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ABSTRACT
In-path network functions enforcing policies like firewalls,

IDSes, NATs, and TCP enhancing proxies are ubiquitous.
They are deployed in various types of networks and bring
obvious value to the Internet.
Unfortunately, they also break important architectural

principles and, consequently, make the Internet less flexible
by preventing the use of advanced protocols, features, or op-
tions. In some scenarios, feature-disablingmiddlebox policies
can lead to a performance shortfall. Moreover, middleboxes
are also prone to enforce policies that disrupt transport con-
trol mechanisms, which can also have direct consequences
in term of Quality-of-Service (QoS).

In this paper, we investigate the impact of the most preva-
lent in-path impairments on the TCP protocol and its features.
Using network experiments in a controlled environment, we
quantify the QoS decreases and shortfall induced by feature-
breaking middleboxes, and show that even in the presence
of a fallback mechanism, TCP QoS remains affected.

CCS CONCEPTS
• Networks→Middle boxes / network appliances; Net-
work simulations; Transport protocols.

1 INTRODUCTION
The Internet landscape is constantly evolving. From the

original end-to-end TCP/IP architecture, which ensured that
all packets exchanged across the Internet would stay un-
touched in-transit from the transport layer perspective, the
last decade has witnessed a progressive introduction of mid-
dleboxes (i.e., network appliances manipulating traffic for
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purposes other than packet forwarding [3]). Firewalls and
deep packet inspection (DPI) boxes, deployed for security
purposes, TCP accelerators for performance enhancement,
and network address translation (NATs) boxes have put an
end to this paradigm [8].

Today, middleboxes proliferates in large numbers, in vari-
ous type of networks. In enterprise networks, middleboxes
are as numerous as regular network equipment [36]. Tier-1
ASes are deploying more and more middleboxes [7]. Cellular
networks are extensively deploying Carrier-Grade NATs (CG-
NATs) [40]. Besides, recent progresses in virtualization (i.e.,
hardware virtualization, containerization) and the introduc-
tion of network function virtualization (NFV) are facilitating
middlebox deployment [1, 11]. Overall, at least 2% of public
network devices are TCP/IP middleboxes, mostly deployed at
AS borders, and they affect more than one third of network
paths [7, 9].
Although they have made themselves indispensable, by

violating the end-to-end semantics, middleboxes have rad-
ically changed the transport paradigm. Generic examples
of such policies are shown in Fig. 1. As a side effect, they
have also introduced a wide variety of impairments to pro-
tocols and features, from connectivity, to performance and
security issues. Establishing TCP connections with Explicit
Congestion Notification (ECN) enabled can lead to connec-
tivity blackouts [26]. Mobile carriers using middleboxes to
impose aggressive timeout value for idle TCP connections
increase mobile devices battery consumption. Careless TCP
middleboxes can facilitate certain network attacks, and even
bring new attack vectors [40]. Overall, at least 6.5% of net-
work paths are crossing a middlebox that potentially harms
TCP traffic [7, 9].

Moreover, middleboxes forbids transport innovation [12].
Often referred to as the ossification of the network infras-
tructure, this phenomenon consists in middleboxes apply-
ing modify or drop policies to packets, and limiting the
set of authorized features to a restricted subset. In conse-
quences, alternatives transport protocols that do not rely on
TCP nor UDP, such as Datagram Congestion Control Proto-
col (DCCP) [25], or Stream Control Transmission Protocol
(SCTP) [37], despite being standardized, fail to be deployed
at large scale. The situation within TCP is similar, with new
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(a) feature.blocked (b) feature.removed (c) feature.changed

Figure 1: Path Conditions.

features being stripped or packets discarded, hampering with
TCP innovation [31].

In this paper, we investigate the impact of middlebox-
induced TCP feature brokenness that were observed in the
wild, in term of Quality-of-Service (QoS). We chose to mimic
existing middlebox impairments in a controlled environment,
because it requires control on both endpoints and on inter-
mediary devices, with the use of mmb [10, 11], a Vector Packet
Processing (VPP) [4] plugin that allows to build various state-
less and stateful classification and rewriting middlebox poli-
cies, and analyze their impact on the TCP traffic. We focus
on three basic and widely used features, Explicit Congestion
Notification (ECN), Selective ACKnowledgment (SACK), and
TCP Window Scaling (WScale), and highlight traffic disrupt-
ing policies affecting each feature. Finally, we make all data
generated and our Python Notebook freely available to the
Research Community1.

The remainder of this paper is organized as follows: Sec. 2
describes our experimental testbed hardware and configura-
tion; Sec. 3 details the tested features, the chosen experiments
and discusses the results; Sec. 4 presents the related works;
finally, Sec. 5 concludes this paper by summarizing its main
achievements.

2 EXPERIMENTAL SETUP
For quantifying the impact of path brokenness on QoS,

we deploy a testbed consisting of three machines with Intel
Xeon CPU E5-2620 2.10GHz, 16 Threads, 32GB RAM, run-
ning Debian 9.0 with 4.9 kernels. Two of these machines play
the role of Traffic Generators (TGs), while one is the Net-
work Simulator (NS). Each machine is equipped with an Intel
XL710 2x40GB NIC connected to a Huawei CE6800 switch
using one port each for TGs and both for the NS. Traffic
exchanged by TGs has to go through the NS first.

The NS relies on Vector Packet Processing (VPP) [4], a high-
performance userspace packet processing stack, and on the
mmb and nsim plugins to simulate realistic network condi-
tions and middlebox interference. mmb is a middlebox plugin
for VPP that allows to build various stateless and stateful
classification and rewriting middlebox policies [10, 11]. It
1https://github.com/ekorian/vpp-quantify

(a) Direct (b) Indirect

Figure 2: Measurement Setups. TG = Traffic Generator.
NS = Network Simulator. Arrows are physical connec-
tions.

is used to recreate existing middlebox traffic impairments.
nsim is a simple network delay simulator implemented as a
VPP plugin. It simply adds delay and shapes traffic by pro-
cessing packet vectors. By tuning mmb and nsim, the NS can
be configured to simulate realistic scenarios of networks
with path-breaking middleboxes. The NS runs VPP 18.10,
DPDK [20] 18.08 with 10 1-GB huge pages, mmb 0.4, and
nsim, and the TGs run iperf3 [38]. The NS device is config-
ured to maximize its performance, to make sure that it is not
the measurements bottleneck.
The TG devices are configured to handle properly Long

Fat Networks (LFNs) [21] scenarios (e.g., high bandwidth and
high delay), by increasing the TCP receive and send buffers
sizes to their maximum value (i.e., 2GB).

We configured our testbed into two different setups: A di-
rect client-to-server communication setup, shown in Fig. 2a,
is used to evaluate bandwidth baselines and to rule out
sender-bounded experiments. An indirect setup, Fig. 2b, in
which the NS forwards traffic between sender and receiver,
and applies the desired network conditions.
As mentioned above, we generate traffic using iperf. In

preliminary, we compute the TGs baseline bandwidth in the
direct setup, and the NS overhead in the indirect setup, to
ensure that the processing time of the NS is not a bottleneck
of the measurements. To this end, we run a single pair of
iperf client-server using the direct setup, and we add iperf
client-server pairs until the bandwidth reaches the maximum
capacity. We found that at least 2 iperf client-server pairs are
needed to reach a consistent 37.7 Gbps bandwidth, which is
the closest that iperf can get to the maximum capacity of the
NICs. The experiment is repeated in the indirect setup, and
found a similar bandwidth of 37.4 Gbps.
For the following experiments, we will use a single TCP

flow. We will vary different parameters, including the net-
work conditions and the middlebox TCP interference, ob-
serve their effect on TCP, and attribute performance dete-
rioration to the parameters. Each experiment lasts for 20
seconds and packets are sized according to Ethernet MTU.
All NICs distribute packets to the RX rings by hashing both
IP addresses and ports. Each experiment result is averaged
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Path Conditions Affected Paths [9] Consequences
BT DF ND DT

tcp.seqnum.changed 5.5 % ✗ ✗ ✗ ✓

tcp.opt.sackok.removed 0.8 % ✗ ✓ ✓ ✗

tcp.opt.ws.changed 0.02 % ✗ ✗ ✓ ✓

tcp.opt.ws.removed 0.02 % ✗ ✓ ✗ ✗

tcp.ecn.blocked 0.01 % ✓ ✓ ✗ ✗

tcp.ecn.changed 0.01 % ✗ ✓ ✗ ✗

ip.ecn.changed 0.01 % ✗ ✓ ✗ ✓

Table 1: Middlebox Impairments Overview. BT =
Blocked Traffic. DF = Disabled Feature. ND = Negoti-
ation Disruption. DT = Disrupted Traffic.

over a thousand runs, except the window scale experiments
that are run 50 times.

3 RESULTS
Table 1 lists all middlebox policies we explore in this sec-

tion. In particular, the column labeled “Affected Paths” pro-
vides the proportion of paths affected by those policies, as
observed in real traces collected using tracebox [6] run be-
tween 89 Planet Lab nodes and approximately 600k Alexa
top 1M server [9]. We investigate three main policies: the
relationships between middleboxes and ECN (Sec. 3.1), be-
tween middleboxes and SACK (Sec. 3.2), and, finally, between
middleboxes and the window scaling parameter (Sec. 3.3).
First, we measure the direct and indirect baseline band-

widths with a single TCP flow. Given that iperf relies on a
single TCP connection, it is bounded to a single CPU and can-
not utilize the full capacity of the NICs. We find a throughput
value of 34.2 Gbps that we will use as the indirect baseline
to compare to the other scenarios.

3.1 ECN
In this section, we investigate interference with the Ex-

plicit CongestionNotification (ECN) feature [34]. ECN allows
ECN-aware routers with Active Queue Management (AQM)
to signal the presence of impending congestion without drop-
ping packets. Instead, it marks packets if they are parts of an
ECN-capable TCP connection as experiencing congestion,
using a two-bit field in the IP header. The receiver reflects
the signaling to the sender, which then reduces its send rate
accordingly. The obvious benefit of ECN is the loss rate re-
duction, but it also improves the TCP throughput, reduces
Head-of-Line blocking, and reduces the probability of RTO
expiry [13].

We choose to analyze the performances of TCP flows with
ECN enabled in the presence of middlebox policies affecting
ECN negotiation, or disrupting its proper functioning. In the
wild, the latter policies are often legacy IP routers that still

(a) ECN impairments (b) ECN under Congestion

Figure 3: tcp.ecn.blocked, tcp.ecn.changed, and
ip.ecn.changed.

consider the IP ECN bits as part of the IP Type of Service
(ToS).

We select three realistic scenarios among observations
from Table 1: (𝑖) ip.ecn.changed.11, which consists in the
NS rewriting the ECN bits to 11 (i.e., Congestion Experienced)
on all packets, (𝑖𝑖) tcp.ecn.blocked, where the NS blocks
ECN-setup SYN packets, forcing the connection to fall back to
non-ECN TCP, and (𝑖𝑖𝑖) fallback-proof ip.ecn.changed.11,
which consists in the NS rewriting the ECN bits to 11 on all
packets already marked 01 or 10 (i.e., ECT(0) and ECT(1), the
ECN-capable transport codepoints).
The amount of received data over time of median flows,

flows whose total data received is equal to the median, un-
der each of the three aforementioned scenarios is shown in
Fig. 3a. The flow crossing the faulty congestion-reporting
middlebox of scenario (𝑖) (i.e., green curve) displays no sub-
stantial QoS deterioration. This is explained by ECN fallback
mechanism preliminary ensuring that the path is not ECN-
unusable, which is the case when an intermediary device
indistinctly marks all packets IP ECN bits to the same value.
If ECN is found to be unusable on a given flow, it is disabled.
In consequence, the client does not reduce its congestion
window, and the flow QoS is unaffected.

The flow that crossed the ECN-setup blocking middlebox
of scenario (𝑖𝑖) (i.e., orange curve) has an additional second of
connection establishment, that is the ECN fallback timeout
value. After this delay, a non-ECN connection is established,
which displays no sign of QoS deterioration, in comparison
to the green curve.

The flow that crossed the second congestion-reported mid-
dlebox of scenario (𝑖𝑖𝑖) (i.e., red curve) shows extreme signs
of throughput reduction. In this scenario, the middlebox sets
the ECN bits to CE only if the packet is already marked
ECT(0) or ECT(1), making it undetectable for the fallback
mechanism. Consequently, the faulty middlebox endlessly re-
ports congestion, forcing the sender to reduce its congestion
window multiple times.
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We also evaluate ECN reduction of packet retransmissions
under congestion. To this end, we configure the NS with a to-
ken bucket traffic shaping policy, with an average traffic rate
of 10Gbps, and a maximum burst size of 10GB. On the token
bucket queue, we enable a Random Early Detection (RED)
scheduler with a lower threshold of 80%, an upper thresh-
old of 100%, and a drop probability of 10%, to allow high
buffer occupancy. We test two scenarios under this setup:
(𝑖) ECN enabled on the traffic shaping queue, marking the
packets as CE instead of randomly discarding them if conges-
tion occurs and, (𝑖𝑖), ECN disabled (i.e., tcp.ecn.changed,
tcp.ecn.blocked or ip.ecn.changed.11).

Packet retransmission count of each scenario median flow
is shown in Fig. 3b. It confirms that ECN allows for reducing
congestion window while avoiding unnecessary retransmis-
sions. It should be noted that packets can still be discarded
under ECN-marking RED scheduling.
In summary, we showed that ECN fallback successfully

deals with ECN-setup SYN blocking and most faulty marking
policies. However, we also showed examples of ECN breaking
policies that ECN fallback cannot address. Finally, we showed
that ECN is valuable to avoid dropping and retransmitting
packets that already reached the middle of the path.

3.2 SACK
In this section, we investigate interference with the Se-

lective ACKnowledgment TCP Options (SACK) [16]. SACK
consists in two options, SACK-Permitted sent by each end-
points in SYN packets to advertise its support of SACK, and
the actual SACK blocks that contains a list of pairs of se-
quences numbers, each of them acknowledging one or more
consecutive packets. Its purpose is to minimize throughput
reduction and to avoid unnecessary retransmissions when
multiple packets are lost from a single window.
The chosen experiments aim at quantifying the QoS de-

crease induced by middlebox policies that disable SACK by
stripping the SACK-Permitted option from the SYN packets,
or by policies breaking SACK. To this end, we introduce a
random packet loss rate in the NS.
We select three realistic scenarios (see Table 1): (𝑖) loss

with SACK, corresponding to the the baseline value, (𝑖𝑖)
tcp.opt.sackok.removed or loss without SACK consisting
in the NS stripping the SACK-Permitted option from the TCP
SYN packets, and, (𝑖𝑖𝑖) losswith SACK and tcp.seqnum.changed
consisting in the NS applying a TCP initial sequence number
(ISN) randomizing policy and then rewriting the sequence
and acknowledgment number fields of all following packets
but not the SACK blocks. This has the effect of making all
SACK blocks invalid. The purpose of the latter policies is
to fix lacks of ISN randomness, and has been signaled on
equipment from major vendors (e.g., CISCO switches).

Fig. 4a and Fig. 4b respectively display received data of
median flows, and packet retransmission count of median
flows for each scenario, both without artificial loss.

The SACK-enabled flow without broken middlebox of sce-
nario (𝑖) (i.e., green curve) has a throughput similar to the
baseline, but has more retransmissions events.

These packet retransmissions are caused by sporadic events
of non-artificial loss or reordering, that we observed for
0.001% of packets. The main causes of packet reordering is
the inherent parallelism in modern routers [28]. In our setup,
themiddlebox, the switch, and all NICs involve amulti-queue
architecture.

The SACK-disabled flow of scenario (𝑖𝑖) (i.e., orange curve)
displays a smaller throughput, with three stalling periods,
during the first second, between seconds 13 and 15, and
during second 17. This stalling periods are caused bymultiple
consecutive packet reordering at the beginning of the packet
window, which, in the absence of SACK, triggers spurious
retransmissions from the first Out-of-Order packet to the last
packet sent. It is confirmed by Fig. 4b, in which the median
orange flow reaches 80,000 retransmissions after 20 seconds.
The SACK-enabled flow with broken middlebox of sce-

nario (𝑖𝑖𝑖) (i.e., red curve) again shows extreme signs of QoS
deterioration. After 3 seconds, it completely stops receiving
data. This corresponds to the first loss event, leading the
receiver to append SACK blocks to the DUP ACK. Those are
then made invalid by the middlebox. The sender implemen-
tation (i.e., Linux 4.9) treats packet with invalid SACK blocks
by discarding them, without considering its ACK number
(i.e., DUP ACK). Then, the receiver indefinitely keeps sending
invalid SACK blocks until the sender triggers its retransmis-
sion timeout (RTO), sending packets once at a time, without
retransmitting the lost packet.
Fig. 4c and Fig. 4d respectively display average through-

put and average packet retransmission count in function of
artificial packet loss. First, it shows a significant decrease
of throughput when introducing artificial loss. Then, we
observe that, for packet loss rates between 0.01% and 0.1%
the SACK-disabled flow is performing better than the SACK-
enabled flow. This is explained by the higher processing time
of ACK packets that include SACK blocks. Indeed, due to the
linked-last format of SACK blocks, the ACK packets process-
ing time in presence of loss can become too long to keep
up with the link speed (i.e., up to 100 times that of a regular
ACK packet [24]). For loss rates higher than 0.1%, the SACK-
enabled flow has a higher throughput. This is the point where
the TCP slowdown induced by the spurious retransmissions
of the SACK-disabled flow becomes more important than
that of the ACK processing time of the SACK-enabled flow.

In summary, we showed that enabling SACK increases the
maximum achievable throughput of flows with low packet
loss rates (i.e., < 0.01%), and flows with packet loss rates
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(a) No Artificial Loss, Median flow (b) No Artificial Loss, Median flow (c) Average Throughput (d) Total Retransmissions

Figure 4: tcp.opt.sackok.removed and tcp.seqnum.changed.

higher than 0.1%. However, we discovered that SACK-enabled
flows are performing worse than SACK-disabled flows for
packet loss rates between 0.01% and 0.1%, due to the exten-
sive processing time of SACK blocks. Finally, we showed
that a widespread middlebox policy causes TCP flows to stall
after a packet loss event.

3.3 Window Scale Option
Finally, we investigate interference with theWindow Scale

TCP Options (WScale) [22]. The WScale option is appended
by both endpoints of a TCP connection to the SYN packets
for advertising the scaling factor of their receive window to
the other endpoint. TCP receive window is a 16-bit field with
its maximum value limited to 64KB. Wscale introduces a con-
stant left-shift value of up to 14, increasing so the maximum
receive window size to 1GB. It is particularly interesting for
LFNs that require a high amount of unacknowledged data for
optimal performances. Indeed, the window scale should be in
line with the bandwidth-delay product (BDP) to fully utilize
the available bandwidth, and a 1GB BDP corresponds to a
10Gbps link with a 800ms delay. As the maximum achievable
throughput is bounded by 𝑅𝑊 𝐼𝑁

𝑅𝑇𝑇
, and the advertised WScale

value is determined by the available memory, it should be
the highest possible value in order to allow for large BDP
when needed.

The chosen experiments aim at quantifying the impact
on TCP performances of middlebox policies that unilaterally
modify the advertisedWScale value. To this end, we simulate
LFNs by introducing a delay parameter in the NS. Further,
we disable TCP segmentation offload (TSO) and generic seg-
mentation offload (GSO), that seem to bring an upper bound
on the BDP, on both TGs for this experiment. Disabling TCP
offloading has the effect of pushing more work to the CPU,
which reduces the maximum throughput to 12Gbps.

We select three realistic scenarios among observations
from Table 1: (𝑖) tcp.opt.wscale.removed consisting in

Figure 5: tcp.opt.ws.removed and
tcp.opt.ws.changed.

the NS stripping the WScale option from the TCP SYN pack-
ets (this is identical to a WScale option value of 0) and (𝑖𝑖)
tcp.opt.wscale.changed consisting in the NS rewriting
the WScale value from both SYN packets with all possible
value (from 1 to 14). For both scenarios, we vary the delay
parameter from 0 to 800ms, which roughly corresponds to
the highest possible BDP for our setup (e.g., 800ms delay
at 10Gbps). We also vary the congestion control algorithm,
which will influence the TCP window update events. We
selected Reno [30], one of the first congestion control algo-
rithms, CUBIC [18], used by default in Linux kernels between
versions 2.6.19 and 3.2, H-TCP [27], an algorithm optimized
for LFNs introduced in Linux kernel 2.6.13, and, TCP BBR [2]
(Bottleneck Bandwidth and Round-trip propagation time), a
recent algorithm developed by Google and included in Linux
kernels from 4.9.
Fig. 5 displays the median throughput achieved for each

tested combination of delay and middlebox-induced WScale
value. As defined in RFC 1072, a network is considered as
a LFN if its BDP is significantly larger than 105 bits (12,500
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bytes), which makes all scenarios LFNs but the 0-delay sce-
nario. The latter is affected by a window scaling factor of
0 (up to 3 with TCP CUBIC), and cannot reach a 10 Gbps
throughput. Results of LFN scenarios show that in-path mod-
ification of the window scaling parameter has a direct impact
on the throughput: (𝑖) in order to reach a 100Mbps through-
put, the minimal window scaling parameter is 6, and it in-
creases to 8 for flows with very high RTTs (i.e., > 400 ms), (𝑖𝑖)
to reach a 1 Gbps throughput the minimal window scaling
parameter is 8 (11 for high-RTT flows), and (𝑖𝑖𝑖) to reach a
10Gbps throughput the minimal window scaling parameter
is 11 (13 for high-RTT flows).
We note that TCP CUBIC performs poorly in extreme

BDP scenarios (i.e., WScale higher than 10 and delay higher
than 400ms), lowering so the impact of WScale clipping. We
observe no significant differences between TCP Reno, H-TCP,
and TCP BBR.
In summary, we showed that in-path modifications of

TCP window scaling parameters have a direct impact on the
maximum achievable throughput, and if middleboxes do not
consider the flow RTT in their tcp.opt.wscale.changed
policies, they are unable to choose a non-impairing value.
Moreover, as bandwidth keeps increasing over time, there
is a risk that this issue will become more important in the
future [5, 17].

4 RELATEDWORK
Detal et al. [6] presented an algorithm that is able to reveal

in-path middleboxes while requiring control on a single end-
point. Edeline and Donnet [7, 9] extended it and showed that
at least 2% of deployed network devices are TCP/IP middle-
boxes, and that they affect more than one third of network
paths. Moreover, 6.5% of paths are potentially impaired by a
middlebox, while 1% of paths are highly impaired.
The benefits of using Explicit Congestion Notification

(ECN) is a well-studied topic. Floyd et al. [14, 15] showed
that a standard TCP flow with a throughput of 1Mbps has an
approximate 2% throughput gain with ECN enabled. Salim
et al. [35] studied the relative throughput gain of ECN flows
versus non-ECN flows in a controlled environment, and eval-
uated it to up to 60% in high loss high congestion scenarios.
Fairhurst et al. [13] listed the benefits of enabling ECN for
TCP flows as improving throughput, reducing Head-of-Line
blocking, and the probability of RTO expiry. Trammell et
al. [39] investigated the deployment status of ECN, alongside
connectivity and negotiation issues. They found that TCP
connections to 0.42% of hosts experience ECN-dependent
connectivity.

Wang et al. [40] revealed the deployment of TCP window
checking middleboxes in cellular networks. Qian et al. [32,
33] showed that such middleboxes enable TCP sequence

number inference attacks. Hesmans et al. [19] investigated
the problem of using Selective ACKnowledgment in presence
of TCP sequence number randomizer. They showed that,
in such scenario, TCP with SACK enabled performs worse
than with SACK disabled. However, their setup has a small
maximum goodput (i.e., 10Mbps), which makes it harder to
observe the SACK tradeoff.

Jain et al. [23] investigated the impact of the link buffer size
on TCP buffer size and throughput. In a controlled environ-
ment, they showed that the maximum feasible throughput is
bounded by the network buffers. In this paper, we show that
a similar phenomenon happens when TCP receive buffers
are shrunk by middleboxes. Lukaseder et al. [29] analyzed six
TCP congestion control algorithm, including Reno, CUBIC,
and H-TCP, in real networks, with relatively small BDPs.
They concluded that in absence of loss, the TCP variant has
no strong influence on throughput, but as soon as losses are
experienced, H-TCP and CUBIC perform better.

5 CONCLUSION
In this paper, we investigated the impact of existing in-

path middlebox modifications to TCP ECN, SACK, and WS-
cale. We showed that most ECN impairments are addressed
successfully by the ECN fallback mechanism, and that, in
the absence of similar mechanisms, SACK and WScale are
more vulnerable to path brokenness. Moreover, we showed
that all three features are valuable for improving TCP QoS,
and therefore even if fallback is able to reduce the impact
on QoS, by transforming a traffic disruption into a feature
disabling policy, this remains a shortfall for TCP.
In light of the above information, we also recommend

operators to: (𝑖) not disable ECN, and to make sure in-band
congestion signaling is possible, (𝑖𝑖) not deploy TCP sequence
number re-shuffling policies, because it fixes a vulnerability,
but enables another [32], and in case they do, to make sure
to include SACK blocks to the mapping to avoid severe TCP
impairments, and (𝑖𝑖𝑖) leave TCP window scaling parameter
untouched, as long as there is no information on the flow
RTT nor BDP, and therefore on theminimumwindow scaling
parameter that does not reduce the throughput.
We also recommend for host configuration to: (𝑖) have

ECN enabled, because ECN fallback properly handles the
most prevalent path conditions, while unhandled conditions
are very rare, (𝑖𝑖) have SACK enabled to guarantee a decent
throughput in the presence of packet loss, and in the unfortu-
nate presence of a SACK-breaking middlebox, as they tend to
be located close to edge networks [7], to consider replacing
the offending device if located in their local network, and
to switch hosting solution if located in destination network,
and (𝑖𝑖𝑖) have TCP window scaling enabled.
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