX), NA21124 (GIH), and 468 

NA19262 (YRI). After removing the monomorphic SNPs in each of these three datasets, we built 469 

SUGIBS, MDS, UPCA and PCA spaces using 892,338 autosomal SNPs remaining in all three datasets. 470 

We intentionally did not perform either minor allele frequency (MAF) filtering or HWE filtering on the 471 

SNPs since many rare SNPs and SNPs violating HWE are due to the outliers and were therefore not 472 

checked for during the testing for robustness. 473 

Simulated laboratory artefacts: We used the 1000 Genomes Project dataset (2,504 unrelated 474 

individuals from 26 populations) as the reference dataset to infer a PCA, UPCA and SUGIBS based 475 

ancestry space. We used the HGDP dataset that analyzed genomic data from 1,043 individuals from 476 

around the world as the dataset to project. First, we remapped the HGDP dataset from the NCBI36 477 

(hg18) assembly to the GRCh37 (hg19) assembly using the NCBI Genome Remapping Service. Based 478 

on the SNP selection procedure for SUGIBS as explained previously, we further performed a LD pruning 479 

with a window size of 50, a moving step of 5 and a threshold 𝑟2 > 0.2 for several times until no more 480 

SNPS were excluded, following (12). LD pruning is a common practice when using PCA. Therefore, we 481 

followed this additional step to make the results based on PCA, UPCA and SUGIBS comparable. We 482 

finally selected 154,199 autosomal SNPs to construct the PCA, UPCA and SUGIBS ancestry spaces. We 483 

then extracted the first eight PCA, UPCA and SUGIBS ancestry components from the reference dataset. 484 

After extracting the same set of SNPs in the HGDP dataset, we took care to ensure that the alternate 485 

alleles were the same as in the reference dataset. 486 

Since PLINK binary file format stores the genotypes of four consecutive individuals in a single byte, we 487 

assigned one of every two “bytes” (four individuals) into Population A and the other individuals into 488 

Population B of the HGDP dataset. This resulted in 523 individuals for Population A and 520 individuals 489 

for Population B. In order to simulate laboratory artefacts, we randomly masked 5% genotype calls as 490 

missing and changed 5% genotype calls (e.g., from AA to Aa or aa) of the rare SNPs (MAF < 0.05) in 491 

Population A.  Random genotype masking and changing were also performed on the “byte” level, i.e. 492 

four individuals at a time. For both genotyping masking and changing, we generated 100 datasets to 493 

project on the 1kG reference ancestry space. Subsequently, we calculated the root-mean-square 494 

deviations (RMSD) between the scores of the top eight PCA, UPCA and SUGIBS axes generated using 495 

the original genotypes and the modified genotypes in Population A and further normalized them by 496 

the range of the axes generated using the original genotypes so that normalized root-mean-square 497 

deviations (NRMSD) across methods are comparable. 498 

Simulated admixed population: Our admixture simulations were adapted from the section 499 

“Simulation Framework” in (12). For a given SNP 𝑖, the ancestral allele frequency 𝑝𝑖  was sampled from 500 

a 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.1,0.9) distribution. Population allele frequencies were generated by simulating random 501 

drift in two populations of fixed effective size 𝑁𝑒  for 𝜏 generations as 𝑝𝑖1 and 𝑝𝑖2, whose initial values 502 

were set to 𝑝𝑖. In each generation, the number of alternate alleles 𝑧𝑖1 and 𝑧𝑖2 were sampled from two 503 

binomial distributions with 2𝑁𝑒 number of trials and 𝑝𝑖1 and 𝑝𝑖2 success probabilities. The population 504 

allele frequencies were then updated by 𝑝𝑖1 =
𝑧𝑖1

2𝑁𝑒
 and 𝑝𝑖2 =

𝑧𝑖2

2𝑁𝑒
. For all simulations, population allele 505 

frequency simulations were run for 20 generations and the effective population size 𝑁𝑒  was calculated 506 

for a target 𝐹𝑠𝑡  by 𝐹𝑠𝑡 = −log (1 −
𝜏

2𝑁𝑒
) (42). This was done for 𝐹𝑠𝑡 = {0.001,0.005,0.01,0.05,0.1}, 507 

𝑁𝑒 ≈ {10𝑘, 2𝑘, 1𝑘, 200,100} with 𝜏 = 20.  508 
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The ancestry proportions 𝛼𝑗 were sampled from a 𝑏𝑒𝑡𝑎(0.5, 0.5)  distribution so that the proportion 509 

from each ancestry is 50% on average. For a given individual 𝑗 with ancestry proportion of 𝛼𝑗 from 510 

Population one and (1 − 𝛼𝑗) from Population two, the individual allele frequency for SNP 𝑖 was 𝑝𝑖
𝑗

=511 

𝛼𝑗𝑝𝑖1 + (1 − 𝛼𝑗)𝑝𝑖2 and the genotype was sampled from a binomial distribution with 2 trials and 𝑝𝑖
𝑗
 512 

success probability. The MatlabTM implementations for these simulations are also provided in our 513 

SNPLIB library. 514 

Simulated GWAS: Our GWAS simulation is similar to the one carried out in (14).  To simulate a case-515 

control GWAS, we generated 1,000 individuals from a population admixed from two ancestries. The 516 

case-control status was simulated using a disease risk proportional to 𝑟𝛼, based on an ancestral risk 517 

of 𝑟 = 3. We generated three categories of SNPs (random, differentiating and causal) to compare the 518 

performance of PCA, MDS, and SUGIBS in correcting for population stratification. For the first category 519 

(random SNPs with no association to the disease), we generated the SNPs by simulating random drift 520 

with a certain 𝐹𝑠𝑡 divergence. For the second category (differentiated SNPs with no association), we 521 

assumed population allele frequencies of 0.8 for ancestry one and 0.2 for ancestry two. For the third 522 

category (causal SNPs), we generated SNPs by combining a multiplicative disease risk model while 523 

simulating the random drift with the same 𝐹𝑠𝑡 as the random SNPs. 524 

We simulated the case-control status according to (7). For individuals with an ancestry proportion of 525 

𝛼 from population one and (1 − 𝛼) from population two, the case-control status was simulated with 526 

the probability of disease equal to 
log(𝑟)𝑟𝑎

2(𝑟−1)
 , which ensures an average value of 0.5 across all the values 527 

of 𝛼 (7). 528 

For the case individuals, the population allele frequencies 𝑝𝑖1 and 𝑝𝑖2 of the causal SNP 𝑖 were further 529 

updated to 𝑝𝑖1
∗ =

𝑅𝑝𝑖1

1−𝑝𝑖1+𝑅𝑝𝑖1
 and 𝑝𝑖2

∗ =
𝑅𝑝𝑖2

1−𝑝𝑖2+𝑅𝑝𝑖2
 with a relative risk of 𝑅 = 3 , respectively. The 530 

MatlabTM implementations for these simulations are also provided in our SNPLIB library. 531 

PSU cohort and 3D facial images: Study participants in the PSU cohort were recruited in the United 532 

States through several studies based at The Pennsylvania State University under Institutional Review 533 

Board (IRB) approved protocols (IRB #44929, #45727, #2503, #4320, #32341). 3D facial images were 534 

taken using the 3dMD Face (3dMD, Atlanta, GA) and the Vectra H1 (Canfield, Parsippany, NJ) imaging 535 

systems. Height and weight were measured using an Accustat stadiometer (Genentech, San Francisco, 536 

CA), a clinical scale (Tanita, Arlington Heights, IL), or by self-report. Genotyping was conducted by 537 

23andMe (23andMe, Mountain View, CA) on the v4 genome-wide SNP array and on the Illumina Multi-538 

Ethnic Global Array (MEGA). After filtering out SNPs with more than 10% missing genotypes, the 539 

intersection of these two arrays compromised of approximately 600K SNPs. We removed individuals 540 

with misclassified sex information, missing covariate data, and those with more than 10% missing 541 

genotypes. Relatives were identified as pairs of individuals with an identity-by-state (IBS) value of at 542 

least 0.8, after which one of each pair was randomly removed, resulting in a set of 2,882 individuals. 543 

Genotypes were imputed to the 1000 Genomes Project Phase 3 reference panel, using SHAPEIT2 544 

(Delaneau, Marchini, & Zagury, 2012) for prephasing of haplotypes and imputed using the Sanger 545 

Imputation Server PBWT pipeline (Durbin, 2014; McCarthy et al., 2016). 546 

3D facial images were imported into MatlabTM 2016b in .obj wavefront format to perform spatially 547 

dense registration (MeshMonk). After importing the images, five positioning landmarks were 548 

indicated in the corners of the eye, the tip of the nose and the corners of the mouth to roughly align 549 
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the images into the same position. Subsequently, the images were cleaned by removing hair, ears, 550 

and any dissociated polygons. A symmetrical anthropometric mask (43) of 7,160 landmarks was then 551 

mapped onto the pre-processed images (44). This resulted in homologous spatially dense 552 

configurations of quasi-landmarks per facial image. Reflected images were created by changing the 553 

sign of the x-coordinate of the original mapped images. Both the original and the reflected remapped 554 

faces were then superimposed following a generalized Procrustes superimposition to eliminate 555 

differences in orientation, position and scale (45). Symmetrized images were created by averaging the 556 

original and the reflected images.  557 

Image quality control was performed to identify poorly remapped faces using two approaches. First, 558 

as described in (46), outlier faces were identified by calculating Z-scores from the Mahalanobis 559 

distance between the mean face and each individual face. Faces with Z-scores higher than 2 were 560 

manually checked. Second, a score was calculated that reflects the missing data present in the image 561 

due to holes, spikes, and other mesh artefacts that can be caused by facial hair or errors during the 562 

pre-processing steps, for example. Images with scores indicating a high amount of missing data, 563 

indicating large gaps in the mesh, were also manually checked. During the manual check, the images 564 

were either classified as images of poor quality or were pre-processed again if possible and mapped 565 

again. 566 

Prediction of ancestry faces: Using 69,194 autosomal SNPs overlapping with the PSU cohort and the 567 

ancient-DNA profiles, we constructed 25 SUGIBS ancestry components, which is theoretically 568 

sufficient to separate 26 populations, from the 1000 Genomes project. Subsequently, we projected 569 

the individuals from the PSU cohort and the ancient-DNA profiles onto the 1kG ancestry components. 570 

Then, we fitted a partial least-squares regression (PLSR) model using the superimposed 3D facial 571 

images with 7,160 quasi-landmarks collected in the PSU cohort as the response variables and the 25 572 

projected SUGIBS scores of the PSU cohort together with three covariates (age, sex, and BMI) as the 573 

explanatory variables. 574 

Given specific ancestry scores on the ancestry components of the 1kG ancestry space, together with 575 

age, BMI and sex (-1 (male), 0 (neutral sex) or 1 (female)), the PLSR model was used to predict ancestry 576 

faces. To illustrate the ancestry components in Figure 7, we simply varied a single score along each 577 

ancestry component separately, while keeping the scores on the other ancestry components fixed and 578 

equal to the overall average scores in the PSU cohort together with values for age = 25, BMI = 20, and 579 

sex = 0. For each of the 26 populations in the 1KGP, we calculated the average scores on each SUGIBS 580 

ancestry component per population. These average scores together with values for age = 25, BMI = 581 

20, and sex = 0, were used in the PLSR model to reconstruct the average ancestry faces for each of the 582 

26 populations in the 1KGP. Diploid genotypes for the ancient genomes were called using GATK as 583 

described in  (47). The projected scores of the ancient-DNA profiles were used together with the 584 

genome-derived sex values of each of the ancient individuals to reconstruct their ancestry faces in 585 

Figure 7. 586 
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Supplementary Materials: 751 

 752 

Supplementary Table S1: Information and references for each of the 8 ancient DNA profiles. 753 

 754 

Supplementary Figure S1: Top eight SUGIBS axes of 1KGP and projections of the PSU cohort 755 

 756 

Supplementary Text S1: Determination of the number of relevant or significant components 757 
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Figure Captions: 760 

 761 

Figure 1: Robustness against individual outliers during the construction of an ancestry space. Top 762 

row, the first two ancestry components for A) PCA, B) MDS, C) UPCA and D) SUGIBS using the 763 

CEU and TSI populations from the HapMap 3 project. Bottom row, the first two ancestry 764 

components for E) PCA, F) MDS, G) UPCA and H) SUGIBS using the CEU and TSI populations 765 

from the HapMap 3 project, but with randomly selected single individuals from four different 766 

and additional populations (CHB, GIH, MEX and YRI) as “outliers”. 767 

 768 

Figure 2: Robustness against batch artefacts during the projection of samples onto an ancestry 769 

space. Top row, the first two ancestry components of PCA using the original genotypes A), 770 

missing genotypes B) and modified genotypes C). Middle row, the second and third ancestry 771 

components of UPCA using the original genotypes D), missing genotypes E) and modified 772 

genotypes F). Bottom row, the first two ancestry components of SUGIBS using the original 773 

genotypes G), missing genotypes H) and modified genotypes I). 774 

 775 

Figure 3: Normalized root-mean-square deviation (NRMSD) of the top eight axes of PCA, UPCA and 776 

SUGIBS. NRMSD measures the root-mean-square differences (RMSD), for the modified HGDP 777 

population only between the scores on ancestry axes generated using the original genotypes 778 

(error free) and the modified genotypes (with simulated errors, A) missing genotypes and B) 779 

erroneous genotypes). The RMSD values were normalized by the range of the ancestry axes 780 

generated using the original genotypes, so that NRMSD of the three methods (PCA, UPCA and 781 

SUGIBS) are comparable. 782 

 783 

Figure 4: Capturing simulated admixture in function of Fst. X-axis represents the different levels of Fst 784 

investigated. The Y-axis represents the absolute correlation of the first component in PCA, MDS 785 

and Spectral-IBS with the simulated ancestry proportion. The higher the correlation the better 786 

a method is able to capture the underlying admixture. 787 

 788 

Figure 5: Top eight SUGIBS axes of 1KGP and projections of the PSU cohort. Grouped populations of 789 

the 1KGP are coloured dots. The projected PSU cohort are represented by grey dots. The faces 790 

illustrate opposing variations along each of the ancestry components and are not associated to 791 

any of the 1kG populations in particular (these are shown in Figure 6). 792 

 793 

Figure 6: Ancestry population average faces for each of the 26 populations in the 1KGP positioned 794 

according to geographical origin. The values for sex, BMI and age in the PLSR model were set to 795 

0 (sexless), 20 and 25, respectively. 796 

 797 

Figure 7: Ancestral facial reconstructions for eight ancient DNA profiles. For these reconstructions, 798 

the sex was known from the DNA profile and taken into account in the PLSR model. The values 799 

for BMI and age were 20 and 25, respectively. 800 
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