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Abstract— The rapid uptake of renewable energy resources 

and displacement of synchronous generators may pose threats 

to system frequency stability and resilience. Starting from the 

August 2018 separation event in Australia, this work models and 

discusses how utility-scale PV plants could contribute to 

frequency stability and resilience of islanded areas following 

separation events. In this regard, a converter-based dynamic 

equivalent of aggregated PV power plants is proposed which 

takes into account possible practical issues such as measurement 

and coordination delays. The unknown parameters of the 

proposed model are identified through a novel closed-loop 

identification process based on least-square minimization. Also, 

a simplified model is constructed to reproduce the system 

frequency during the event under study, thereby capturing 

continuous impact of PV response on the frequency. The 

proposed aggregated model can considerably reduce the 

complexity of frequency stability analysis as well as its 

processing time while capturing with good fidelity the frequency 

response from PV farms. 
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I. INTRODUCTION 

Power systems are evolving towards massive penetration 
of renewable energy resources, including utility-scale and 
distributed photovoltaic (PV) plants, to leverage their 
economic and environmental advantages [1]. Regarding the 
operation of PV-rich power systems, one of the main issues is 
related to frequency instability which corresponds to 
generation-load mismatch and may lead to cascading failures 
in the form of generation trip, load shedding, or even splitting 
of the system into islanded areas [2]. Technically, a system 
with adequate frequency control ancillary services (FCAS) is 
more likely to regain a stable equilibrium point following 
frequency contingencies [2]. However, the increase of PV 
penetration and the subsequent decline in synchronous 
generation drives power systems into low-inertia conditions 
which may result in higher rate of change of frequency 
(RoCoF) values following disturbances, also meaning faster 
frequency dynamics in general. It is therefore necessary to 
model the system adequately to be able to capture such fast 
frequency behaviour. For short-term frequency stability 
analysis, electromagnetic transient (EMT) models or transient 
stability models have been mostly employed, which comprise 
numerous differential-algebraic equations (DAEs) to provide 
proper representation of power system components [3]. 
Moreover, there are practical evidence that transmission-
connected PV units are required by grid-codes to participate 
in primary frequency response while the frequency is beyond 
the normal frequency operating band [4], [5]. Hence, it is also 

crucial to employ an accurate dynamic model for PV power 
plants to avoid missing their impact on system frequency 
characteristics, especially when PV penetration level and 
subsequently their frequency response may be substantial. 
However, considering a detailed PV dynamic model along 
with its associated energy conversion systems for a large 
number of transmission-connected PV units significantly 
increase the difficulty in frequency dynamics studies because 
of the high degree of complexity and order of the system 
model, which can result in excessive computational time. 
Consequently, there is a need to come up with suitable 
dynamic models of PV units for frequency stability and 
resilience analysis which could effectively reduce the 
complexity of dynamic modelling without compromising the 
PV frequency response as seen by the external grid. 

Several solutions have been proposed to cope with the 
complexity of system dynamics studies imposed by 
equipment dynamic models, such as frequency-dependent 
network equivalents [6], dynamic phasors [7], modal methods 
[8], coherency methods [9], and measurement-based 
(simulation-based) methods [3]. With regards to conventional 
large-scale transmission networks, previous works have 
mainly increased the computation efficiency through 
simplification of synchronous generator model [10] or 
developing a dynamic equivalent model for a group of 
synchronous machines through coherency-based methods 
[11]. Regarding renewable-rich power systems, previous 
works have mainly worked on developing suitable dynamic 
equivalent models for active distribution networks to assess 
their impact on system frequency dynamics [12]. Indeed, 
previous studies on combined transmission-distribution 
system dynamics have mainly tried to deal with complexity 
emerging from active distribution networks. Therefore, the 
complexity coming from dynamic modelling of transmission-
connected converter-based technologies, in particular PV 
farms, has not been well treated in frequency stability analysis 
thus far. This paper introduces a dynamic equivalent model 
for aggregated utility-scale PV farms to reduce the complexity 
of frequency stability analysis corresponding to numerous 
transmission-connected PV plants. The proposed model is a 
converter-based dynamic model which retains the physical 
model of large-scale PV plants in an equivalent form. The 
parametrization of the equivalent model can be performed 
through several approaches such as system truncation 
methods [13], artificial neural network based (ANN-based) 
methods [14], or measurement-based (simulation-based) 
identification schemes [3], [15]. Regarding measurement-
based identification methods, most previous studies used an 
open-loop identification approach in which a constant 
measured frequency is considered as an input signal of the 
optimization process, thereby ignoring the continuous impact 



of the study zone on the system dynamic characteristics [3], 
[12], [15]. In the context of dynamic equivalencing, a study 
zone refers to the parts of the power system for which there is 
the aim to develop a dynamic equivalent model or lower-order 
model [3], [16]. As the frequency response from utility-scale 
PV plants in high PV-rich power systems may have a 
considerable impact on system frequency behaviour, their 
dynamic equivalencing with an open-loop identification 
approach can potentially lead to inaccuracy in both the model 
and the system frequency dynamics. This may also lead to 
inaccurate analysis of frequency-dependent mechanisms such 
as activation of under-frequency load shedding (UFLS), over-
frequency generation trip, or emergency protection schemes 
on interconnectors. 

This paper, first, proposes a novel closed-loop 
identification process based on least-square minimization 
which considerably improves the accuracy of the dynamic 
equivalent model in reproducing the system frequency. In fact, 
the proposed closed-loop identification process employs a 
simplified system model to reproduce the frequency during 
the event under study, thereby taking into account the 
continuous impact of aggregated frequency response from 
utility-scale PV plants on the system frequency. Second, the 
proposed approach is developed further to take into account 
possible practical issues, such as measurement and 
coordination delays, which might lead to failure in effective 
frequency support from PV. For the sake of validation, the 
performance of the proposed dynamic equivalencing 
approach is evaluated through a comprehensive study on the 
dynamic behaviour of utility-scale PV plants during the 
August 2018 separation event in Australia [17].  Finally, it will 
be discussed how PV power plants contributed to system 
resilience by reducing the likelihood of over-frequency 
generation disconnection during the August 2018 event. 

The main contributions of the paper are as follows: 

 A converter-based dynamic equivalent model for 
aggregated utility-scale PV plants to reduce the 
complexity of frequency stability analysis; 

 A closed-loop identification process based on least-
square optimization to increase the accuracy of the 
dynamic equivalent model;  

 Highlighting the benefits from PV frequency response 
to system frequency stability and resilience following 
extreme events in the context of the August 2018 
separation event in Australia; 

 Validation of the proposed dynamic equivalencing 
approach through a comprehensive study on the 
August 2018 event in Australia. 

II. THE PROPOSED AGGREGATED DYNAMIC 

EQUIVALENT MODEL OF UTILITY-SCALE PV PLANTS 

The proposed converter-based dynamic equivalent model, 
shown in Fig. 1, aggregates the impact of frequency responses 
from large-scale PV plants on system frequency 
characteristics. This equivalent model is intuitive as it 
maintains the generic model of two-stage transmission-
connected PV units which provides enhanced flexibility in 
frequency response provision [18-19]. The DC-AC grid-side 
converter (GSC) accounts for DC-link voltage control as well 
as output reactive power management while the DC-DC 
converter is responsible to maintain the operating active 

power output ( 𝑃𝑃𝑉 ) at the desired stable level ( 𝑃∗ ). 
Furthermore, PI blocks stand for proportional-integral 
controllers. For further details, the reader can refer to [19] to 
understand how control loops can be designed. Each PI 
controller, including phase-locked loop (PLL), includes two 
state variables. Further, current and voltage outputs of 
aggregated PV array (𝑖, 𝑢𝑃𝑉) and DC-AC converter (𝑉, 𝐼) are 
other state variables. Therefore, a PV plant model, as shown 
in Fig. 1, consists at least 14 state variables.   

 
Fig. 1.  The proposed dynamic equivalent model of utility-scale PV units 

including power conversion systems and their associated control loops 

As illustrated in Fig. 2, a utility-scale PV plant can 
normally deliver maximum power (𝑃𝑀𝑃𝑃) while the frequency 
is within the normal operating band (𝑓 < 𝐹𝑟−𝑡ℎ). However, 
PV farms start to deliver over-frequency droop response to the 
system once the frequency goes beyond 𝐹𝑟−𝑡ℎ. The PV unit 
output will then set to zero if the frequency is above the cut-
off frequency (𝑓 ≥ 𝐹𝑐𝑢𝑡−𝑜𝑓𝑓), thereby participating with full 

capacity into over-frequency control [5]. The over-frequency 
response from PV power plants can potentially contribute to 
system resilience by maintaining the system frequency outside 
of the operating region of frequency control emergency 
schemes such as over-frequency generation shedding (OFGS). 

 

Fig. 2.  The typical active power-frequency characteristic for utility-scale 
PV plants [5] 

There are two main common reasons accounting for the 
different frequency response behaviour that may arise from 
different utility-scale PV plants. Firstly, grid-code 
requirements usually parametrize the active power-frequency 
characteristic for utility-scale PV units. Thus, utility-scale PV 
units installed in different years might have different 
frequency settings while grid-codes are updated. Considering 
the Australian grid-code requirements [4] as an instance, PV 
units which have been installed prior to 2015 do not need to 
provide over-frequency droop response, differently from 
those that have been installed after 2016 which, instead, do 
[4]. Secondly, the frequency deviations seen by utility-scale 
PVs located at different points of connection may differ from 



each other as they are correlated to the disturbance size and 
location [21]. This can potentially lead to the delay in response 
provision from PV units electrically located far from the fault 
location [21]. Therefore, the active power-frequency 
characteristic of the proposed dynamic equivalent model, as 
well as its overall PLL delay, need to capture the aggregated 
frequency response from multiple PV power plants. This 
paper employs a measurement-based system identification 
method to identify the parameters of active power-frequency 
characteristic (𝐹𝑟−𝑡ℎ, 𝐹𝑐𝑢𝑡−𝑜𝑓𝑓), as well as the aggregated PLL 

delay, as detailed later. Furthermore, from a practical point of 
view, PV plants might not be able to efficiently provide 
primary frequency response due to potential technical issues 
such as coordination and measurement delays [17]. Therefore, 
such practical issues must also be considered in the developed 
dynamic equivalent models. In this work, an active power 
reference generation strategy, shown in Fig. 3, is proposed to 
take into account possible measurement delays as well as 
coordination delays. As illustrated in Fig. 3, both coordination 
delay and measurement delay are shown through generic 
exponential delay function in the Laplace domain with 
different time delays (𝑟𝑚, 𝑟𝑐) which will be identified through 
the proposed identification method. 

 

Fig. 3.  The proposed active power signal generation strategy which 

includes measurement delays as well as coordination delays 

III. CLOSED-LOOP PARAMETER IDENTIFICATION PROCESS 

OF THE PROPOSED DYNAMIC EQUIVALENT MODEL 

In this work, a measurement-based system identification 
approach is put forward to adjust the unknown parameters of 
the aggregated model in order to minimize the least-square 
error between the frequency response delivered by the 
aggregated dynamic model and the actual frequency response 
provided by utility-scale PV plants during the event under 
study.  

A. Formulation of the Identification Process as an 

Optimization Problem 

Throughout the identification process, the aim is to adjust 
the unknown parameters in the vector 𝜽 so as to minimize the 
following objective function: 

   휀1(𝜽) =  
1

𝑁
∑ [𝑃(𝑘) −  �̂�(𝑘, 𝜽)]

2𝑁
𝑘=0    (1) 

under the constraints (2):  
   𝜽𝐿 ≤ 𝜽 ≤ 𝜽𝑈 (2) 

Where 𝜽𝐿  and 𝜽𝑈 are lower and upper bounds of 𝜽, 𝑃(𝑘) is 
the actual discrete time evolution of the total active power 
delivered by utility-scale units during the event under study, 

�̂�(𝑘, 𝜽) is the simulated discrete time evolution of the active 
power delivered by the aggregated model of PV units, 𝑘 is the 
discrete time counter used by the time-domain simulation 
solver, while the maximum number of discrete time 
simulation is denoted by 𝑁 . Further, the 𝜽 vector includes 
𝐹𝑟−𝑡ℎ (the frequency at which the aggregated PV model starts 
the over-frequency droop response), 𝐹𝑐𝑢𝑡−𝑜𝑓𝑓  (the frequency 

at which the output power reaches zero), and PLL delay (𝛿𝑃𝐿𝐿) 
(i.e., 𝜽 = [𝐹𝑟−𝑡ℎ, 𝐹𝑐𝑢𝑡−𝑜𝑓𝑓 , 𝛿𝑃𝐿𝐿 ]). Considering measurement 

and coordination delays, the 𝜽 vector needs to be expanded 
further to [𝐹𝑟−𝑡ℎ, 𝐹𝑐𝑢𝑡−𝑜𝑓𝑓 , 𝛿𝑃𝐿𝐿 , 𝑟𝑚 , 𝑟𝑐]  to include the 

unknown time delays as well. It is also possible to combine 
measurement and coordination delays together as the 

aggregated time delay affects the quality of frequency 
response from PV units. Thus, one of the technical delays 
(e.g., 𝑟𝑚) can be set to an arbitrary value while the total delay 
is combined into another time delay type (e.g., 𝑟𝑐) to speed up 
the identification process. 

It is not possible to derive an analytical expression of 

휀1(𝜽)  as �̂�(𝑘, 𝜽) is obtained from time-domain simulation. 
Therefore, classical optimization techniques [22-23] cannot 
be used to minimize the objective function in (1). In this work, 
differential evolution (DE) algorithm [24] is used to solve the 
least-square constrained minimization problem (1)-(2). The 
DE algorithm is a population-based method which mainly 
includes three operators: crossover, mutation, and selection. 
Also, the performance of DE algorithm is highly dependent to 
three control parameters: mutation constant (F), crossover 
constant, and size of population. To improve probability and 
speed of convergence, F is randomly selected in the range of 
[0.5, 1] while the crossover probability is set to 0.9 [25]. The 
population size is decided to be 10 times larger than the 
number of unknown parameters as suggested in [24]. Each 
generation involves creation of a new population from the 
current population members 𝑥𝑖,𝑔 where 𝑖 indexes the vectors 

that make up the population and 𝑔 indexes the generation. In 
this work, the local-to-best strategy has been chosen since it 
attempts a balance between robustness and fast convergence 
[25]. This strategy generates mutant vectors 𝑣𝑖,𝑔 by randomly 

selecting two members of the population 𝑥𝑟1,𝑔  and 𝑥𝑟2,𝑔  as 

below: 

𝑣𝑖,𝑔 = 𝑥𝑖,𝑔 + 𝐹(𝑏𝑒𝑠𝑡𝑔 − 𝑥𝑖,𝑔) + 𝐹(𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) (3) 

Where 𝑥𝑖,𝑔  and 𝑏𝑒𝑠𝑡𝑔  are the 𝑖 th member and the best 

member, respectively, of the previous population. If the 
mutant parameter vector 𝑣𝑖,𝑔  has a better objective function 

than 𝑥𝑖,𝑔, then 𝑣𝑖,𝑔 replaces 𝑥𝑖,𝑔 in the population. For further 

study on the DE method, the reader can refer to [24-25].  

B. The Proposed Closed-loop Identification Process 

Considering a high penetration of utility-scale PV plants 
in transmission networks, and assuming they are capable and 
enabled to actively provide frequency response, their 
aggregated frequency response, and eventually the associated 
impact on system frequency dynamics, may be substantial. In 
other words, as far as PV units are responding to frequency 
excursions by changing their active power output, they are 
continuously affecting the system frequency dynamics, and 
this continuous impact may be considerable while 
transmission network is penetrated with large volume of PV. 
Therefore, it is necessary to consider the aforesaid continuous 
impact while running the identification process to increase the 
accuracy of dynamic equivalencing method. In this work, a 
closed-loop identification process, illustrated in Fig. 4, is 
suggested which employs a simplified equivalent test-system 
to emulate the frequency recorded during the event under 
study, thereby taking into account the continuous impact of 
the aggregated response from PV units on the system 
frequency dynamics. As shown in Fig. 4, in this case the study 
zone corresponds to the part of the system that encounters 
over-frequency condition, while the rest of the system is 
modelled by a Thevenin equivalent model along with an 
equivalent load. The study zone includes an equivalent 
synchronous machine, as well as an equivalent load, which 
represent the area inertia at the time of the event under study. 
The frequency of study zone is then reproduced using the 
angular speed of the equivalent synchronous machine. This 



simulated frequency is then used by the proposed aggregated 
dynamic equivalent model to obtain its aggregated active 
power output during the event under study. The study zone 
also consists of an equivalent impedance ( 𝑅, 𝑋 ) which 
represents a simplified equivalent model of transmission lines 
and transformers in the area under study. Finally, it is also 
important to correctly model load dependency to system 
frequency. In this paper, load sensitivity to frequency 
deviation within the study zone is modelled through (4) [26]: 

Where 𝑃0 is the pre-contingency active power consumption 
within the study zone, and ∆𝑓  is the frequency deviation 
which can be expressed as below: 

Where 𝑓𝑁  is the nominal frequency. Furthermore, the load 
damping factor (𝐷𝑝) can be calculated from (6).  

 

Fig. 4.  The proposed closed-loop identification process and its associated 

simplified system model to reproduce the event under study 

C. Coupling between Optimization Algorithm and Time-

domain Simulation Tools 

Once a new mutant vector 𝑣𝑖,𝑔 is generated, a time-domain 

simulation is required to calculate the objective function in 
(1). It means that the time-domain simulation processing time 
has an impact on the identification processing time. It is thus 
advisable to use a software which requires less time to 
complete a time-domain simulation, while it is coupled to the 
optimization process so as to update the 𝜽 vector to minimize 
the least-square error between the frequency response from 
the equivalent model and the actual frequency response. Once 
the unknown parameters are identified, the proposed dynamic 
equivalent model is ready to be integrated into a power system 
simulation tool to obtain the frequency response from utility-
scale PV plants during the event under study.  

IV. CASE STUDIES  

To evaluate the performance of the proposed dynamic 
equivalencing approach, the August 2018 separation event in 
Australia is considered in which contribution of utility-scale 
PV plants to frequency control was observed in Queensland 
(QLD) and South Australia (SA) [27]. The reader can refer to 
[17], [27-28] for more details on the August 2018 separation 
event in Australia.  

A. Coupling between Optimization Algorithm and Time-

domain Simulation Tool for the August 2018 Event Study 

In this work, two simulation tools are used to simulate the 
frequency response provided by utility-scale PV plants during 
the event. Firstly, a software for phasor-mode time simulation, 
so-called RAMSES [29], is used as it features advanced model 
decomposition and parallelization techniques which strongly 
speed up a time-domain simulation. Then, the identification 
process is coupled with the RAMSES model so as to update 
the 𝜽 vector to minimize the least-square error between the 
frequency response from the equivalent model and the actual 
frequency response reported in [17]. According to the 

Australian grid-code requirements, PV units must provide a 
‘one-shot’ sustained droop response, responding and 
sustaining their output power to the maximum frequency 
deviation. In fact, once the frequency is recovering, PV units 
are not allowed to go back to their pre-event levels for 10 
minutes [17]. Considering this requirement, an additional 
corrective term is then added to (1) to ensure that the unknown 
parameters are identified while the simulated maximum 
frequency deviation is close to the actual frequency overshoot. 
Therefore, the following objective function is used in this 
specific work: 

    휀2(𝜽) = 휀1(𝜽) +  𝛾|∆𝑓𝑠𝑚𝑎𝑥 − ∆𝑓𝑎𝑚𝑎𝑥|  (7) 
Where ∆𝑓𝑠𝑚𝑎𝑥  is the simulated frequency overshoot and 
∆𝑓𝑎𝑚𝑎𝑥 is the actual frequency overshoot observed during the 
event in a certain area. Once the parameters are identified, the 
equivalent model is integrated into the Australian 14-
generator test system, implemented in MATLAB/SIMULINK 
[30], as a simplified version of the NEM transmission 
network, to reproduce the high-level frequency dynamic 
behavior witnessed in the August 2018 event. 

B. Frequency Response from PV Units in Queensland 

At the time of the event, 9 utility-scale PV farms were 
online with total output generation of 286.1 MW and total 
online capacity of 586 MW in QLD. According to the final 
report [17], 79 MW over-frequency droop response was 
provided by transmission-connected PV power plants in QLD 
following the Queensland-New South Wales Interconnector 
(QNI) trip due to multiple lightning strikes. Instead of 
modelling 9 utility-scale PV units, the proposed dynamic 
equivalent model is used to reduce the complexity of 
frequency stability analysis while improving the 
computational time. In fact, modelling 9 utility-scale PV 
plants will add at least 126 DAEs to the system model, while 
the dynamic equivalent model contains only 16 DAEs without 
consideration of technical delays. The simplified test-system 
model is constructed in RAMSES, using the data presented in 
Table I, to carry out the proposed closed-loop identification 
process. Table I also shows the parameters used in the 
optimization process. In this work, the DE algorithm 
terminates when 휀2(𝜽)  decreases less than 0.1 during 10 
successive iterations. To speed up the identification process, 
the measurement delay is aggregated to the coordination 
delay, thus 𝑟𝑚 = 0 is assumed. Simulating the event for 35 
seconds, the identification process is completed in 30 minutes 
after 55 iterations using a computer with an Intel(R) i7-6820 
HQ quad-core processor @2.70 GHz, and 16 GB of RAM. 

TABLE I.  THE PARAMETER VALUES OF THE SIMPLIFIED EQUIVALENT 

MODEL IN RAMSES USED IN THE IDENTIFICATION PROCESS 

Parameter Symbol Value 

QLD equivalent resistance 𝑅 0.1 (Ω) 
QLD equivalent reactance 𝑋 1.089 (Ω) 

QLD equivalent load Load-1 5350 (MW) 

Equivalent load of the rest of system Load-2 1000 (MW) 

Load damping factor  𝐷𝑝 1 

Thevenin equivalent resistance 𝑅𝑡ℎ 4.16 (Ω) 

Thevenin equivalent reactance 𝑋𝑡ℎ 41.16 (Ω) 

Thevenin short circuit MVA 𝑆𝑠𝑐 25000 
Thevenin equivalent voltage  𝑉𝑡ℎ 330 (kV) 

Inertial constant of the equivalent SG 𝐻 5 sec 
Nominal MVA of the equivalent SG 𝑆𝑛𝑜𝑚 11000 

Resistance of the equivalent SG 𝑅𝑎 0 

Reactance of the equivalent SG 𝑋𝑙 0.15 (Ω) 

Nominal voltage of the equivalent SG 𝑉𝑡 330 (kV) 

Weighted coefficient in (7) 𝛾 200 

𝑃 =  𝑃0 (1 + 𝐷𝑝 ×
∆𝑓

𝑓𝑁
)   (4) 

∆𝑓 = 𝑓 −  𝑓𝑁    (5) 

𝐷𝑝 =  
∆𝑃 𝑃0⁄

∆𝑓

𝑓𝑁

   (6) 



The parameters obtained via the proposed closed-loop 
identification process and presented in Table II. Since 
cascading failures and separation events are rare and the 
measurement data for such events is rare too, there is a 
difficulty in validation of the obtained parameters through 
other large disturbances. In this work, the robustness of the 
obtained parameters, at least, has been verified by running the 
DE algorithm for several times. 

TABLE II.  THE PARAMETER OF AGGREGATED DYNAMIC EQUIVALENT 

MODEL FOR UTILITY-SCALE PV UNITS IN QLD 

Parameter Value 

𝐹𝑟−𝑡ℎ 50.4895 (Hz) 
𝐹𝑐𝑢𝑡−𝑜𝑓𝑓 51.04 (Hz) 

PLL delay (𝛿𝑃𝐿𝐿) 40 ms 

𝑟𝑚 0 
𝑟𝑐 1.1 sec 

The dynamic equivalent model is then integrated into the 
14-generator test system, as previously stated. Fig. 5 shows 
the simulated frequency response from dynamic equivalent 
model in QLD, the simulated QLD frequency, as well as the 
measured QLD frequency [17] following the QNI trip. First, 
the simulated QLD frequency is highly consistent with real 
measured frequency signal, reported in [17], in terms of 
overall frequency excursions, zenith point, and quasi steady-
state frequency value. It also shows that the simulated 
frequency response (71 MW) is close to the actual frequency 
response provided by PV units in QLD (79 MW). Therefore, 
the proposed equivalent model is able to capture with good 
fidelity the aggregated frequency response from PV farms 
during the event. Further, over-frequency droop response 
from utility-scale PV units is generally different from typical 
over-frequency droop response from synchronous generators. 
This is because, as mentioned earlier, the aggregated PV 
output is required to be sustained also while the frequency is 
recovering, while synchronous generator provides a typical 
droop response.  

It is also to be noted that although utility-scale PV units 
are in principle able to provide fast frequency response for the 
system thanks to fast converter response, the actual response 
was delivered ineffectively due to coordination delay. It is 
reported that the coordination delay was a result of built-in 
control system settings within the PV farms and it was 
unrelated to market outputs [17]. It is clear from Fig. 5 that the 
proposed method is also able to capture this technical delay as 
the simulated response is delivered to the system with 1.1 
seconds delay.  

 

Fig. 5.  The simulated frequency response from aggregated dynamic 

equivalent model in QLD as well as QLD’s frequency 

It is then interesting to try to understand how much 
response would have been provided from utility-scale PV 

plants if they had followed the grid-code requirements and 
there was no coordination delay. Based on our modelling and 
new simulations, Fig. 6 shows that utility-scale PV units could 
have delivered some 104 MW of aggregated frequency 
response if they had delivered a sustained droop response with 
no delay. So, the coordination delay has prevented PV farms 
to provide around 33 MW further frequency response in QLD. 
Finally, the QLD frequency could have been above 51 Hz if 
there was no frequency response from PV plants. This high 
frequency overshoot could result in generation disconnection 
in QLD. Indeed, the frequency control from PV plants in QLD 
contributed to the system resilience by reducing the likelihood 
of supply interruption. 

 

Fig. 6.  The expected frequency response from aggregated PV plants in 

QLD as well as the QLD frequency without technical delays/PV response 

C. Frequency Response from Utility-scale PV plants in 

South Australia  
At the time of the event, there was only one utility-scale 

PV farm online in SA with output power of 89 MW and online 
capacity of 110 MW. It is reported that this PV plant was not 
able to control the frequency overshoot following the 
Heywood (interconnector between Victoria and SA) trip due 
to a huge delay around 4 seconds, from frequency 
measurement to plant reaction [17]. As before, the question 
arises as to how much frequency response could have been 
delivered in the SA system if the PV farm had responded 
faster. Considering the simulated SA frequency, Fig. 7 depicts 
how the utility-scale PV plant could have potentially delivered 
83 MW over-frequency response. Also, it can be observed 
how once the frequency is recovering PV maintains its output 
power constant to comply with the grid-code requirements.  

 
Fig. 7. The expected frequency response from the online utility-scale PV 

unit in SA as well as the SA frequency 

V. CONCLUSION 

This paper has presented a novel dynamic equivalent 
model for transmission-connected PV plants to reduce the 



complexity of frequency stability analysis in PV-penetrated 
transmission networks. As the aggregated frequency response 
from several large-scale PV plants might differ from the 
frequency response provided by each individual PV farm, the 
dynamic equivalent model has been parametrized through a 
measurement-based identification process. A closed-loop 
identification process has then been proposed which employs 
a simplified system model to reproduce the frequency during 
the event under study, thereby taking into account the 
continuous impact of PV response on the system frequency, 
and eventually resulting in more accuracy in equivalent model 
parametrization. Also, the proposed dynamic equivalent 
model is developed to capture some possible technical issues 
which might negatively impact the frequency response 
performance of PV farms, such as coordination and 
measurement delays. Considering the August 2018 separation 
event in Australia, it has been shown how utility-scale PV 
units can participate in over-frequency control and system 
resilience. From the simulation results, it can be concluded 
that the proposed dynamic equivalencing approach is able to 
capture with good fidelity the aggregated frequency response 
from utility-scale PV units in QLD. Also, it has been discussed 
how measurement and coordination delays negatively affected 
the frequency response capabilities of transmission-connected 
PV units in SA and QLD, respectively. Finally, the model 
developed also allowed to assess the impact of these technical 
issues through a comparison between the responses that could 
have been expected response and the actual response. 

As future work, even though the robustness of the 
proposed identification approach has been verified by 
multiple runs of the DE algorithm, we aim at validating the 
results we obtain in terms of uniqueness of the identified 
parameters through data from other large disturbances. 
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