Evolution des indices morphométriques des galets dans le Bassin du Torrent Pora (Ligurie-Italie)

par

A. Ozer, Liège, G. Fierro, G. Imperiale, A. Melis et G. Piancintino, Genova

avec 5 figures

Summary. This study deals with the trends in size, sphericity and flatness, as defined by Cailleux of porphyroidic gravels along the Pora torrent and along the beach of Finale, Liguria, Italy. Downstream the size parameter, defined as the gravel size belonging to the 1 weight percent in the cumulative size distribution, decreases progressively. This fining tendency continues along the beach, east of the mouth. The sphericity and flatness indices are characteristic for torrential rivers in this type of lithology. On the beach these indices increase rapidly toward the east, which may be explained by the effect of a longshore current, resulting not only in a reduction in size but also in selection of the material. Introduction of allochthonous gravels permitted to measure the abrasion velocity of the gravels and the transport distance.

Résumé. La présente étude se rapporte à l'évolution du centile ainsi qu'à celle des indices d'émoussé et d'aplatissement de galets de porphyroïde le long du torrent Pora et sur la plage de Finale-Ligure à proximité de l'embouchure de ce cours d'eau. De l'amont vers l'aval, la valeur du centile diminue progressivement et cette évolution se poursuit sur la plage à l'est de l'embouchure. Les indices d'émoussé et d'aplatissement sont typiques des valeurs torrentielles pour ce type de lithologie. Sur la plage, ces indices augmentent rapidement vers l'est ce qui peut s'expliquer par une dérive littorale qui non seulement façonne les galets mais aussi les sélectionne. D'autre part, l'introduction dans le bassin du Pora de galets allochtones – des diaspres – a permis de mesurer la vitesse d'usure des galets et celle du transport de fond.
Introduction

Dans le cadre des recherches subsidiées par le Consiglio Nazionale delle Ricerche (C.N.R.) sur la Conservation du Sol, un des projets a été consacré au transport solide du torrent Pora et de son affluent l’Aquila pour, entre autres, mieux comprendre l’alimentation de la plage de Finale Ligure et son évolution. Ce secteur du littoral a fait l’objet, pendant la même période, de mesures de contrôle de l’érosion.

Dans ce but, ont été installés dans le bassin du Pora un réseau de pluviomètres et deux limnigraphes. Des cartes de base relatives à la lithologie, au réseau hydrographique, aux grandes unités géomorphologiques et aux classes de pente ont été réalisées par photo-interprétation et par levés sur le terrain (IMPERIALE et al. 1982).

En outre, 70 tonnes de galets anguleux de diaspore, lithotype absent du bassin, ont été introduites dans le Pora et son affluent. Ce cailloutis a été réparti dans trois tranchées creusées dans le lit des torrents et disposées perpendiculairement à l’axe des cours d’eau (pour la localisation des tranchées, cf. fig. 1). Cette expérience a été réalisée en partie dans le but de mesurer la vitesse d’usure de ces galets de dureté élevée, galets qui sont aisément reconnaissables dans les alluvions par leur couleur rouge. Ces galets ont surtout été utilisés comme traceur naturel dans l’étude du transport solide du Pora (IMPERIALE et al. 1977).

La présente étude est relative à l’évolution des indices morphométriques (émoussé et aplatissement) des galets de la roche dominante dans les alluvions, à savoir les porphyroïdes et, par comparaison, sur les galets allochtones introduits, c’est-à-dire les diaspres. Quant à l’évolution du centile, elle a été suivie indépendamment de toute nature lithologique.

Cadre géographique

Le bassin du Pora est situé en Ligurie occidentale et recouvre les communes de Finale-Ligure, Calice-Ligure, Orco-Feglino et Rialto (Province de Savona). Il a une superficie de 58,41 km² alors que l’ensemble du réseau hydrographique a une longueur totale de 203 km. Le Pora débouche en Mer Ligure après un trajet de 15,5 km. Le point le plus élevé de la ligne de partage des eaux est à 1213 m, ce qui indique une énergie du relief considérable.

Cadre géologique

Dans la partie haute du bassin affleurent des formations permo-carbonifères: les schistes de Gorra (56% de la surface du bassin), les porphyroïdes de Melogno (26%) et les schistes d’Eze.

Dans le bas, affleurent des formations triassiques comprenant les quartzites du Ponte di Nava, les dolomies de S. Pietro dei Monti et les calcaires jurassiques du Val Tanarello.

En discordance subhorizontale tant sur les roches paléozoïques que mésozoïques reposent des dépôts mioènes constitués du calcaire de Finale Ligure appelé aussi «Pietra di Finale».

Les dépôts quaternaires sont représentés par des alluvions pléistocènes ou récentes ainsi que par des dépôts de pente développés souvent au pied des formations mioènes ou au sein du secteur des schistes et des porphyroïdes dans les zones fragilisées par le passage de failles.
Dans les alluvions actuelles du Pora, pour les classes granulométriques supérieures à 1 cm, les porphyroïdes dominent et constituent 60% de la masse du cailloutis alors que leur surface d'affleurement est, comme nous l'avons dit plus haut, limitée à 26% du bassin. C'est donc sur ces galets de porphyroïde, roches les plus dures mais aussi les plus fréquentes, que les études morphométriques ont été réalisées.

L'évolution du centile (fig. 2)

En vue de mesurer le centile dans le lit du torrent Pora, nous avons utilisé la technique du pénentile préconisée par Tricart & Cailleux (1953). Pour mémoire, la valeur du centile donne approximativement un point de la courbe granulométrique, à savoir la taille du ga-
let représentant 1% du poids du sédiment. Elle fournit aussi une indication sur la compétence de l'agent de transport qui est à l'origine du dépôt étudié.

Dans chaque station (190 stations, fig. 1), c'est-à-dire tous les 100 mètres, 4 mesures du centile ont été réalisées. L'analyse de l'évolution du centile montre clairement pour la partie inférieure du torrent une tendance à la diminution, de l'amont vers l'aval, liée à la compétence de la rivière. Cette tendance générale est perturbée dans la partie amont du torrent par des apports d'affluents, par le remaniement de dépôts de pente quaternaires et est influencée par les activités anthropiques.

Ainsi, les valeurs maximums observées aux stations 70 et 60 et qui dépassent 300 cm sont surtout liées à des apports d'affluents drainant des zones où affluent des porphyroïdes, roches beaucoup plus résistantes que les schistes. Le maximum observé entre les stations 32 et 34 est, par contre, lié au remaniement d'un dépôt de pente würmien localisé sur la rive droite du Pora.

L'allure fort accidentée de la courbe dans la partie amont – entre les stations 64 et 82 – trouve son explication dans la présence de nombreux barrages construits dans les années 30 pour empêcher les inondations catastrophiques dans la municipalité de Finale-Ligure. Il en résulte qu'aujourd'hui nombre de ces barrages sont comblés, ce qui donne au torrent un profil longitudinal artificiellement irrégulier. Directement à l'amont de ces barrages – zone de remblaiement en faible pente – le centile est faible. Ces valeurs minimums du centile s'opposent aux valeurs nettement plus élevées observées au pied des barrages, où l'augmentation de la vitesse de l'eau créée par les chutes dégage les gros blocs mis en place antérieurement.

A l'aval de la station 20, la pente du profil longitudinal (fig. 3) diminue et, parallèlement, les affluents deviennent de plus en plus rares. En outre, le Pora est bordé d'alluvions
quaternaires et de terrasses anthropiques. Fréquemment, le torrent est canalisé ce qui empêche tout apport latéral. Il en résulte une diminution progressive du centile qui ne dépasse plus guère le mètre.

Entre le confluent Pora-Aquila et l'embouchure, les valeurs maximums du centile oscillent entre 66 et 22 cm. Enfin, sur la plage, le centile passe de 33 cm à l'embouchure à 12 cm après une dérive littORale de 1200 m vers l'est, tendance qui n'est que l'expression des conditions météo-marines dominantes en ce secteur du littoral.

Morphométrie des galets de porphyroïde

Tous les 200 mètres (95 stations), les indices d'é moussé et d'aplatissement (CAILLEUX & TRICART 1959: 259–265) ont été mesurés sur des familles de 100 galets de porphyroïdes compris entre 40 et 60 mm.

a) *Evolution de l'indice d'é moussé* (fig. 4a)

L'indice d'é moussé est relativement bas: les médianes varient entre 49 et 145 avec une valeur moyenne de 85, valeurs typiques du transport torrentiel.

Dans les stations les plus élevées (St. 82), situées à environ trois kilomètres de la source, les galets ont déjà atteint la valeur de 80, valeur qui ne se modifiera guère jusqu'au confluent Pora-Aquila. Quelques diminutions locales peuvent s'expliquer par le remaniement de dépôts de pente formés d'éléments anguleux et mis en place lors de la dernière glaciation (exemple: Station 72: ém.: 49).

Par contre, entre le confluent Aquila-Pora et l'embouchure, après une distance de 1200 m en pente faible, l'é moussé passe graduellement de 77 à 154.

Sur la plage, cette tendance se poursuit: à l'embouchure côté mer, la valeur médiane est de l'ordre de 100 et passe, 1000 m plus à l'est, à 250. Cette évolution confirme donc la dérive littorale vers l'est qui a déjà été mise en évidence par l'évolution du centile.

b) *Evolution de l'indice d'aplatissement* (fig. 4b)

L'indice d'aplatissement des porphyroïdes est relativement élevé (de 1,85 à 2,75 avec une valeur moyenne de 2,31) et présente, comme pour l'é moussé, une relative constance.

La présence de galets relativement plats peut se comprendre par un certain degré de schistosité des porphyroïdes. La comparaison entre les évolutions des indices d'é moussé et d'aplatissement mesurés sur les mêmes galets montre des tendances divergentes: à chaque légère augmentation de l'aplatissement correspond une diminution de l'é moussé. En effet, plus les galets deviennent plats et plus ils risquent de se fracturer, entraînant par le fait même une diminution de l'é moussé (stations 1 à 10).

Sur la plage, l'aplatissement augmente régulièrement vers l'est, ce qui s'explique également par la dérive littorale déjà signalée précédemment.

Graphique é moussé-aplatissement (fig. 5)

Le graphique é moussé-aplatissement montre d'abord que les courbes-enveloppes des torrents Pora et Aquila, avant leur confluence, sont fort semblables.

Par contre, pour la zone comprise entre le confluent et l'embouchure, la courbe-enveloppe est plus restreinte: l'aplatissement et, dans une moindre mesure, l'é moussé sont beaucoup plus élevés que pour la moyenne du torrent.

7 Zeitschrift für Geomorphologie N. F. Suppl.-Bd. 49
Ce qui est le plus frappant, ce sont les caractéristiques morphométriques des galets sur la plage à hauteur de l’embouchure. Il faut cependant savoir que, la majeure partie de l’année, le torrent Pora est barré à son embouchure par un cordon littoral qui est précédé à l’amont par un lac de barrage. Lors de chaque crue, soit pratiquement deux fois par an, le barrage naturel est interrompu et se vidange dans la mer.

Cette vidange s’accompagne d’un « effet de chasse » emportant nombre de galets. La morphométrie des galets récoltés sur la plage montre que ceux-ci présentent un indice d’aplatissement nettement plus faible que pour les galets situés dans la partie aval du torrent. Ceci peut s’interpréter comme le résultat d’un transport sélectif : lors de chaque rupture, les galets les plus plats ont été emportés le plus loin et donc au-delà de la plage, sur la plate-forme continentale. Par contre, les galets les moins plats et donc, à longueur égale, les plus lourds restent sur la plage (stations 1, 3 et 5 de la plage).

Le long de la plage, sur les 900 premiers mètres à l’est de l’embouchure, on relève surtout une augmentation de l’émoisssé, l’aplatissement demeurant relativement stable. Plus loin vers l’est, entre 900 et 1500 m, l’émoisssé ne se modifie plus guère mais l’aplatissement s’accroît. Cette augmentation est à paralléliser avec la diminution du nombre de galets sur la plage qui devient de plus en plus sableuse.

Enfin, ce graphique montre nettement qu’au-delà de 500 m de transport par dérive, la morphométrie du cailloutis de plage est fondamentalement différente des apports torrentiels.
Evolution des indices morphométriques des galets

Fig. 5. Diagramme émoussé-aplatissement pour les torrents Pora et Aquila ainsi que pour la plage de Finale Ligure.

Le comportement des diaspres

L'introduction expérimentale de diaspres a été réalisée en août 1973. Ces cailloux, de granulométrie semblable à celle du lit du torrent, provenaient d'une carrière de Ligurie orientale et étaient tous anguleux; ils présentaient donc, à ce moment, un émoussé nul. Sept mois après leur mise en place, les diaspres ont été repérés dans toutes les stations à l'aval des tranchées, attestant que le transport dépassait, en cette période, 2000 m. Pour les galets récoltés à l'aval, la moyenne d'émoussé des diaspres était de 40 alors que certains d'entre eux avaient acquis des émoussés supérieurs, atteignant même 276 (valeur maximale observée).

D'autre part, alors qu'en 1974 les diaspres n'étaient pas encore observés sur la plage, nous en avons récoltés en 1977 et, en plus grand nombre, en 1982. Leur présence sur la plage ne peut s'expliquer que par la rupture, lors des crues ou des tempêtes, du cordon littoral qui barre, la majeure partie de l'année, l'embouchure du Pora.

Conclusion

Notre étude montre que l'émoussé caractéristique du transport torrentiel est très vite acquis et dans l'espace et dans le temps.
Sur la plage, après un transport de 700 m par dérive littorale, les indices morphométriques sont tout à fait différents. L’augmentation de l’aplatissement doit être liée à un transport sélectif : les galets les plus plats sont transportés le plus loin. Dans le même temps, le façonnement marin a déterminé une augmentation rapide de l’émoussé ainsi que de l’aplatissement. Des observations similaires ont déjà été réalisées en Sardaigne septentrionale (Ozer 1978).

Remerciements

Cette recherche a été menée dans le cadre des accords culturels belgo-italiens.

Références

