History and prospects of the physical synthesis of kesterite for photovoltaic applications

<u>T Ratz^{1,2}</u>, G Brammertz³, R Caballero⁴, M León⁴, S Canulescu⁵, J Schou⁵, L Gütay⁶, D Pareek⁶, T Taskesen⁶, D-H Kim⁷, J-K Kang⁷, C Malerba⁸, A Redinger⁹, E Saucedo¹⁰, B Shin¹¹, H Tampo¹², K Timmo¹³, N-D Nguyen¹, B Vermang^{2,3,14}

Overview of the physical routes for the synthesis of kesterite $Cu_2ZnSn(S,Se)_4$ as absorber layer for PV applications

Se Cu Sn Zn

- Low efficiencies $\eta < 5\%$
- Single step synthesis Secondary phases
 - Stoichiometry deviations
 - Loss of volatile species: Sn(S, Se) & Zn
- Increase background pressure to prevent losses within the deposition machine design

• η ∈ [5;10]%

- Elemental losses & secondary phases
 - \rightarrow Deep defects within the band gap
- $\rightarrow V_{OC}$ deficit
- One-step processes limit the efficiency of kesterite-based solar cells

LIÈGE université

UHASSEL

SPIN

Kesterite-based cell efficiency through the years

and crystallization

From one-step to two-step processes

- (i) Low temperature deposition of precursor film containing all (or part of) the elements for the kesterite formation
 - Crystallization induced by thermal annealing under S (sulfurization) or Se (selenization) atmosphere (ii)

(ii)

□ Sequential and co-evaporation

Sequential and co-sputtering

Elemental sources evaporation with/without chalcogen at low substrate temperature $[RT - 150]^{\circ}C$:

> Cu, Zn, Sn, Se Cu, ZnSe, Sn & Se

High temperature annealing $[550 - 590]^{\circ}C$ in various atmospheres:

N_2, Ar, S, Se, Sn

Achievement of high-efficiency kesterite-based solar cells:

CZTSe: $\eta \rightarrow 12.3\%$ *CZTS*: $\eta \rightarrow 9.2\%$

Compare to CVD, safer and more reproducible processes

- Growth of monograins
 - Chemical etching optimization
 - Single crystal structure
 - Max. working area of 80%

Routes involving Cu₂Sn(S,Se)₃ and Zn(S,Se) phases limit elemental losses compared to binary compounds route

Pure metallic, metallic alloys or chalcogen containing targets with (i) sequential or (ii) co-sputtering process

- Stack structure optimization and compositional control (thicknesses, stacking order, ...)
- 1 µm

distribution but target crosscontaminations

CZTS: $\eta \rightarrow 11\%$

Homogeneous elemental

CZTSSe: $\eta \rightarrow 12.6\%$

- Pulsed Laser Deposition (PLD)
 - Laser fluence \rightarrow stoichiometry control
 - Reproducibility issues
 - High crystallinity and good adhesion

— CZTSe (0.9	8 eV)	Efficiency	Composition	Physical Route	Annealing	Efficiency	Institution Reference	
-CZTS (1.3	0 eV)	improvements cannot only be ascribed to	CZTSSe	Seq. Sputt.	H ₂ S,Se - 300;480°C	12.6%	DGIST [1]	
	Mo	the absorber layer synthesis	CZTGSe	Co-Evap.	GeSe ₂ ,SnSe ₂ ,Se - 525°C	12.3%	AIST [2]	
10 ne (ns)	Soda Lime Glass Sub	strate optimization	CZTSe	Monograin	740 °C	12.0% (EA)	Crystalsol [3]	
films synthetised by physical routes			CZTS	Co-Evap.	S ₂ , N ₂ – 570°C	8.4%	IBM [4]	
(a)			CZTS	Co-Sputt.	SnS,S - 560°C	11.0%	UNSW [5]	
		$1.6 - \diamond \qquad \bigcirc CZTS, \eta: 0^{-1\%} \\ CZTS, \eta: 1\%^{-3\%} \\ CZTS, \eta: 3\%^{-5\%} \\ CZTS, \eta: 5\% \\ CZTS, \eta: 1\%^{-3\%} \\ CZTSe, \eta: 1\%^{-3\%} \\ CZTSE \\ CZ$	CZTS	Monograin	S – 740°C	9.4% (EA)	Taltech [6]	
(b)	1 μm (C)	$1.4 - CZTSe, \eta: 3\%-5\% - CZTSe, \eta>5\% - CZTSSe, \eta>5\% - CZTSE, dq - CZTSE, dq$	CZTS	PLD	N.A.	5.4%	DTU [7]	
(c)	Voids - Adhesion	0.9 0.8 0.7 0.5 0.6 0.7 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 Cu/(Zn+Sn)	Primitive cell – Ab initio calculation GGA-PBE & HSE06 calculations using VASP • Density of states • Band dispersion: m^* E_{-} (direct/indirect) • Charge carriers concentration					
ire he imp	$\begin{array}{c} \text{Mo(S,Se)}_2 \text{ layer} \\ \text{Sn back layer} \\ \text{S-containing kesterite} \\ \text{Interlayers (oxides,)} \end{array} \qquad \begin{array}{c} \text{Annealing conditions control:} \\ \textbf{\rightarrow} \text{ reduce the elemental losses} \\ \textbf{\rightarrow} \text{ Prevent voids formation} \end{array} \qquad \begin{array}{c} \text{Band dispersion: } m^*, E_G (\text{direct/indirect}) \\ \textbf{\bullet} \text{ Optical properties: } \epsilon, \alpha, n \end{array} \qquad \begin{array}{c} \textbf{\bullet} \text{ Charge carriers concentration} \\ \textbf{\bullet} \text{ Link to growth conditions } \mu_i \end{array}$							
n kesterite s	olar cells: state-of-the-art and open	questions." Journal of Physics: Energy 1.4	Primitive Cell	Elec	ctrical characterizations of defe	cts	Supercell	
oping → →	Grain size and recrystallis Role not completely unde	ation Na, Li, K,			LTO/ZnO/CdS CZTSe Mo 1 μmglass_			
→ Catio → Anio	nic substitution	$ \begin{pmatrix} Cu \\ Ag \end{pmatrix}_2 \begin{pmatrix} Zn \\ Cd \end{pmatrix} \begin{pmatrix} Ge \\ Sn \end{pmatrix} \begin{pmatrix} S \\ Se \end{pmatrix}_4 $			Kesterite thin film			

E _{PL} (eV)	time (ns)	

Key aspects of the kesterite thin films synthetised by pl

1.2

1.0

0.8

CZTSe

CZTSe

1µm Mo

90

60 | 60 | 50 |

5 40

30 5 20

10

Мо

1.4 1.6

0

1.8

 \rightarrow Romanyuk, Y., et al. "Doping and alloying of kesterites." Journal of Physics: Energy (2019).

In a nutshell

Efficiency enhancements thanks to the evolution of the physical deposition procedures

Strong dependency on the deposition and annealing parameters

One-step to two-step process:

(i) Precursor deposition

(ii) Selenization/sulfurization

Precursor

Alloying \rightarrow Cationic substitution

Grain growth control and of elemental loss limitation during the annealing lead to efficiency over 10%

 η comparable to CVD kesterite-based cells with safer and more reproducible processes

Various perspectives:

- Sulfurization/selenization conditions
- Doping Alloying

Ratz, Thomas, et al. "Physical routes for the synthesis of kesterite." Journal of Physics: Energy 1.4 (2019): 042003.

References & affiliations

[1] Green M A *et al* 2018 Prog. Photovolt. Res. Appl. 27 [2] Kim S et al 2016 Appl. Phys. Express 9: 102301 [3] Neubaeur C *et al* 2018 Energy Sci. Eng. 6: 563 [4] Shin B et al 2013 Prog. Photovolt. Res. Appl. 21: 72-76

[5] Yan C et al 2018 Nat. Energy **3.9**: 764-772 [6] Kauk-Kuusik M et al 2015 Appl.Surf. Sci. 357: 795 [7] Gansukh M et al 2019 46th IEEE PVSC [8] Timmo K et al 2019 J. of Mat. Chem. A 7: 24281

[**9**] Chen S et al. 2013 Adv. Mat. **25**.11: 1522-1539 [10] Giraldo S et al 2019 Prog. Photovolt. Res. And Appl. 27: 779-788 [11] Yang K-J et al 2016 J. of Mat. Chem. A 4.26: 10151-10158 [12] Ren Y *et al* 2017 Chem. Mat. 29: 3713-3722

CESAM—Q-MAT—Solid State Physics, Interfaces and Nanostructures, Physics Institute B5a, Alleée du Six Août 19, B-4000 Liege, Belgium. 2 Institute for Material Research (IMO), Hasselt Univer bouw H. B-3590 Diepenbeek, Belgium. ³ IMEC division IMOMEC Wetenschapspark 1, B-3590 Diepenbeek, Belgium, 4 Universidad Autono co Tomaas v Valiente 7, F-28049 Madrid, Spain ⁵ DTU Fotonik, Technical I ie-und Halbleiterforschung (EHF), Institut für Physik, Carl von Ossietzky Universität Oldenburg, Germany. ⁷ Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Kore Research Center, via Anguillarese 301, I-00123 Roma, Italy. ⁹ Scanning Probe Microscopy Laboratory, University of Luxembourg 162a, Avenue de la Faïencerie, L-1511, Luxembourg. ¹⁰ Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1 2 E-08930 Sant Adrià del Besòs-Barcelona, Spain.¹¹ Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea. ¹² National Institute of Advanced Industrial Science Technology (AIST), Research Center for Photovoltaics, Tsukuba, Ibaraki 305- 8568, Japan. ¹³ Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.¹⁴ Energyville, Thor Park 8320, B-3600 Genk, Belgium.

Kesterite

Kesterite reference			13 ^ 	14 C:	15 D	16 C	
	Toxicity/Hazardous			AI ^{3s²3p¹}	3 s ² 3p ²	3s²3p³	Э 3s²3p⁴
	Abundance/Cost	29 Cu ^{3d104s1}	30 Zn 3d ¹⁰ 4s ²	31 Ga ^{3d¹⁰4s²4p¹}	32 Ge ^{3d¹⁰4s²4p¹}	33 As 3d ¹⁰ 4s ² 4p ³	34 Se ^{3d104s²4p4}
	Possible substitutions	47 Ag	48 Cd	49 In 4d ^{105s25p1}	50 Sn	51 Sb	52 Te

 \rightarrow Hood, Samantha N., et al. "Status of materials and device modelling for kesterite solar cells." Journal of Physics: Energy 1.4 (2019): 042004.

 \rightarrow Grossberg, Maarja, et al. "The electrical and optical properties of kesterites." Journal of Physics: Energy (2019).

thomas.ratz@uliege.be

University of Liège [ULiege] Department of Physics [BAT. B5a]

Campus Sart-Tilman Quartier Agora Allée du Six Août, 19 4000 Liège - BELGIUM

Office : R54 - Tel: +32 4 366 9646