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Abstract: Peptidoglycan (PG) is an essential polymer of the bacterial cell wall and a major antibacterial
target. Its synthesis requires glycosyltransferase (GTase) and transpeptidase enzymes that, respectively,
catalyze glycan chain elongation and their cross-linking to form the protective sacculus of the bacterial
cell. The GTase domain of bifunctional penicillin-binding proteins (PBPs) of class A, such as Escherichia
coli PBP1b, belong to the GTase 51 family. These enzymes play an essential role in PG synthesis,
and their specific inhibition by moenomycin was shown to lead to bacterial cell death. In this work,
we report that the aminosterol squalamine and mimic compounds present an unexpected mode of
action consisting in the inhibition of the GTase activity of the model enzyme PBP1b. In addition,
selected compounds were able to specifically displace the lipid II from the active site in a fluorescence
anisotropy assay, suggesting that they act as competitive inhibitors.
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1. Introduction

Peptidoglycan (PG) is an essential polymer of the bacterial cell wall that surrounds the cytoplasmic
membrane, determines the cell shape and protects the cell from lysis. Its metabolism is a major
antibacterial target. The PG structure consists of glycan strands made of alternating β-1,4-linked
N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) residues cross-linked by
peptides [1]. It is assembled using the lipid II precursor (undecaprenyl-pyrophosphoryl-MurNAc-
(pentapeptide)-GlcNAc) by the glycosyltransferases (GTases) activities of the class A penicillin-binding
proteins (aPBPs) and SEDS (shape, elongation, division, and sporulation) proteins and cross-linked by
the transpeptidases (TPases) activities of aPBPs and class B PBPs (bPBPs) [2–4]. The inhibition of each
one of those activities leads to cell death [5].

The GTase domain of bifunctional class A PBPs, such as Escherichia coli PBP1b, belong to the
GTase 51 family. The enzymatic cavity of these domains can be divided into two substrate binding
sites: a donor site for the lipid-bound growing glycan chain, and an acceptor site for lipid II [6].
Moenomycin A is the only known natural product that specifically binds to the GTase 51 donor site
and competitively inhibits PG synthesis [7]. It is a potent antibiotic that is not used in human therapy
but was used in animal feedstock for decades without reported resistance [8].
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Squalamine is a cationic aminosterol antibiotic, isolated from the dogfish shark (Squalus acanthias) [9]
that exhibits a broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria
(MIC for S. aureus and E. coli ~ 3 µg/mL) and potentiates the activity of several antibiotic classes at
subinhibitory concentrations, including against resistant bacteria [10]. Its structure is composed of
a steroid linked to a polyamino spermidine moiety (Figure 1), which taken independently exhibit
considerably low antibiotic activity and are both required for the observed antimicrobial activity of
squalamine [9].
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Figure 1. Structures of the aminosterol compounds used in this study and moenomycin A.

In the last decade, numerous aminosterol derivatives of squalamine have been synthesized and
characterized [11–15]. Their mode of action was proposed to act by disrupting the outer membrane
integrity of Gram-negative bacteria and by depolarizing the cytoplasmic membrane of Gram-positive
bacteria [16,17]. Some of them display good membrane selectivity with high activity on bacterial
membrane and low hemolytic activity, which make them promising candidates as new antibiotics or as
adjuvants to sensitize resistant bacteria to well-known antibiotics [16,17].

Herein, we will demonstrate that squalamine and other related aminosterol present an unexpected
additional mode of action, consisting of the inhibition of a bacterial PG polymerase. By using in vitro
activity assays based on the processing of lipid II substrate into PG polymers by E. coli PBP1b, we found
that squalamine and six other aminosterol analogs inhibit the GTase activity of this enzyme. In addition,
the selected compounds were able to displace the lipid II from the active site in a fluorescence anisotropy
assay indicating that they act as competitive inhibitors.

2. Results

2.1. Squalamine Inhibits the GTase Activity of PBP1b

The crystal structure of the GTase domain of the class A PBP1a from Aquifex aeolicus presents a
steroidal CHAPS detergent molecule bound to a hydrophobic patch adjacent to the active site [18].
Its side chain was suggested to mimic and partly overlap with diphospholipid chain of the lipid II
substrate in the acceptor site. We noticed that the aminosterol antibiotic squalamine and CHAPS have
some structural feature in common, consisting essentially of a sterane core (Figure 1). We were curious
to know if squalamine could affect the PG polymerase activity of E. coli PBP1b. Surprisingly, by using
radioactive lipid II as substrate in an endpoint TLC assay we found that 0.8 mM squalamine was able to
almost completely inhibit the GTase activity of PBP1b (1.1 ± 0.6% residual activity (RA)), whereas the
aminosterol analogs 10, 13 and 14 were inactive (Figure 2A, Table 1). Variable concentrations of
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squalamine were then tested using both an endpoint TLC assay and a continuous fluorescence assay
that monitor the consumption of dansyl-lipid II substrate over time. The inhibition result shows
concentrations-dependent profile and the efficacy of squalamine was rather modest in the high µmolar
range (IC50 value of 291 ± 26 µM) (Figure 2B, Table 1). When the zwitterionic CHAPS detergent
was tested using the same assay at high concentrations and below the critical micelle concentration
(CMC 6–10 mM) value, no inhibition of PBP1b GTase activity was observed up to 5 mM (Figure 2C).
In addition, steroid progesterone 11 or octanediamine 12 tested alone do not inhibit the GTase activity
of PBP1b (Figure 1, Table 1).
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Figure 2. Inhibition of the GTase activity of PBP1b by squalamine and analogs. (A) TLC analysis of
PG polymerase activity of PBP1b using radioactive lipid II as substrate, in the presence of squalamine
and aminosterol analogs. Lanes: 1, lipid II incubated without enzyme; 2–3, lipid II incubated with
100 nM PBP1b with (2) or without (3) addition of methanol (because some compounds tested were
solubilized in methanol); and SQ, 13, 14, and 10 depict the reaction incubated in the presence of 0.8 mM
squalamine, or compounds 13, 14 and 10, respectively. (B) Inhibition of PBP1b GTase activity using
increasing concentration of squalamine (200–1000 µM) monitored by dansyl-lipid II based continuous
fluorescence assay. (C) control experiment with CHAPS (1–5 mM). (D) a representative experiment of
the RA in function of compound concentrations used for the determination of IC50 values. The error
bars represent the mean values ± s.d. of triplicate experiments.

Table 1. GTase inhibition activities of squalamine and aminosterol analogues.

Compounds RA % (0.8 mM) RA % (0.4 mM) IC50 (µM)

Squalamine (1) 1.1 ± 0.6 6 ± 2 291 ± 26
2 0.3 ± 0.1 1.2 ± 0.3 114 ± 6
3 8.5 ± 3.1 16 ± 2 220 ± 10
4 4 ± 1 39 ± 2 303 ± 15
5 3 ± 1 16 ± 1.4 221 ± 26
6 0.8 ± 0.4 3.9 ± 0.1 111 ± 6
7 1.5 ± 0.8 12.5 ± 4.4 229 ± 17
8 97 ± 0.2 nd nd
9 98 ± 1 nd nd

10 99 ± 0.5 nd nd
11 96 ± 2 nd nd
12 98 ± 1 nd nd
13 100 nd nd
14 100 nd nd
15 105 ± 3 nd nd

RA = the residual GTase activities values of PBP1b in % of inhibition compared to nontreated control are shown
for two compounds concentrations (400 and 800 µM). Both RA and IC50 data represent mean values of three
independent experiments ± s.d. nd, not determined. Squalamine (1) and analogues are in bold numbers (2–15).
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2.2. Inhibition of the GTase Activity of PBP1b by Aminosterol Mimics of Squalamine

Based on these encouraging results we have analyzed twelve additional aminosterol compounds
with one or more substitutions at C-3, C-6, C-7 and C-17 positions of the sterane rings. To determine
the relative activity of the compounds, they were tested at 400 and 800 µM and ranked according to
their effect on the residual activity (RA) of the enzyme. Six compounds were found to inhibit the GTase
activity of PBP1b with residual activity ranging from 1.2 to 39% and from 0.3 to 8.5% when using
compound concentrations of 400 and 800 µM, respectively (Figure 1, Table 1).

The active compounds were further investigated to determine the IC50 values (Table 1).
Compounds 2 and 6 were found to be the best ones with IC50 values of 114 ± 6 µM and
111 ± 6 µM, respectively, about three times more efficient than squalamine. Interestingly, compound 9,
a stereoisomer of compound 2 at the C-7 position, was almost inactive (RA 98 % at 800 µM). All active
compounds (except for squalamine) contain a nonpolar moiety in C-17 and a polar group at position
C-3, C-6 or C-7. These results, together with the absence of activity of different analogues (10, 13,
14 and 15), indicate that the observed inhibitions of the GTase activity of PBP1b by squalamine and
analogs are specific and exclude the possibility of promiscuous effect of these series of compounds.

2.3. Mode of Action of Aminosterol Compounds

The inhibition of the GTase activity can be achieved either by compounds that bind to the active
site of the enzyme (e.g., moenomycin A) or through binding to the lipid II substrate (e.g., nisin,
ramoplanin). To distinguish between these two mechanisms, we further characterized the mode of
action of squalamine, the best inhibitory compound (6) and an inactive compound (15) by studying their
interaction with PBP1b and lipid II, using a recently developed fluorescence anisotropy assay based on
a fluorescent lipid II as a probe [19]. The assay was previously validated for direct interaction of the
probe with PBP1b and with the antibiotics nisin and ramoplanin (FA increase upon binding), as well as
the ability of unlabeled-lipid II, nisin or ramoplanin to displace the probe from the enzyme active site
(FA decreases in the presence of competitive compounds) [19]. While no significant interaction was
observed between fluorescent lipid II and squalamine or compounds 6 and 15 (Figure 3B), the active
compounds (squalamine and 6) were able to compete with lipid II for binding to PBP1b, whereas the
inactive compound 15 had no effect (Figure 3A). These results clearly indicate that the active aminosterol
compounds directly interact with the GTase active site of PBP1b. All together the data reveal that
squalamine and active analogs have multiple antibacterial modes of action, in addition to their potent
membranes damaging activities, they also have modest cell wall synthesis inhibition activity.
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Figure 3. Fluorescence anisotropy assay using the NBD-lipid II as a probe. FA (in mA units) is plotted
as a function of compound concentrations. The error bars represent the FA values as mean ± s.d.
of triplicate experiments. (A) Competition of squalamine and compound 6 for PBP1b/NBD-lipid II
binding induce a decrease of the FA of the probe while the inactive compound 15 does not affect the
FA. (B) Measurements of direct binding between the probe and the compounds show no significant
variation of FA, indicating absence of interactions.
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3. Discussion

The prevalence of antibacterial resistance is increasing and new solutions should be developed
urgently to deal with the resistant pathogens. The GTase activity of bifunctional PBPs is essential for
bacterial viability and constitute a proven antibacterial target [20,21]. However, only one natural product
antibiotic, moenomycin, that specifically binds to the active site of these enzymes was discovered more
than 50 years ago [7,22], and therefore finding a new chemical scaffold able to bind and inhibit this
class of enzymes is of great interest. In this regard, the discovery of the natural product squalamine,
and synthetic analogues, that inhibit the GTase activity of the model class A PBP1b enzyme, from E. coli
opens new perspectives for the development of a new class of GTase inhibitors. The identification of
aminosterol derivatives with improved activity against the GTase, while maintaining some specific
bacterial membranes damaging activity, could result in potent antibacterial agents, particularly against
resistant Gram-negative bacteria.

Interestingly, FA experiments indicate that these compounds are competitive inhibitors able to
displace the lipid II substrate from the GTase active site, but in contrast to moenomycin which binds
only to the donor site and shows an increase in FA upon cooperative binding with lipid II substrate to
PBP1b [19,23], the titration of the PBP1b-probe complex by aminosterol compounds induces a decrease
in FA signal, similar to that observed in the presence of unlabeled lipid II, indicating that they prevent
lipid II probe binding to both donor and acceptor sites.

A model of the potential binding mode of compound 2 was obtained by analogy with the A. aeolicus
PBP1a structure in the presence of CHAPS (Figure 4A–C) [18]. The steroidal part of compound 2
binds on an equivalent hydrophobic patch on PBP1b, but it is rotated and slightly shifted so that the
polar chain follows the same path as the CHAPS molecule. Interestingly, the amine extremity of the
polar chain is then located in close proximity (3.3 Å) of the catalytic E290 residue. This binding mode
would be conserved for active compound 3 to 7 that have their polar chain at the same position as
compound 2 or on the adjacent carbon and longer polar chains would reach farther into the active site.
For squalamine, it is not clear if the steroidal core would be shifted or the longer polar chain would
follow a different path to reach E290.

As indicated above, these compounds seem to compete with the binding of lipid II in both the
donor and acceptor sites. It is therefore not clear if a second binding site exists in the acceptor site or
if the binding of aminosterol compounds to the donor site induces a conformational change (of the
mobile region separating the two sites for example) that prevents the binding of lipid II to the acceptor
site. The structure of PBP1b in complex with one of these compounds is therefore required to validate
this hypothesis as well as the proposed binding mode.

Moenomycin has an excellent antibacterial potency and no reported resistance despite extensive
use in animal feeds, but it is not used in human therapy because of its undesirable physical properties
that result in poor bioavailability and long serum half-life, probably due to its lipidic C25 moenocinol
moiety [8,24,25]. This lipid tail is necessary for moenomycin activity and its replacement by an alternative
one could improve the properties of the resulting molecule. The C25 lipid tail of moenomycin was not
resolved in any crystal structure of GTase-moenomycin complexes, indicating that it does not adopt an
ordered conformation [6,26]. In contrast, CHAPS was well defined in the structure of the GTase domain
of PBP1a from A. aeolicus [18] suggesting that binding of the cyclic steroid-substituted compounds
would provide a defined structure and facilitate structure-based optimization of compounds.

Most of GTase inhibitors (moenomycin and synthetics compounds) are inactive against
Gram-negative bacteria [21]. On the other hand, aminosterols have the capacity to cause lesions in the
outer membrane and either kill, or sensitize, Gram-negative resistant strains to common antibiotics.
Therefore, it is tempting to speculate that aminosterol compounds may be useful substitutes for
the lipid moenocinol part of moenomycin (or to the lipid tail of lipid II analogs [27]) to generate
useful new hybrid compounds, consisting of the carbohydrate and phosphoglycerate moieties or the
minimal moenomycin pharmacophore (disaccharide (EF)-phosphoglycerate [21]) and an aminosterol
tail (Figure 4). Such compounds would have two functions: (i) to replace the lipid tail of moenomycin
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derivatives while maintaining their binding to the GTase active site; and (ii) to allow these compounds
to cross the outer membrane (via the polyamine cationic moiety) and gain effectiveness against
Gram-negative pathogens.
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Figure 4. Model of the potential binding mode of compound 2 on the GTase domain of PBP1b (PDB code
5HLB). (A) Cartoon representation of PBP1b, with the TGase domain in grey, the trans-membrane
segment in pale orange, the UB2H domain in pink and the TPase domain in blue. Moenomycin A and
compound 2 are represented as yellow and cyan sticks respectively. The catalytic E290 is shown as
green sticks. (B) Same as (A) with a rotation of approximately 90◦ and a CHAPS molecule represent as
back lines. (C) Same as (B) with PBP1b represented as a surface. The red patch indicates the position of
the accessible Oε from E290.

4. Material and Methods

4.1. Reagents and Protein

Labelled lipid II [N-acetylglucosaminyl-N-acetylmuramoyl (L-Ala-γ-DGlu-(L)-Lys-(L)-D-Ala-
D-Ala)-pyrophosphate-undecaprenol] variants were prepared as previously described: Dansyl-lipid
II [28], NBD-lipid II [29], [14C]-Lipid II (0.06 µCi nmol−1) [30].

PBP1bγ(M46-N844) was purified as previously described [31].

4.2. Compounds Synthesis

Methanol, ethyl acetate and dichloromethane were purchased from SDS and used without further
purification. Column chromatography was performed on SDS silica gel (70–230 mesh). NMR spectra
were recorded in MeOD on a Bruker AC 300 spectrometer. Mass spectroscopy analysis have been
performed by the Spectropole of Aix-Marseille Université (Marseille). The purity of the compounds was
checked by analytical HPLC (C18 column, eluent CH3CN-water-TFA (90:10:0.025, v/v/v), 0.5–1 mL/Min)
with PDA detector spanning from 210 nm to 310 nm. All compounds possessed purity above 95%,
as determined by analytical LCMS Agilent.
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Octanediamine 11 and progesterone 12 were purchased from Sigma-Aldrich (Saint Quentin
Falavier, France). Squalamine 1 was prepared according to reported procedures [32,33]. Derivatives 2,
3 and 9 were prepared according [34]. Derivative 4 was prepared according [35]. Derivatives 10, 13 and
14 were prepared according [13]. Claramine A1 8 was prepared according [36].

4.2.1. General Procedure for the Titanium–Mediated Reductive Amination Reaction

6β-(spermine)-cholestan-3β-ol 6: A mixture of 6-ketocholestanol (157 mg, 0.39 mmol), titanium(IV)
isopropoxide (573 µL, 2.02 mmol) and spermine (202 mg, 1 mmol) were placed under argon in a
two-necked round flask. 5 mL of absolute methanol was then added, and the mixture stirred at room
temperature for 12 h. Sodium borohydride (38 mg, 1 mmol) was added in portions at -78 ºC and the
stirring was maintained for an additional 2 h. The reaction was then quenched by adding water (1 mL)
and the mixture stirred 20 min at 20 ◦C. After filtration over a pad of Celite, the combined organic
phases were dried over Na2SO4, concentrated under vacuum. The crude mixture was then purified by
flash chromatography to afford the expected amino derivative.

Purification by column chromatography (silica gel; CH2Cl2/MeOH/NH4OH(32%), 7:3:1) afforded a
pale yellow solid in 45% yield; this compound can be converted subsequently into its hydrochloride salt
as white solid –1H NMR (300 MHz, CD3OD): δ= 0.67–0.76 (m, 4H), 0.90–1.17 (m, 24H), 1.20–1.46 (m, 7H),
1.47–1.92 (m, 20H), 2.03–2.07 (m, 1H), 2.50–2.54 (m, 1H), 2.63–2.73 (m, 13H), 3.56–3.63 (m, 1H) –13C
NMR (75 MHz, CD3OD): δ = 71.50, 58.96, 56.27, 56.05, 54.78, 49.98, 49.21, 47.99, 47.84, 47.34, 42.62,
40.47, 39.94, 39.49, 39.06, 36.44, 36.14, 35.86, 35.77, 35.63, 33.58, 31.61, 30.45, 28.18, 27.97, 24.37, 23.78,
22.78, 22.52, 21.03, 18.63, 16.30.12.13. C37H72N4O; MS (ESI) m/z = 589.5 [M + H]+.

4.2.2. 6β-(1,4-diaminobutane)-cholestan-3β-ol 5

Purification by column chromatography (silica gel; CH2Cl2/MeOH/NH4OH(32%), 7:3:1) afforded
a pale yellow solid in 73% yield; – 1H NMR (300 MHz, MeOD): δ = 0.66-3.57 (m, 58H) – 13C NMR
(75 MHz, MeOD): δ = 71.65, 59.88, 58.54, 56.29, 56.04, 54.75, 48.18, 47.29, 42.71, 42.64, 39.94, 39.50, 39.04,
36.16, 35.78, 35.65, 31.56, 31.03, 30.40, 29.67, 27.99, 25.96, 24.35, 23.81, 22.79, 22.54, 21.05, 18.65, 16.33,
14.09, 12.15. C31H58N2O; MS (ESI) m/z = 475.4 [M + H]+.

4.2.3. N1,N1’-((3S,7R,10R,13R,17R)-10,13-dimethyl-17-((R)-5-methylhexan-2-yl)-tetradecahydro-1H-
cyclopenta[a]phenanthrene-3,7-diyl)bis(pentane-1,5-diamine) 7

Synthesis according a similar protocol than for derivative 5 but using 3,7-diketocholestene
and 1,5-diaminopentane as starting materials. Purification by column chromatography (silica gel;
CH2Cl2/MeOH/NH4OH(32%), 7:3:1) afforded a pale yellow solid in 48% yield; – 1H NMR (300 MHz,
MeOD): δ = 0.68–0.70 (m, 3H), 0.83–0.87 (m, 7H), 0.91–0.93 (m, 3H), 1.01–1.03 (m, 3H), 1.06–1.08 (m, 2H),
1.09–1.18 (m, 4 H), 1.19–1.25 (m, 4H), 1.27–1.35 (m, 8H), 1.36–1.55 (m, 8H), 1.57–2.03 (m, 13H),
2.31–2.37 (m, 1H), 2.59–2.87 (m, 7H), 2.94–3.01 (m, 2H), 5.36–5.38 (m, 1H). – 13C NMR (75 MHz,
MeOD): δ = 140.88, 125.41, 55.81, 55.47, 55.07, 52.16, 47.41, 47.13, 47.02, 42.85, 40.71, 40.61, 40.45, 39.50,
39.40, 38.40, 37.52, 37.25, 36.22, 35.70, 32.97, 32.87, 30.36, 30.26, 29.05, 28.87, 28.19, 24.78, 24.24, 24.14,
24.06, 22.66, 21.32, 18.76, 18.65, 12.35. C36H68N4; MS (ESI) m/z = 557.54 [M + H]+.

4.2.4. (13S,17S)-17-((4-aminobutyl)amino)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-
cyclopenta[a]phenanthren-3-ol 15

Synthesis according a similar protocol than for derivative 5 but using oestrone and
1,4-butanediamine as starting materials. Purification by column chromatography (silica gel;
CH2Cl2/MeOH/NH4OH(32%), 7:3:1) afforded a pale yellow solid in 37% yield; – 1H NMR (300 MHz,
MeOD): δ= 0.77–1.58 (m, 17H), 2.02–2.50 (m, 3H), 2.66–2.74 (m, 5H), 3.13–3.30 (m, 3H), 3.43–3.63 (m, 2H),
6.50–7.08 (m, 3H), 8.06 (s, 1H). – 13C NMR (75 MHz, MeOD): δ = 156.55, 139.17, 132.80, 127.63, 116.65,
114.32, 70.45, 53.94, 45.69, 44.57, 42.29, 40.75, 40.60, 36.24, 31.15, 30.62, 29.13, 28.10, 24.87, 23.05, 20.46,
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14.74, 12.77, 12.69. C22H34N2O, M = 342.53 g.mol−1, Calc. C 77.15, H 10.1, N 8.18, Exp.C 77.12, H 11.3,
N 8.21.

4.3. GTase Activity Assays

The continuous fluorescence GTase activity assay of PBP1b was performed using dansyl lipid II
as substrate as described [37,38].

The end-point assay, based on radiolabeled lipid II ([14C]lipid II), was performed in 30 µL in
the same conditions as the fluorescence assay using 4 µM [14C]lipid II (0.06 µCi/nmol) instead of the
fluorescent substrate and by omitting the muramidase. The reaction was incubated 15 min at 30 ◦C,
stopped by heating at 80 ◦C for 10min and the products were separated by thin-layer chromatography
(TLC) on silica gel plates in 2-propanol–ammonium hydroxide (25%)–H2O (6:3:1; v/v/v). The TLC
plates were exposed to a storage phosphor screen (GE Healthcare) for 16 h, and images were revealed
using a Typhoon Trio imager and Image Quant TL software (GE Healthcare).

The GTase inhibition assay was carried out by measuring the residual activity (RA) of E. coli
PBP1b in the presence of 400 and 800 µM compounds. All the assays were repeated at least three times.
The IC50 values were determined for the active compounds using variable concentrations of inhibitor
(0−1000 µM) by fitting the data using GraphPad Prism 6.0 software.

4.4. Fluorescent Anisotropy (FA) Binding Assay

FA assay was performed as previously described [19]. Briefly, fixed concentrations of NBD-lipid
II (0.33 µM) and PBP1b (~1 µM) in the 25 mM Tris–HCl pH 7.5, NaCl 0.1 M, CHAPS 0.14% w/v,
were mixed with serial dilutions of the compounds in 384-well plates. Measurement were performed
using an Infinite F Plex (Tecan, Männedorf, Switzerland) microplate reader equipped with polarization
filters with excitation and emission wavelengths at 485 and 535 nm respectively. All the experiments
were performed in triplicates. For direct binding evaluation of the compounds with the probe,
the experiments were performed in the same condition in the absence of the protein. FA values in
millianisotropy units (mA) were plotted as a function of compound concentrations in µM as previously
described [19].

4.5. Modeling

The model of the interaction between compound 2 and PBP1b was obtained by manually placing
compound 2 based on the structure of A. aeolicus PBP1a bound to a CHAPS molecule [18] using the
software coot [39]. Compound 2 was positioned so that its steroidal part interacts with the same
hydrophobic patch as CHAPS, but slightly shifted so that its polar chain follows the same path towards
the active site as the CHAPS chain. An energy minimization procedure of the Yasara software [40]
was then applied. This procedure consists in a steepest decent energy minimization followed by a
simulated annealing minimization with the Yasara2 forcefield.

5. Conclusions

Squalamine and cationic aminosterol analogues are broad-spectrum antibiotics that target bacterial
membranes. We now show that some of these compounds have an additional mode of action consisting
of the inhibition of the glycosyltransferase activity of PBP1b. This finding opens new perspectives
for the development of a new class antibiotics against the GTase, which is considered an important
antibacterial target.

Author Contributions: A.B. (Adrien Boes), J.M.B., A.D., F.K., A.B. (Ahmed Bouhss), T.T. and E.B. performed
research and analyzed the data; M.T. designed the experiments, analyzed the data and wrote the manuscript with
input from all the authors. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the “Fonds de la Recherche Scientifique” CDR J.0030.18. MT and FK are
research associates of the FRS_FNRS (Brussels, Belgium), AB is supported by FRIA 1.E.038.17 (Fonds pour la
formation à la Recherche dans l’Industrie et dans l’Agriculture) fellowship FRS_FNRS.



Antibiotics 2020, 9, 373 9 of 11

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vollmer, W.; Blanot, D.; de Pedro, M.A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 2008,
32, 149–167. [CrossRef]

2. Sauvage, E.; Kerff, F.; Terrak, M.; Ayala, J.A.; Charlier, P. The penicillin-binding proteins: Structure and role
in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 2008, 32, 234–258. [CrossRef]

3. Meeske, A.J.; Riley, E.P.; Robins, W.P.; Uehara, T.; Mekalanos, J.J.; Kahne, D.; Walker, S.; Kruse, A.C.;
Bernhardt, T.G.; Rudner, D.Z. SEDS proteins are a widespread family of bacterial cell wall polymerases.
Nature 2016, 537, 634–638. [CrossRef]

4. Taguchi, A.; Welsh, M.A.; Marmont, L.S.; Lee, W.; Sjodt, M.; Kruse, A.C.; Kahne, D.; Bernhardt, T.G.; Walker, S.
FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding
protein. Nat. Microbiol. 2019, 4, 587–594. [CrossRef]

5. Cho, H.; Wivagg, C.N.; Kapoor, M.; Barry, Z.; Rohs, P.D.A.; Suh, H.; Marto, J.A.; Garner, E.C.;
Bernhardt, T.G. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning
semi-autonomously. Nat. Microbiol. 2016, 1, 16172. [CrossRef] [PubMed]

6. Sung, M.T.; Lai, Y.T.; Huang, C.Y.; Chou, L.Y.; Shih, H.W.; Cheng, W.C.; Wong, C.H.; Ma, C. Crystal structure
of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc. Natl. Acad.
Sci. USA 2009, 106, 8824–8829. [CrossRef] [PubMed]

7. Welzel, P. Syntheses around the transglycosylation step in peptidoglycan biosynthesis. Chem. Rev. 2005,
105, 4610–4660. [CrossRef] [PubMed]

8. Butaye, P.; Devriese, L.A.; Haesebrouck, F. Influence of different medium components on the in vitro activity
of the growth-promoting antibiotic flavomycin against enterococci. J. Antimicrob. Chemother. 2000, 46, 713–716.
[CrossRef]

9. Moore, K.S.; Wehrli, S.; Roder, H.; Rogers, M.; Forrest, J.N.; Mccrimmon, D.; Zasloff, M. Squalamine:
An aminosterol antibiotic from the shark. Proc. Natl. Acad. Sci. USA 1993, 90, 1354–1358. [CrossRef]

10. Douafer, H.; Andrieu, V.; Phanstiel, O.; Brunel, J.M. Antibiotic adjuvants: Make antibiotics great again!
J. Med. Chem. 2019, 62, 8665–8681. [CrossRef]

11. Salmi, C.; Loncle, C.; Vidal, N.; Laget, M.; Letourneux, Y.; Brunel, J.M. Antimicrobial activities of 3-amino-
and polyaminosterol analogues of squalamine and trodusquemine. J. Enzym. Inhib. Med. Chem. 2008,
23, 860–865. [CrossRef] [PubMed]

12. Kikuchi, K.; Bernard, E.M.; Sadownik, A.; Regen, S.L.; Armstrong, D. Antimicrobial activities of squalamine
mimics. Antimicrob. Agents Chemother. 1997, 41, 1433–1438. [CrossRef]

13. Djouhri-Bouktab, L.; Vidal, N.; Rolain, J.M.; Brunel, J.M. Synthesis of new 3,20-bispolyaminosteroid
squalamine analogues and evaluation of their antimicrobial activities. J. Med. Chem. 2011, 54, 7417–7421.
[CrossRef]

14. Choucair, B.; Dherbomez, M.; Roussakis, C.; El Kihel, L. Synthesis of 7α- and 7β-spermidinylcholesterol,
squalamine analogues. Bioorgan. Med. Chem. Lett. 2004, 14, 4213–4216. [CrossRef] [PubMed]

15. Brycki, B.; Koenig, H.; Pospieszny, T. Quaternary alkylammonium conjugates of steroids: Synthesis,
molecular structure, and biological studies. Molecules 2015, 20, 20887–20900. [CrossRef] [PubMed]

16. Savage, P.B.; Li, C.; Taotafa, U.; Ding, B.; Guan, Q. Antibacterial properties of cationic steroid antibiotics.
FEMS Microbiol. Lett. 2002, 217, 1–7. [CrossRef]

17. Di Pasquale, E.; Salmi-Smail, C.; Brunel, J.-M.; Sanchez, P.; Fantini, J.; Maresca, M. Biophysical studies
of the interaction of squalamine and other cationic amphiphilic molecules with bacterial and eukaryotic
membranes: Importance of the distribution coefficient in membrane selectivity. Chem. Phys. Lipids 2010,
163, 131–140. [CrossRef]

18. Yuan, Y.; Barrett, D.; Zhang, Y.; Kahne, D.; Sliz, P.; Walker, S. Crystal structure of a peptidoglycan
glycosyltransferase suggests a model for processive glycan chain synthesis. Proc. Natl. Acad. Sci. USA 2007,
104, 5348–5353. [CrossRef]

19. Boes, A.; Olatunji, S.; Mohammadi, T.; Breukink, E.; Terrak, M. Fluorescence anisotropy assays for high
throughput screening of compounds binding to lipid II, PBP1b, FtsW and MurJ. Sci. Rep. 2020, 10, 6280.
[CrossRef]

http://dx.doi.org/10.1111/j.1574-6976.2007.00094.x
http://dx.doi.org/10.1111/j.1574-6976.2008.00105.x
http://dx.doi.org/10.1038/nature19331
http://dx.doi.org/10.1038/s41564-018-0345-x
http://dx.doi.org/10.1038/nmicrobiol.2016.172
http://www.ncbi.nlm.nih.gov/pubmed/27643381
http://dx.doi.org/10.1073/pnas.0904030106
http://www.ncbi.nlm.nih.gov/pubmed/19458048
http://dx.doi.org/10.1021/cr040634e
http://www.ncbi.nlm.nih.gov/pubmed/16351056
http://dx.doi.org/10.1093/jac/46.5.713
http://dx.doi.org/10.1073/pnas.90.4.1354
http://dx.doi.org/10.1021/acs.jmedchem.8b01781
http://dx.doi.org/10.1080/14756360701809910
http://www.ncbi.nlm.nih.gov/pubmed/19005944
http://dx.doi.org/10.1128/AAC.41.7.1433
http://dx.doi.org/10.1021/jm200506x
http://dx.doi.org/10.1016/j.bmcl.2004.06.010
http://www.ncbi.nlm.nih.gov/pubmed/15261272
http://dx.doi.org/10.3390/molecules201119735
http://www.ncbi.nlm.nih.gov/pubmed/26610455
http://dx.doi.org/10.1111/j.1574-6968.2002.tb11448.x
http://dx.doi.org/10.1016/j.chemphyslip.2009.10.006
http://dx.doi.org/10.1073/pnas.0701160104
http://dx.doi.org/10.1038/s41598-020-63380-2


Antibiotics 2020, 9, 373 10 of 11

20. Derouaux, A.; Sauvage, E.; Terrak, M. Peptidoglycan glycosyltransferase substrate mimics as templates for
the design of new antibacterial drugs. Front. Immunol. 2013, 4, 4. [CrossRef]

21. Sauvage, E.; Terrak, M. Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins:
Valuable Targets for New Antibacterials. Antibiotics 2016, 5, 12. [CrossRef] [PubMed]

22. Ostash, B.; Walker, S. Moenomycin family antibiotics: Chemical synthesis, biosynthesis, and biological
activity. Nat. Prod. Rep. 2010, 27, 1594–1617. [CrossRef] [PubMed]

23. Bury, D.; Dahmane, I.; Derouaux, A.; Dumbre, S.; Herdewijn, P.; Matagne, A.; Breukink, E.; Mueller-Seitz, E.;
Petz, M.; Terrak, M. Positive cooperativity between acceptor and donor sites of the peptidoglycan
glycosyltransferase. Biochem. Pharmacol. 2015, 93, 141–150. [CrossRef] [PubMed]

24. Pfaller, M.A. Flavophospholipol use in animals: Positive implications for antimicrobial resistance based on
its microbiologic properties. Diagn. Microbiol. Infect. Dis. 2006, 56, 115–121. [CrossRef] [PubMed]

25. Hentschel, S.; Kusch, D.; Sinell, H.J. Staphylococcus aureus in poultry—Biochemical characteristics,
antibiotic resistance and phage pattern (author’s transl). Zentralbl. Bakteriol. B 1979, 168, 546–561.

26. King, D.T.; Wasney, G.A.; Nosella, M.; Fong, A.; Strynadka, N.C.J.; Peter Guengerich, F. Structural insights
into inhibition of Escherichia coli penicillin-binding protein 1B. J. Biol. Chem. 2017, 292, 979–993. [CrossRef]

27. Dumbre, S.; Derouaux, A.; Lescrinier, E.; Piette, A.; Joris, B.; Terrak, M.; Herdewijn, P. Synthesis of modified
peptidoglycan precursor analogues for the inhibition of glycosyltransferase. J. Am. Chem. Soc. 2012,
134, 9343–9351. [CrossRef]

28. Breukink, E.; van Heusden, H.E.; Vollmerhaus, P.J.; Swiezewska, E.; Brunner, L.; Walker, S.; Heck, A.J.;
de Kruijff, B. Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes.
J. Biol. Chem. 2003, 278, 19898–19903. [CrossRef]

29. van Dam, V.; Sijbrandi, R.; Kol, M.; Swiezewska, E.; de Kruijff, B.; Breukink, E. Transmembrane transport
of peptidoglycan precursors across model and bacterial membranes. Mol. Microbiol. 2007, 64, 1105–1114.
[CrossRef] [PubMed]

30. Bouhss, A.; Crouvoisier, M.; Blanot, D.; Mengin-Lecreulx, D. Purification and characterization of the bacterial
MraY translocase catalyzing the first membrane step of peptidoglycan biosynthesis. J. Biol. Chem. 2004,
279, 29974–29980. [CrossRef] [PubMed]

31. Terrak, M.; Ghosh, T.K.; Van Heijenoort, J.; Van Beeumen, J.; Lampilas, M.; Aszodi, J.; Ayala, J.A.;
Ghuysen, J.-M.; Nguyen-Distèche, M. The catalytic, glycosyl transferase and acyl transferase modules
of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli. Mol. Microbiol.
1999, 34, 350–364. [CrossRef] [PubMed]

32. Zhang, X.; Rao, M.N.; Jones, S.R.; Shao, B.; Feibush, P.; Mcguigan, M.; Tzodikov, N.; Feibush, B.; Sharkansky, I.;
Snyder, B.; et al. Synthesis of Squalamine Utilizing a Readily Accessible Spermidine Equivalent. J. Org. Chem.
1998, 63, 8599–8603. [CrossRef]

33. Brunel, J.M.; Letourneux, Y. Recent advances in the synthesis of spermine and spermidine analogs of the
shark aminosterol squalamine. Eur. J. Med. Chem. 2003, 2003, 3897–3907. [CrossRef]

34. Loncle, C.; Salmi, C.; Vidal, N.; Letourneux, Y.; Brunel, J. Antimicrobial activities of 7-aminosterol squalamine
analogues. Lett. Drug Des. Discov. 2008, 5, 388–393. [CrossRef]

35. Loncle, C.; Salmi, C.; Letourneux, Y.; Brunel, J.M. Synthesis of new 7-aminosterol squalamine analogues with
high antimicrobial activities through a stereoselective titanium reductive amination reaction. Tetrahedron
2007, 63, 12968–12974. [CrossRef]

36. Blanchet, M.; Borselli, D.; Rodallec, A.; Peiretti, F.; Vidal, N.; Bolla, J.M.; Digiorgio, C.; Morrison, K.R.;
Wuest, W.M.; Brunel, J.M. Claramines: A new class of broad-spectrum antimicrobial agents with bimodal
activity. ChemMedChem 2018, 13, 1018–1027. [CrossRef] [PubMed]

37. Offant, J.; Terrak, M.; Derouaux, A.; Breukink, E.; Nguyen-Distèche, M.; Zapun, A.; Vernet, T. Optimization
of conditions for the glycosyltransferase activity of penicillin-binding protein 1a from Thermotoga maritima.
FEBS J. 2010, 277, 4290–4298. [CrossRef] [PubMed]

38. Schwartz, B.; Markwalder, J.A.; Seitz, S.P.; Wang, Y.; Stein, R.L. A kinetic characterization of the
glycosyltransferase activity of Eschericia coli PBP1b and development of a continuous fluorescence assay.
Biochemistry 2002, 41, 12552–12561. [CrossRef] [PubMed]

http://dx.doi.org/10.3389/fimmu.2013.00078
http://dx.doi.org/10.3390/antibiotics5010012
http://www.ncbi.nlm.nih.gov/pubmed/27025527
http://dx.doi.org/10.1039/c001461n
http://www.ncbi.nlm.nih.gov/pubmed/20730219
http://dx.doi.org/10.1016/j.bcp.2014.11.003
http://www.ncbi.nlm.nih.gov/pubmed/25462814
http://dx.doi.org/10.1016/j.diagmicrobio.2006.03.014
http://www.ncbi.nlm.nih.gov/pubmed/16698216
http://dx.doi.org/10.1074/jbc.M116.718403
http://dx.doi.org/10.1021/ja302099u
http://dx.doi.org/10.1074/jbc.M301463200
http://dx.doi.org/10.1111/j.1365-2958.2007.05722.x
http://www.ncbi.nlm.nih.gov/pubmed/17501931
http://dx.doi.org/10.1074/jbc.M314165200
http://www.ncbi.nlm.nih.gov/pubmed/15131133
http://dx.doi.org/10.1046/j.1365-2958.1999.01612.x
http://www.ncbi.nlm.nih.gov/pubmed/10564478
http://dx.doi.org/10.1021/jo981344z
http://dx.doi.org/10.1002/ejoc.200300167
http://dx.doi.org/10.2174/157018008785777306
http://dx.doi.org/10.1016/j.tet.2007.10.032
http://dx.doi.org/10.1002/cmdc.201800073
http://www.ncbi.nlm.nih.gov/pubmed/29465814
http://dx.doi.org/10.1111/j.1742-4658.2010.07817.x
http://www.ncbi.nlm.nih.gov/pubmed/20849416
http://dx.doi.org/10.1021/bi026205x
http://www.ncbi.nlm.nih.gov/pubmed/12369847


Antibiotics 2020, 9, 373 11 of 11

39. Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D
Biol. Crystallogr. 2010, 66, 486–501. [CrossRef]

40. Krieger, E.; Vriend, G. YASARA View—Molecular graphics for all devices—From smartphones to
workstations|Bioinformatics|Oxford Academic. Bioinformatics 2014, 30, 2981–2982. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1107/S0907444910007493
http://dx.doi.org/10.1093/bioinformatics/btu426
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Squalamine Inhibits the GTase Activity of PBP1b 
	Inhibition of the GTase Activity of PBP1b by Aminosterol Mimics of Squalamine 
	Mode of Action of Aminosterol Compounds 

	Discussion 
	Material and Methods 
	Reagents and Protein 
	Compounds Synthesis 
	General Procedure for the Titanium–Mediated Reductive Amination Reaction 
	6-(1,4-diaminobutane)-cholestan-3-ol 5 
	N1,N1’-((3S,7R,10R,13R,17R)-10,13-dimethyl-17-((R)-5-methylhexan-2-yl)-tetradecahydro-1H- cyclopenta[a]phenanthrene-3,7-diyl)bis(pentane-1,5-diamine) 7 
	(13S,17S)-17-((4-aminobutyl)amino)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H- cyclopenta[a]phenanthren-3-ol 15 

	GTase Activity Assays 
	Fluorescent Anisotropy (FA) Binding Assay 
	Modeling 

	Conclusions 
	References

