
Phase Quadrature Backbone Curve for Nonlinear Modal Analysis of 
Nonconservative Systems 

Martin Volvert and Gaëtan Kerschen 

Department of Aerospace and Mechanical Engineering 

University of Liège 

ABSTRACT 

Nonlinear normal modes (NNMs) are often used to predict the backbone of resonance peaks in nonlinear frequency response 

functions. Regardless of the definition considered, one important limitation remains, i.e., the NNMs require a multi-point, 

multi-harmonic external forcing to be excited. To address this limitation, the present study proposes a new definition of NNMs, 

termed phase quadrature backbone curve (PQBC). The advantage of PQBC is that an actual solution of the nonlinear frequency 

response obtained under mono-point, mono-harmonic external forcing is followed for which phase quadrature of a selected 

degree of freedom is achieved. Additionally, super and subharmonic resonance peaks can be captured by adapting the phase 

quadrature condition. Finally, no post-processing is required to get amplitude-forcing relations of the NNMs. Isolated responses 

can, in turn, be predicted from these relations. 
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INTRODUCTION 

NNMs are used for modal analysis of nonlinear systems. Considering the unforced and undamped system, they can be defined 

as a (nonnecessarily synchronous) periodic motion [1]. To be excited, NNMs require a multi-point, multi-harmonic external 

forcing equal to the dissipative terms and in phase quadrature with each harmonic component of the displacement, as shown in 

[2]. 

In the presence of damping, the aforementioned definition can no longer be used. To address this issue, a new definition of 

NNMs accounting for linear and nonlinear damping was proposed by Krack [3], in which periodicity is enforced by a mass-

proportional damping term, i.e., a fictitious force. Phase quadrature is obtained between each of the displacement harmonics 

and the fictitious force term. However, a multi-point, multi-harmonic forcing is still required for exciting the considered NNM, 

which is in contrast with the fact that nonlinear frequency responses are usually obtained under mono-point, mono-harmonic 

forcing. 

In this study, a new NNM definition is proposed, which relies on the phase quadrature between a mono-point, mono-harmonic 

forcing and the first harmonic component of the displacement of the excited degree of freedom. This definition can also be 

extended to super and subharmonic resonance peaks by imposing phase quadrature between a higher or lower harmonic 

component of the displacement and of the external forcing. 

PHASE QUADRATURE BACKBONE CURVE 

Similar to what was achieved in [3], the basic idea of the PQBC definition is to introduce a fictitious external forcing to enforce 

periodicity. However, unlike [3], the fictitious forcing, which plays the role of mono-point and mono-harmonic forcing, only 

involves the first harmonic component of the velocity at the selected degree of freedom: 

𝑀�̈� + 𝐶�̇� + 𝐾𝑥 + 𝑓𝑛𝑙(𝑥, �̇�) − 𝜉𝐼𝑙�̇�1ℎ = 0 (3) 

where 1ℎ stands for first harmonic, 𝐼𝑙  is an 𝑛 × 𝑛 matrix filled with 0s and one 1 on the l-th diagonal term, selecting the excited 

degree of freedom, and 𝜉 is the pseudo-amplitude of the fictitious forcing. In addition, super and subharmonics backbone curves 



can also be predicted by carefully selecting the harmonic component of the velocity in the fictitious forcing. Specifically, for 

super and subharmonic resonances, higher and lower than 1 harmonic components of the displacement are in phase quadrature 

with the forcing. Equation (3) thus becomes: 

𝑀�̈� + 𝐶�̇� + 𝐾𝑥 + 𝑓𝑛𝑙(𝑥, �̇�) − 𝜉𝐼𝑙�̇�𝑛ℎ = 0 (4) 

for the 𝑛-th superharmonic resonance, and: 

𝑀�̈� + 𝐶�̇� + 𝐾𝑥 + 𝑓𝑛𝑙(𝑥, �̇�) − 𝜉𝐼𝑙�̇�1
𝑛
ℎ
= 0 (5) 

for the 𝑛-th subharmonic resonances. 

NUMERICAL RESULTS 

The PQBC definition is first demonstrated using a simple Duffing oscillator: 

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 + 𝑘𝑛𝑙𝑥
3 = 0 (6) 

The results are displayed in Figure 1. In addition to the fundamental resonance, the system presents super and subharmonic 

resonances, the loci of which are all accurately predicted using the PQBC NNMs. It should be noted that the subharmonic 

resonance only exists from a certain amplitude of the external forcing. 

 

Figure 1: Nonlinear frequency response (in black) of the Duffing oscillator and PQBC NNMs (in blue). 

Second, the method is applied to a two-degree-of-freedom system: 

{
𝑚1�̈�1 + (𝑐1 + 𝑐12)�̇�1 − 𝑐12�̇�2 + (𝑘1 + 𝑘12)𝑥1 − 𝑘12𝑥2 + 𝑘𝑛𝑙𝑥1

3 = 𝐹 sin𝜔𝑡

𝑚2�̈�2 + (𝑐2 + 𝑐12)�̇�2 − 𝑐12�̇�1 + (𝑘2 + 𝑘12)𝑥2 − 𝑘12𝑥1 = 0
(7) 

The undamped NNMs of this system feature several modal interactions. However, in practice, they can be annihilated by 

damping. Using PQBC, it is possible to accurately determine whether modal interactions are still present or not in the presence 

of damping. Specifically, the PQBC NNMs in Figure 2 clearly indicate that the modal interaction is eliminated by damping, 

which is confirmed by the calculation of the nonlinear frequency responses. 



 

Figure 2: Comparison between undamped NNMs (green) and PQBC NNMs (blue). The red dots represent the phase quadrature points of 

the nonlinear frequency responses (black). 

CONCLUSION 

This study has introduced a new definition of NNMs, termed phase quadrature backbone curve (PQBC). PQBC is such that 

phase quadrature is enforced between the excited degree of freedom and the external forcing. It has been shown that PQBC 

can calculate accurately the loci of fundamental, super and subharmonic resonances.  
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