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ABsTRACT. We introduce and study series expansions of real numbers with an arbitrary
Cantor real base 3 = (8n)nen, which we call B-representations. In doing so, we generalize
both representations of real numbers in real bases and through Cantor series. We show
fundamental properties of 3-representations, each of which extends existing results on
representations in a real base. In particular, we prove a generalization of Parry’s theorem
characterizing sequences of nonnegative integers that are the greedy (3-representations
of some real number in the interval [0,1). We pay special attention to periodic Cantor
real bases, which we call alternate bases. In this case, we show that the (3-shift is sofic
if and only if all quasi-greedy 8 -expansions of 1 are ultimately periodic, where 3 is
the i-th shift of the Cantor real base 3.
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1. INTRODUCTION

Cantor expansions of real numbers were originally introduced by Cantor in 1869 [3]. A
real number z € [0,1) is represented via a base sequence (b, )nen of integers greater than
or equal to 2 as follows:

“+oo
a
(1.1) =Y =
n—0 [Ti=o b

where for each n € N, the digit a,, belongs to the integer interval [0,b, — 1]. If infinitely
many digits a, are nonzero, then the series (1.1) is called the Cantor series of x. Many
studies are devoted to Cantor series, a large amount of which are concerned with the digit
frequencies; see [5, 6, 7, 11] to cite just a few.

Representations of real numbers using a real base were first defined by Rényi in 1957 [12].
In this context, a real number z € [0,1) is represented via a real base [ greater than 1 as
follows:

+00
an
(1.2) = Z Bn+1
n=0

where the digits a, can be chosen by using several appropriate algorithms. The most
commonly used algorithm is the greedy algorithm according to which for each n € N,
a, = |BTs"(x)] where T: [0,1) — [0,1), z — Bz — |Bz]. Expansions in a real base are
extensively studied and we can only cite a few of the many possible references [2, 9, 10, 13].

This paper investigates series expansions of real numbers that are based on a sequence
B = (Bn)nen of real numbers greater than 1. We call such a base sequence 3 a Cantor real
base, and we talk about B-representations. In doing so, we generalize both representations
of real numbers through Cantor series and real base representations of real numbers.
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This paper has the following organization. In Section 2, we introduce the basic definitions
and we give a characterization of those infinite words a over the alphabet R>q for which
there exists a Cantor real base B such that valg(a) = 1. In Section 3, we define the greedy
B-representations of real numbers, which we call the B-expansions. Then we prove several
fundamental properties of B-representations, each of which extends existing results on real
base representations. In Section 4, we introduce the quasi-greedy (3-expansion dz(l) of 1
and show that d,‘g(l) is the lexicographically greatest B-representation not ending in 0% of
all real numbers in [0,1]. In Section 5, we prove a generalization of Parry’s theorem [10]
characterizing those infinite words over N that are the greedy (3-representations of some
real number in the interval [0,1). In Section 6, we introduce the notion of B-shift. We
are able to give a description of the @-shift in full generality. In Section 7, which is
the last and biggest section, we focus on the periodic Cantor real bases, which we call
alternate bases. We first give a characterization of those infinite words a over the alphabet
R>g for which there exists an alternate base 3 such that valg(a) = 1. Then we obtain a
characterization of the 3-expansion of 1 among all B3-representations of 1, which generalizes
a result of Parry [10]. Finally, generalizing Bertrand-Mathis’ theorem [2], we show that for
any alternate base 3, the B-shift is sofic if and only if all quasi-greedy ﬁ(i)—expansions of
1 are ultimately periodic, where ﬁ(i) is the i-th shift of the Cantor real base 3.

2. CANTOR REAL BASES

Let B = (Bn)nen be a sequence of real numbers greater than 1 such that [, . B = +00.
We call such a sequence 3 a Cantor real base, or simply a Cantor base. We define the 3-
value (partial) map valg: (R>)N — R>q by

2.1 valg(a) = _On

(2.1) a(a) nze;] Mo

for any infinite word a = apajaz--- over R>q, provided that the series converges. A
B-representation of a nonnegative real number z is an infinite word a € NN such that
valg(a) = z. In particular, if 8 = (5,0, ...), then for all = € [0,1], a B-representation of =
is a [-representation of x as defined by Rényi [12]. In this case, we do not distinguish the
notation B and B: we write valg and we talk about S-representations, as usual. Also, any
sequence 3 = (8, )nen of real numbers greater than 1 that takes only finitely many values
is a Cantor base since in this case, the condition [[,c Bn = +00 is trivially satisfied.

We will need to represent real numbers not only in a fixed Cantor base 3 but also in all

Cantor bases obtained by shifting 3. We define

B™ = (B,,Bns1,...) forallneN.

In particular ﬁ(o) = 3. We will also need to consider shifted infinite words. Let us denote
by o4 the shift operator.

JA: AN—>AN, apa1ag - -+ — ajazasg - - -

over the alphabet A. Whenever there is no ambiguity on the alphabet, we simply denote
the shift operator by o. Throughout this text, if @ is an infinite word then for all n € N,
a, designates its letter indexed by n, so that a = agajas - -.

The B-representations of 1 will be of interest in what follows, in particular the greedy
and the quasi-greedy expansions (see Sections 3 and 4). We start our study by providing
a characterization of those infinite words a over the alphabet R>( for which there exists a
Cantor real base 3 such that valg(a) = 1.

When 8 = (5, 3, ...), for any infinite word a over N satisfying some suitable conditions,
the equation valg(a) = 1 admits a unique solution 5 > 1 (see [9, Corollary 7.2.10]). This
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classical result remains true for nonnegative real digits and weaker conditions on the infinite
word a.

Lemma 1. Let a be an infinite word over R>q such that a, € O(n?) for some d € N.
There exists a real base 3 such that valg(a) = 1 if and only if Y, . an > 1, in which case
B is unique and B8 > ag, and if moreover for alln € N, a, < ag, then 8 < ag + 1.

Proof. If 3, cnan < 1 then for all real bases 3, valg(a) < 1. Indeed, this is obvious if
a = 0% and else valg(a) < > nyan < 1.

Now, suppose that ) _ya, > 1. Let N € N be such that Zivzo a, > 1. The function
f:00,1) = R, z— > .y a,xz"t! is well-defined, continuous, increasing and such that
f(0) = 0 and that for all z € [0,1), f(z) > Zg:o a,z"!. The function g: R = R, z
Ef:o a,z" ! is continuous, increasing and such that g(0) = 0 and g(1) > 1. Therefore,
there exists a unique zp € (0,1) such that g(z¢) = 1, and hence such that f(zg) > 1.
Now, there exists a unique v € (0, x| such that f(y) = 1. By setting 5 = %, we get that

8> % > 1 and valg(a) = f (%) = 1. Moreover, 8 > ag for otherwise f (%) > f (%) >1.

If moreover for all n € N, a,, < ag, then 5 < ag + 1 for otherwise we would have

an 1
) = ¥ <X
neN " neN (ao +1)"

0

No upper bound on the growth order of the digits a, is needed in order to find a Cantor
base B such that valg(a) = 1.

Lemma 2. Let a be an infinite word over R>g such that ZnEN an, = +o0o. Then there
exists a Cantor base 3 such that valg(a) = 1.

Proof. First of all, observe that the hypothesis implies that a does not end in 0 and that
[Ien(an +1) = +o0.

We define two sequences of nonnegative integers (ny)i<p<x and (¢)i1<p<kx where K €
NU{+oc}. The length K of these two sequences is the number of zero blocks in a, i.e. the
factors of the form 0f which are neither preceded nor followed by 0 in a. Two cases stand
out: either K € N or K = +00. We describe the two cases at once. In order to do so, it
should be understood that the parts of the definition where k& > K should just be ignored
when K € N. Let nqy denote the least n € N such that a,, = 0 and let ¢; denote the least
¢ € N such that a,,4+¢ > 0. Then for £ > 2, let nj, denote the least integer n > ng_1 + {51
such that a,, = 0 and let ¢}, denote the least £ € N such that a,, ¢ > 0. Thus, (ng)i1<k<i
is the sequence of positions of appearance of the successive zero blocks in a and (;)1<k<x
is the sequence of lengths of these blocks.

Next, for all k& € [1, K], we pick any oy, in the interval (1, %/an, ¢, +1). For alln € N,
we define

anp+1 ifnef0,n —1] ornEUle[[nk—i-ﬂk—i-l,nkH—l]]

B, = { % if n € [ng, ng + €, — 1] for some k € [1, K]
a"TIl if n = ny, + ¢, for some k € [1, K]
X

where we set nig11 = oo if K € N. In particular if K = 0, i.e. if for all n € N, a,, > 0,
then for all n € N, 5, = a,, + 1.
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Let us show that in any case, the obtained sequence B = (8, )nen is such that [, . Bn =
+o00 and valg(a) = 1. By construction,

ny—1 K a + 1 nk+1—1
l
[I8=1](+1-I] ﬁ_ﬂ%fm II (@+1)] =]+
neN n=0 k=1 Q n=np+L,+1 neN

By induction we can show that
N Ly

1
—1-———— forall ke[l,K].
Z HZ ‘o @ [t 6

If K = 400 then we obtaln that valg(a) = 1 by letting k tend to infinity. Otherwise,
K € N. Set ng = —1 and ¢y = 0. By induction again, we can show that

a 1
Z " ol —— = forallmeN.

By letting m tend to infinity, we get

Valg("KHKH) (OﬂK‘MK_H (a)) =1.

Finally, we obtain

nig -+l

an
Valg +
Z 7 - KZM o
1 valﬂ(nKHKH)(U”K”K*l(a))
=1- +
[T+ 8, [T, 5
=1.

0

Proposition 3. Let a be an infinite word over R>o. There exists a Cantor base B such
that valg(a) = 1 if and only if ), - an > 1.

Proof. Similarly as in the proof of Lemma 1, the condition )y a, > 1 is necessary. Now,
suppose that »° _yan, > 1. If }° a, = +oo then we use Lemma 2. Otherwise, we have
1 <) ,en@n < 400 and we apply Lemma 1. O

3. THE GREEDY ALGORITHM

For z € [0,1], a distinguished [B-representation eo(x)eq(z)ea(z) - is given thanks to

the greedy algorithm:

o co(z) = |Box| and ro(x) = for — eo(x)

o ¢, (z) = |Bnrn—1(x)] and r, = Byrp—1(x) — en(z) for n € N> ;.
The obtained B-representation of x is denoted by dg(x) and is called the B-expansion of
x. Note that the n-th digit &, (z) belongs to {0,...,[5,]}. We let Ag denote the (possibly
infinite) alphabet {0, ...,sup,cy [Bn]}. The algorithm is called greedy since at each step
it chooses the largest possible digit. Indeed, consider z € [0,1] and ¢ € N, and suppose
that the digits eo(x),...,ep_1(x ) are already known. Then the digit e(x) is the largest

element of [0, | 5¢]] such that Zn 0 1-‘15"(:)61 < z. Thus
re(x)

x_ZHz O/BZ Hz Oﬁz
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where 7¢(x) € [0,1). Note that since a Cantor base satisfies [[,cy Bn = +00, the latter
equality implies the convergence of the greedy algorithm and that « = valg(dg(x)). We let
Dg denote the subset of Ag of all B-expansions of real numbers in the interval [0, 1):

Dg = {dg(x): x € [0,1)}.

In what follows, the B-expansion of 1 will play a special role. For the sake of clarity, we
denote its digits by e, instead of £,(1). We sometimes write eg,,(z) and eg,, instead of
en(x) and €, when the Cantor base 3 needs to be emphasized. As previously mentioned, if
B=(5,05,...), then for all x € [0, 1], the B-expansion of z is equal to the usual S-expansion
of z as defined by Rényi [12| and we write indistinctly 3 or 3.

We can also express the obtained digits &, (x) and remainders r,(z) thanks to the -
transformations. For 8 > 1, the S-transformation is the map

Then for all z € [0,1) and n € N, we have
en(x) = L,Bn (Tgw1 0---0 Tgo(m))J and rp(z) =T, 0---0Tg,(x).

Example 4. If there exists n € N such that (3, is an integer (without any restriction on
the other f,,), then dﬂ(n) (1) = 3,0% where the w notation means an infinite repetition.

Example 5. Forn € N, let o, = 1+ Qn% and B, =2+ 2,1% The sequence o = ( )nen
is not a Cantor base since [ [,y @n < +00. If we perform the greedy algorithm on z = 1
for the sequence a, we obtain the sequence of digits 10%, which is clearly not an a-
representation of 1. However, the sequence 3 = (8, )nen is indeed a Cantor base since

HnGN /8" = +oo.

Example 6. Let a = HT‘/E and § = 5%@.
(1) Consider 8 = (B )nen the Cantor base defined by

5, = a if [repy(n)); =0 (mod 2)
" 1B otherwise

for all n € N, where rep, is the function mapping any nonnegative integer to its 2-
expansion. We get 3 = (o, 3, 8, «, B, v, ¢, 3, . . .) where the infinite word Sy/31 52 - - -
is the Thue-Morse word over the alphabet {«, 8}. We compute dg(1) = 20010110%,
dgn (1) = 1010110% and dge (1) = 110,

(2) Consider B8 = (V13,, 3,a, B,a, 3,...). It is easily checked that dg(1) = 3(10)*
and that for all m € N, dgemi1) (1) = 2010 and dgemz) (1) = 110

We call an alternate base a periodic Cantor base, i.e. a Cantor base for which there exists
p € N>q such that for all n € N, 3, = B,4,. In this case we simply note 8 = (8o, ..., Sp—1)
and the integer p is called the length of the alternate base 8. In what follows, most examples
will be alternate bases and Section 7 will be specifically devoted to their study.

Example 7. Let ¢ = % be the Golden Ratio and let 8 = (3, ¢, ¢). For all m € N, we
have dﬁ(gm)(l) = 30‘”, dﬁ(3m+l)(1) = 110% and dﬁ(3m+2)(1) = 1(110)“.

Let us show that the classical properties of the S-expansion theory are still valid for
Cantor bases. Some are just an adaptation of the related proofs in [9] but for the sake of

completeness the details are written. From now on, unless otherwise stated, we consider a
fixed Cantor base 8 = (8 )nen-
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Proposition 8. For all x € [0,1) and all n € N, we have
o"odg(x) =dgm o Tg, 00Ty (x).
Proof. This is a straightforward verification. g

Lemma 9. For all infinite words a over N and all x € [0,1], a = dg(z) if and only if
valg(a) = = and for all £ € N,

1
3.1 E .
(3.1) Hz -0 51 Hfzo Bi

n=0+1

Proof. From the greedy algorithm, for all « € [0,1], valg(dg(x)) = = and for all £ € N,

(3 [ ) T (o= X () M= o <

n=~0+1 =0 =0

Conversely, suppose that a is an infinite word over N such that valg(a) = = and such that
for all £ € N, (3.1) holds. Let us show by induction that for all m € N, a,, = e ().
From (3.1) for £ = 0, we get that x — B_ %. Thus, foxr — 1 < ag. Since % < x, we get
that ag < Box. Therefore, ag = |Boz] = eo(z). Now, suppose that m € N>; and that for
n € [0,m — 1], a, = e,(x). Then

+00 m
am+< 2 1 Oﬂz)Hﬁ = em (@) + T ().

n=m+1

By using (3.1) for £ = m and since r,,,(z) < 1, we obtain that a,, = &,,(z). O

Proposition 10. Let a be a B-representation of some real number x in [0,1]. Then the
following four assertions are equivalent.
(1) The infinite word a is the B-expansion of x.
(2) For alln € N>1, valgem) (0" (a)) < 1.
(3) The infinite word o(a) belongs to D)
(4) For alln € N>1, 0"(a) belongs to Dgw).

Proof. Since valg(a) = x € [0,1], it follows from Lemma 9 that a = dg(«) if and only if for
all £ € N, (3.1) holds. In order to obtain the equivalences between the first three items, it
suffices to note that the greedy condition (3.1) can be rewritten as val g(e11) (c"*(a)) < 1.
Clearly (4) implies (3). Finally we obtain that (3) implies (4) by iterating the implication
(1) = (3). O

Corollary 11. An infinite word a over N belongs to Dg if and only if for all n € N,
valgm (0" (a)) < 1.

Proposition 12. The 3-expansion of a real number x € [0,1] is lexicographically mazimal
among all B-representations of x.

Proof. Let x € [0,1] and a € NN be a B-representation of x. Proceed by contradiction and
suppose that a >1ex dg(x). There exists £ € N such that eo(x)---ep—1(x) = ag-- - ag—1 and
ag > g¢(z). Then

ZHZ 0/8Z ZHZ— 61 H 0,82 Z Hz 0/8Z

n=0(+1
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and hence

1
> ;
n=0+1 H O/B’ [Tico Bi
which is impossible by Lemma 9. g
Proposition 13. The function dg: [0,1] — ABN 18 increasing:

Ve,y € [0,1], z<y <= dg(z) <iex dag(y).

Proof. Suppose that dg(x) <iex dg(y). There exists £ € N such that eo(x)---ep—1(x) =
eo(y) -+ er—1(y) and g4(x) < g¢(y). By Lemma 9, we get

/-1 l
en(y) ey) —1 1 en(y)
% [Tz 5@ Sl B TIie B Ilie 8 iz Il B
It follows immediately that < y implies dg(x) <jex dg(y)- O

Corollary 14. If a is an infinite word over N such that valg(a) < 1, then a <jex dg(1).
In particular, dg(1) is lexicographically mazimal among all B-representations of all real
numbers in [0, 1].

Proof. Let a be an infinite word over N such that valg(a) < 1. By Propositions 12 and 13,
a <jex dﬁ(valﬁ(a)) Slex dﬁ(l) 0

Recall the property of the f-expansions stating that considering two bases « and 3,
a < B if and only if do (1) < dg(1) [10]. The following proposition shows the generalization
of a weaker version of this property in the case of Cantor bases.

Proposition 15. Let o = (o )nen and B = (Bn)nen be two Cantor bases such that for all
neN, [[iLgo < Tl Bi. Then for all z € [0,1], we have do(z) <iex dg(z).

Proof. Let x € [0, 1] and suppose to the contrary that do () >1ex dg(z). Thus, there exists
¢ € N such that eq () - ca—1(x) = ego(x)---ege—1(x) and eqe(x) > egy(x). From
Lemma 9 and from the hypothesis, we obtain that

i=0 i

+o0 V4
Ean Eag(fL’) -1 Ean o n(fL')
x < : + ’ <z,
ZHZ 0/87' Hfzoﬁi n:zg: Hz O/BZ ZHZ O/BZ nz::onn )
a contradiction. OJ

Corollary 16. Let a = (an)nen and B = (Bn)nen be two Cantor bases such that for all
n €N, a, < By,. Then for all z € [0,1], we have do(z) <jex da(x).

It is not true that da (1) <jex dg(1) implies that for all n € N, [T j; < [, 5 as
the following example shows. The same example shows that the lexicographic order on
the Cantor bases is not sufficient either. Here, the term lexicographic order refers to the
following order: o < B whenever there exists £ € N such that «,, = 3, for n € [0,¢ — 1]
and ayp < fFp.

Example 17. Let o = (2++/3,2) and 8 = (24 v/2,5). Then do(1) = 31¢ and dg(1)
starts with the prefix 32, hence do (1) <iex dg(1).



EXPANSIONS IN CANTOR REAL BASES 8

4. QUASI-GREEDY EXPANSIONS

A [B-representation is said to be finite if it ends with infinitely many zeros, and infinite
otherwise. The length of a finite B-representation is the length of the longest prefix ending
in a non-zero digit. When a (3-representation is finite, we usually omit to write the tail of
ZEros.

When the (-expansion of 1 is finite, we show how to modify it in order to obtain
an infinite B-representation of 1 that is lexicographically maximal among all infinite 3-
representations of 1. The obtained (-representation is denoted by dfj(l) and is called the
quasi-greedy B-expansion of 1. It is defined recursively as follows:

(4.1)

05 (1) = dp(1) if dg(1) is infinite
O I g Dy (1) if dg(1) = =0+ with £€ o1, &1 > 0.

Example 18. Let 8 = (3, ¢, ) the alternate base already considered in Example 7. Then
we directly have that for all m € N, d;@m”)(l) = dgemi (1) = 1(110)*. In order to
compute d;(3m) (1) and d;(m +1(1), we need to go through the definition several times. For
all m € N, we compute d;@m)(l) = 2d;(3m+1)(1) = 21Od;(3m+3)(1) = 21Od;(3m)(1) = (210)*
and d% ., (1) = 1005, (1) = 10(210)% = (102)+.

Example 19. Let 8 = (5o, ..., p—1) be an alternate base such that for all i € [0,p — 1],
Bi € N>g. Then for all i € [0,p — 1], d/@(i)(l) = (3,04 and

a0 (1) = ((Bi = 1) (Bp—1 = 1)(Bo = 1) ... (Bim1 — 1))*.

When 8 = (8,0, ...), we recover the usual definition of the quasi-greedy (-expansion [4,
8]. In particular, it is easy to check that in this case, if dg(1) = e¢ - - - €1 with £ € N>; and
g¢_1 > 0, then the quasi-greedy expansion is purely periodic and dfj(l) = (eg...c0—2(gp-1—
1))“. For arbitrary Cantor bases, the situation is more complicated and the quasi-greedy
expansion can be not periodic.

Example 20. Consider the alternate base 8 = (%, %ﬂ) We compute dg(1) = 201
and dgay (1) = 11. Then %y, (1) = (10)* and dj(1) = 200, (1) = 200(10)*"

Moreover, even if the B-expansion is finite, the quasi-greedy B-representation can be
infinite not ultimately periodic. Suppose that dg(1) is finite and that an infinite quasi-
greedy is involved during the computation of d,’g(l). Let n € N>1 be the positive integer
such that d;(n)(l) is the involved infinite expansion. Then dj(1) is ultimately periodic if

and only if so is d;(n) (1).

Example 21. Consider the Cantor base 8 = (3,3,,3,3,...) where 8 = V6(2 + v6).
We get dg(1) = 3 and dga)(1) = dg(1) is infinite not ultimately periodic since 3 is a
non-Pisot quadratic number [1]. Therefore, the quasi-greedy expansion dj(1) = ZdE(l)(l)
is not ultimately periodic.

Proposition 22. The quasi-greedy expansion d};(l) is a B-representation of 1.

Proof. 1t is a straightforward verification. O

Proposition 23. If a is an infinite word over N such that valg(a) < 1, then a <jex dj(1).
Furthermore, dfj(l) 18 lexicographically mazimal among all infinite B-representations of all
real numbers in [0, 1].
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Proof. 1f dg(1) is infinite then the result follows from Corollary 14. Thus, we suppose that
there exists £ € N> such that dg(1) =¢¢---€¢—; and g/_1 > 0.

First, let a € NN be such that valg(a) < 1 and suppose to the contrary that a >jcx
d*ﬁ(l). By Corollary 14, a <jex dg(1). Then ag---ap—9 = €+ €¢—2, ag—1 = €¢—1 — 1 and
ol(a) >1ex d;([)(l). Since

0
Eg 1—1 Valg(l) (U (CL))
Valg Z + —1 5
Hz 05Z H 0 4 Hz’:O )
1

=1- @ (1 — Valﬁ(z) (Je(a))) )

we get that Valﬁ(e) (Jé(a)) < 1. By Corollary 14 again, o%(a) <jex d,@(z)(l). Therefore
dﬁ(z) (1) must be finite and we obtain that a = dfj(l) by iterating the reasoning. But then

valg(a) = 1, a contradiction.

We now turn to the second part. Suppose that a € NN does not end in 0 and is such
that valg(a) < 1. Our aim is to show that a <jex dj(1). We know from Corollary 14
that a <jex dg(1). Now, suppose to the contrary that a >jex d,’g(l). Then ag---ap_o =
€0 Er—g, ap_1 = €4—1 — 1, and of(a) >iex dg(l)(l). As in the first part of the proof, we
obtain that valg) (o ‘(a)) <1 and that dg) (1) must be finite. By iterating the reasoning,
we obtain that a = dj(1), a contradiction. O

5. ADMISSIBLE SEQUENCES

In [10], Parry characterized those infinite words over N that belong to Dg. Such infinite
words are sometimes called 3-admissible sequences. Analogously, infinite word in Dg are
said to be a B-admissible sequence. In this section, we generalize Parry’s theorem to Cantor
bases.

Lemma 24. Let a be an infinite word over N and for each n € N, let b™ be a B(")
representation of 1. Suppose that for alln € N, 0" (a) <jex b . Then for all k,¢,m,n € N
with ¢ > 1, the following implication holds:
(5.1)

g Qo1 <tex BT - bfﬁig_l = valgw (ag -~ apre-1) < Valﬁ(k)(by(ﬁ) by )
Consequently, for all k,m,n € N, the following implication holds:
(5.2) ¥ (a) <iex 0™ (D) = valgu) (0*(a)) < valg (6™ (6)).

Proof. Proceed by induction on £. The base case £ = 1 is clear. Let £ > 2 and suppose

that for all ¢ < ¢ and all k,m,n € N, the implication (5.1) is true. Now let k,m,n € N

and suppose that ay - - apre—1 <iex b,(ﬁ) . bg:lz 1

Case 1: a; = ,(JJ). Then apy1 - 0pro—1 <lex bgnll b lg 1

esis, we obtain that valgui1) (r41 -+ are—1) < Valﬁ(k+1)(b1(,n_)i_1

Two cases are possible.
and by induction hypoth-

bg;_)ir s—1)- Therefore

ag Valﬁ(k+l) (ak—i-l o ak+€—1)
val 5k (ak~--ak 5_1) = —+
B

Bk B
@ Valﬂ(kJrl) (bgn—)i-l bv(v:,l—)i-é—l)
= B Br

= val g o ... bfg}ré_l).
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Case 2: a, < »™ . Since "1 (a) <iex b by hypothesis, we have

(k+1) (k+1)
bO * bf—2 .

Qft1 " Opti—1 Slex

By induction hypothesis,

k k
val goesn (@p41 -+ Akpe—1) < Va15<k+1)(b(() BRREE béle)) <L

Then
a val gek+1) (ak+1 s ak—i—f—l)
Valﬁ(k) (ak s ak+£—l) = /B_i + < Br
2 k
. b%) 1 N Valﬁ(k+l)(bg LR bé—gl))
- ,Bk /Bk
< valg () - bg:lz—l)-
Thus, the implication (5.1) is proved. The implication (5.2) immediately follows. g

Lemma 25. Let a be an infinite word over N and for each n € N, let b be a B
representation of 1. Suppose that for all n € N, 0™(a) <jex b . Then for all n € N,
val g (0" (a)) < 1 unless there exists £ € N>y such that

o b = b b with b > 0

o i anpey =007 b (0 = 1)

[ ] Valﬁ(n+z) (O'n+e(a)) = 1
in which case valgm (0" (a)) = 1.
Proof. Let n € N. By hypothesis, 0™(a) <jex b(™ . So there exists ¢ € N>; such that
Gp** Qpag_o = b(()n) e b§"_)2 and apip 1 < byl_)l. By hypothesis, we also have 0™ (a) <jex
b+t We get from Lemma 24 that

valﬁ(n+e)(0”+£(a)) < Valﬂ(n+e)(b(”+€)) =1

Then

Anto—1 Valﬂ(n+2> (UHM(G))

s s
bgi)l -1 1

valﬁ(n) (c™(a)) = Valﬁ(n) (Qp - Apip—2) +

< wval (n)(b(n)"'b(ﬁ))_‘_ praray + ==

f ’ - Hz=+rf ' Bi Hz=+rf ' Bi
= Val/B(n) (b(()n) e bgﬁ)l)
<1

(n)

Moreover, the equality holds throughout if and only if b = b(()n) e byl_)l, apyo—1 =0, —1
and val g(ni0) (6"**(a)) = 1. The conclusion follows.

The following theorem generalizes Parry’s theorem for real bases [10].
Theorem 26. An infinite word a over N belongs to Dg if and only if for all n € N,
Jn(a) <lex d/*B(n)(]‘)'

Proof. In view of Corollary 11, it suffices to show that the following two assertions are
equivalent.

(1) For all n € N, valgim (0" (a)) < 1.
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(2) For all n € N, 0™(a) <jex d*ﬂ('n)(

1).
The fact that (1) implies (2) follows from Proposition 23. Since any quasi-greedy expansion

of 1 is infinite, we obtain that (2) implies (1) by Proposition 22 and Lemma 25. O

Example 27. Let 3 = (3, ¢, ¢) be the alternate base already studied in Examples 7 and 18.
Then a = 210(110)% is the B-expansion of some x € (0, 1). In fact, since d% (1) = (210)~,

30
d;(l)(l) = (102)% and dE(Q)(l) = 1(110)¥, by Theorem 26, there exists x € [0, 1) such that
a = dg(z). We can compute that a = dg(valg(a)) = dﬁ(igigﬁ))'

We obtain a corollary characterizing the B-expansions of a real number z in the interval
[0,1] among all its B-representations.

Corollary 28. A B-representation a of some real number x € [0,1] is its B-expansion if
and only if for all n € N>1, 0™(a) <iex dg(n)(l).

Proof. Let a € NN be such that valg(a) € [0,1]. From Theorem 26, o(a) belongs to Dﬂ(l)

if and only if for all n € N>, 0"(a) <jex d*ﬁ(n)(l). The conclusion then follows from

Proposition 10. O

Example 29. Consider 3 = (Mﬁ%\@’g)‘ Then dg(1) = dj(1) = 34(27)*, dgn)(1) =
90¢ and d;(l)(l) = 834(27)“. For all m € N>y, we have 02" (34(27)%) <jex d5(1) and
21 (34(27)%) <jex dg(l) (1) as prescribed by Corollary 28.

In comparison with the S-expansion theory, considering a Cantor base 3 and an infinite
word a over N, Corollary 28 does not give a purely combinatorial condition to check whether
a is the B-expansion of 1. More details will be given in Section 7, where we will see that
even though an improvement of this result in the context of alternate bases can be proved,
a purely combinatorial condition cannot exist. In particular, see Example 42.

6. THE (B-SHIFT

Let Sg denote the topological closure of Dg with respect to the prefix distance of infinite
words: Sg = D—g

Proposition 30. An infinite word a over N belongs to Sg if and only if for all n € N,
o"(a) <jex d*ﬂ(n)(l).

Proof. Suppose that a € Sg. Then there exists a sequence (a(k))keN of Dg converging to

a. By Theorem 26, for all k,n € N, we have 6™(a®)) <joy d*ﬁ(n)(l). By letting k tend to
infinity, we get that for all n € N, 0" (a) <jex d;(n) (1).

Conversely, suppose that for all n € N, 0™(a) <jex d;(n)(l). For each k € N, let o) =

ao---a;0%. Then klirf a®) = @ and for all k,n € N, 0"(a®) <oy 0"(a) <iex d;(n)(l).
—+oo

Since d*ﬁ(n) (1) is infinite, for all k,n € N, 0" (a®)) <}ex d*ﬁ(n) (1). By Theorem 26, we deduce

that for all k € N, a®¥) € Dg. Therefore a € Sg. O
Proposition 31. Let a,b € Sg.

(1) If a <jex b then valg(a) < valg(b).
(2) If valg(a) < valg(b) then a <jex b.
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Proof. Consider two sequences (a®),ey and (b%))en of Dg such that limj_, a®) = q
and limy_,o bk) = p. Suppose that a <jex b. Then there exists ¢ € N>; such that
ap---ap_1 ="bg---bp_1 and ay < by. By definition of the prefix distance, there exists K € N
such that for all £ > K, a(()k) ‘e aék) =ap---ay and b(()k) e bék) = bg - - - bp. Therefore, for all
k > K, we have a®) <), b*), and then by Proposition 13, valg(a*)) < valg(b®)). Since
the function valg is continuous, by letting k& tend to infinity, we obtain valg(a) < valg(b).
This proves the first item. The second item follows immediately. ([l

Further, we define
Ag = U DB(n) and ZB :A_B.

Proposition 32. The sets Ag and Xg are both shift-invariant.

Proof. Let a be an infinite word over N and n € N. It follows from Corollary 11 that if a €
Dﬁ(n) then o(a) € Dﬁ(nﬂ). Then, it is easily seen that if a € Sﬁ(n) then o(a) € Sﬁ(nﬂ). d

Recall some definitions of symbolic dynamics. Let A be a finite alphabet. A subset of
AN is a subshift of AN if it is shift-invariant and closed with respect to the topology induced
by the prefix distance. In view of Proposition 32, the subset X3 of Ag is a subshift, which

we call the B-shift. For a subset L of AN, we let Fac(L) (resp. Pref(L)) denote the set of
all finite factors (resp. prefixes) of all elements in L.

Proposition 33. We have Fac(Dg) = Fac(Ag) = Fac(Xg).

Proof. By definition, Fac(Dg) C Fac(Ag) = Fac(Xg). Let us show that Fac(Dg) 2
Fac(Ag). Let f € Fac(Ag). There exist n € N and a € Dy such that f € Fac(a). It
follows from Corollary 11 that 0"a belongs to Dg. Therefore, f € Fac(Dg). O

We define sets of finite words Xg ¢ for £ € N>y as follows. If djz(1) = tot1 -+ then we let
Xﬂg = {to cootp_98:1 8 € [[O,tg_l — 1]]}
Note that Xg g is empty if and only if £,_; = 0.
Proposition 34. We have

Dg = U XB,Z()( U Xﬁ(lo)’£1< U Xﬂ(zoul)’[?( )))

foGNzl £1€N21 €2€N21

Proof. For the sake of conciseness, we let Xg denote the right-hand set of the equality. For
n €N, write di, (1) = £
Let a € Dg. By Theorem 26, for all n € N, 0" (a) < d*ﬁ(n)(l). In particular, a < dg(l)_

Thus, there exist {y € N>; such that tég)—1 > 0 and sg € [[O,tgg)_l — 1] such that a =
to- - tg,_2500°(a). Next, we also have o/ (a) < d;(lo)(l). Then there exist /; € N> such

that tx(fl >0and 51 € [[O,txo_)l — 1] such that o (a) = t((fo) e t%o_)Qslag‘)Ml(a). We get
that a € Xg by iterating the process.
Now, let a € Xg. Then there exists a sequence ({x)ien of N>1 such that a = uoujug - - -

where for all £k € N, uy, € Xﬁ(lo+...zk71) 0 By Theorem 26, in order to prove that a € Dg,
it suffices to show that for all n € N, 6"(a) <jex d;(n)(l). Let thus n € N. There exist

k € N and finite words x and y such that ux = zy, y # € and 0" (a) = YugriUgio---.
Then n = o + -+ + fp—1 + || and 0"(a) <iex o1 (50 _y(1)). If @ = € then we
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obtain o™(a) <jex d;(lo+~»lk_1)(1) = d;(n)(l). Otherwise it follows from Corollary 28 that
Jlxl(dﬁ(zoﬂhzk_l)(l)) ex d;(z0+-»-zk71+\z\)(1) = d;(n)(l), hence we get 0" (a) <jex dg(n)(l)

as well. O

Corollary 35. We have Dg = U XgD
EEN21

B(f)-

Corollary 36. Any prefiz of dg(l) belongs to Pref(Dg).

Proof. Write dj(1) = tot1tz--- and let £ € N>;. Since dj(1) is infinite, there exists k > ¢

such that t;_; > 0. Choose the least such k and let s € [0,¢;_;—1]. Then to---t, 08¢ 1s
belongs to Xg 1. The conclusion follows from Proposition 34. g

7. ALTERNATE BASES

Recall that an alternate base is a periodic Cantor base. The aim of this section is to
discuss some results that are specific to these particular Cantor bases.

We start with a few elementary observations. First, the condition [], .8, = +o0 is
trivially satisfied in the context of alternate bases since the sequence (8, )nen takes only
finitely many values. Then, for an alternate base 3 of length p, the B-value (2.1) of an
infinite word a over R>( can be rewritten as

valg(a) = Z ff"

S (T2 Bo) d Tmed e g,

or as

+o0 —1
1 p

7.1 valg(a) = pmtj .
) o %(Hﬁi& Z) j:Ongoﬁi

Further, the alphabet Ag is finite since Ag = {0, ..., max;c[o 1 [Bi]}. Finally, note that
a Cantor base of the form (8,f,...) is an alternate base of length 1, in which case, as
already mentioned in Section 2, all definitions introduced so far coincide with those of
Rényi [12] for real bases f.

In Proposition 3, we gave a characterization of those infinite words a € (RZO)N for which
there exists a Cantor base 3 such that valg(a) = 1. Here, we are interested in the stronger
condition of the existence of an alternate base 3 satisfying valg(a) = 1.

Proposition 37. Let a be an infinite word over R>q such that a,, € O(n?) for some d € N
and let p € N>q. There exists an alternate base 3 of length p such that valg(a) =1 if and
only if Y, cnan > 1. If moreover p > 2, then there exist uncountably many such alternate
bases.

Proof. From Proposition 3, we already know that the condition ) _ya, > 1 is necessary.
Now, suppose that » _ya, > 1. If p =1 then the result follows from Lemma 1. Suppose
that p > 2. Consider any (p — 1)-tuple (Bi,...,Bp—1) € (R>1)P~L. For all By > 1, we can

write valg(a) = valg,(c) with 8 = (8o, 51,...,Bp—1) and

1 P a j
Cn = Pt for all m € N.

(Hf:_ll Z)m §=0 szl Bi
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Note that ¢ € (R>o)Y and that ¢, € O(m?). By hypothesis, there exists N € N such that
Ef:o ap > 1. Then

E -

m=0 ijo Apm+-j Zq]@V:O an
Cm

m=0 (et 5 (i 5

Therefore, any (p — 1)-tuple (B, ..., Bp—1) € (R>1)P~! satisfying

1\ S

i=1 n=0
. 5] .
is such that > " ¢, > 1, and hence there exist uncountably many of them. For such a

(p — 1)-tuple, the infinite word c satisfies the hypothesis of Lemma 1, so there exists Gy > 1
such that valg(a) = valg,(c) = 1. O

7.1. The greedy algorithm. The greedy and the quasi-greedy (3-expansions of 1 enjoy
specific properties whenever 3 is an alternate base. From now on, we let 3 be a fixed
alternate base and we let p be its length.

Proposition 38. The B-expansion of 1 is not purely periodic.

Proof. Suppose to the contrary that there exists ¢ € N>q such that foralln € N, g, = ;4.
By considering ¢ = lem(p, q), we get that BY =gGandforallneN, e, = €nte. Therefore
1
1= Valg (Eo s Eg_l) t = = valg (Eo ceegp_o(ep_q + 1))
Hz’:O Bi
Thus €g - --e¢—2(e¢—1 + 1) is a B-representation of 1 lexicographically greater than dg(1),
which is impossible by Proposition 12. O

One might think at first that if for each i € [0,p — 1], d*ﬁ(i)(l) is ultimately periodic,

then for f = Hf:_& Bi, dj(1) must be ultimately periodic as well. This is not the case, as
the following example shows. Moreover, the same example shows that the B-expansion of
1 can be ultimately periodic with a period which is coprime with the length p of 3.

Example 39. Let 3 = (16, 3, 2+—3\/6) It is easily checked that dﬁ(O) (1) = 2(10)~, d/@(l) (1) =

3 and dge) (1) = 11002. But the product 8 = Hf:_& ; = /6(2 + V/6) is such that ds(1) is
not ultimately periodic as explained in Example 21.

Proposition 40. The quasi-greedy erpansion d};(l) 1s ultimately periodic if and only if
either an ultimately periodic expansion is reached or only finite expansions are involved
within the first p recursive calls to the definition of dfi(l).

e
computation of dj(1), then clearly dj(1) is ultimately periodic if and only if so is d;(n) (1).

Proof. If there exists n € N such that the infinite expansion d¥ (1) is involved in the

Now, suppose that only finite expansions are involved within p recursive calls to the
definition of djz(1). Then dg(1) is finite. Thus, dg(1) =g --£g,6,—1 With £y € N>1 and
EBLp—1 > 0. Then

da(1) = epo---epto-2(ep.0-1 — Ddgay (1)
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where i1 = £y mod p. By hypothesis, d,@(il)(l) is finite as well. Thus we have dﬁ(il)(l) =
€561 0" €8l g1 with /1 € N>q and €gi1) g1 > 0. Repeating the same argument, we
obtain
Z-}(il)(l) = &gl g 55(i1)741_2(5g(i1),g1_1 -1) ;(iQ)(l)

where 75 = ¢y + {1 mod p. By continuing in the same fashion and by setting ¢ = 0,
we obtain two sequences (£;);cop—1] and (ij);eqop)- Because for all j € [0, p], we have
i; € [0,p — 1], there exist j,k € [0,p] such that j < k and i; = 7. Then dg(l) = oy
where

xr = E/B(io)p s Eﬁ(iO),fo—2(Eﬁ(i0),fo—l — 1) s Eﬂ(ijfl),o T Eﬂ(ijfl)’Z]._l_2(5ﬂ(ijfl)7gj_l_1 - 1)

and

Y= S0 St gy -a(Eg6i g1 T 1)t Sl o gt g a(Egnn g o T L)
O

7.2. Admissible sequences. The condition given in Corollary 28 does not allow us to
check whether a given B-representation of 1 is the B-expansion of 1 without effectively
computing the quasi-greedy B-expansion of 1, and hence the B-expansion of 1 itself. The
following proposition provides us with such a condition in the case of alternate bases,
provided that we are given the quasi-greedy B(i)-expansions of 1 for i € [1,p — 1]. Note
that the shifted words starting in positions that are multiple of p are compared with the
word a itself and not with the corresponding quasi-greedy expansions of 1 as in Corollary 28.

Proposition 41. A B-representation a of 1 is the B-expansion of 1 if and only if for all
m € N>1, 0P™(a) <jex a and for allm € N and i € [1,p — 1], "™ (a) <jex d;(i)(l).

Proof. The condition is necessary by Corollary 28 and since djz(1) <jex dg(1). Let us show
that the condition is sufficient.

Let a be a B-representation of 1 such that for all m € N>q, 0P™(a) <jex a and for all
m € Nand ¢ € [1,p — 1], 0P (a) <jex dg(i)(l). By Proposition 12, a <jex dg(1). By
Theorem 26, if a <jex d,’g(l) then valg(a) < 1, which contradicts that a is a B-representation
of 1. Thus, dj(1) <iex a <iex dg(1). If dg(1) is infinite, then a = dg(1) as desired. Now,
suppose that dg(1) =eg---e/—1 with £ € N>j and p_; > 0. Then ag---as—2 =¢€p---€¢—2
and ag_1 € {eg—1 —1,e¢_1}. Since valg(a) =1, if ap_; = €¢—; then a = dg(1). Therefore,
in order to conclude, it suffices to show that ay_1 # €1 — 1.

Suppose to the contrary that ay_; = ey_1 — 1. Then d;(l)(l) <lex 0%(a). By hypothesis,

=0 (mod p). Therefore dj(1) <jex 0'(a) <iex dg(1). By repeating the same argument,
we obtain that ag---ag_o = €o---€¢_o and age_y € {e4—1 — 1,6¢_1}. Since o%(a) <jex @
by hypothesis, we must have asp_1 = €y_1 — 1. By iterating the argument, we obtain that
a=(g0--co_a(er_1 — 1)), contradicting that o’(a) <iex a. O

When p = 1, Proposition 41 provides us with the purely combinatorial condition proved
by Parry [10] in order to determine whether a given 3-representation of 1 is the B-expansion
of 1. However, when p > 2, we need to compute the quasi-greedy 3V-expansions of 1 for
every i € [1,p — 1] first. This might lead us to a circular computation, in which case the
condition may seem not useful in practice. Indeed, suppose that p = 2 and that we are
provided with a B-representation a of 1 and a ﬁ(l)—representation b of 1. Then in order
to check if a = dg(1), we need to compute d;m(l), and hence dgq) (1) first. But then, in

order to check if b = dga) (1), we need to compute dj(1), and hence dg(1), which brings us
back to the initial problem. Nevertheless, this condition can be useful to check if a specific
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B-representation of 1 is the B-expansion of 1. For example, consider a B-representation
a of 1 such that for all m € N>, 0P™(a) <jex a and for all m € N and i € [1,p — 1],
apm+i < [Bi] — 1, then the infinite words a satisfies the hypothesis of Proposition 41 and
a is the B-expansion of 1.

We have seen that considering an infinite word a over N and a positive integer p, there
may exist more than one alternate base 3 of length p such that valg(a) = 1. Moreover,
among all of these alternate bases, it may be that some are such that a is greedy and
others are such that a is not. Thus, a purely combinatorial condition for checking whether
a (B-representation is greedy cannot exist.

Example 42. Consider a = 2(10)“. Then valy(a) = valg(a) = 1 for both a = (1 + ¢, 2)

and B = (35, 322). It can be checked that da (1) = a and dg(1) # a.

Furthermore, an infinite word a over N can be greedy for more than one alternate base.

Example 43. The infinite word 110“ is the expansion of 1 with respect to the three

alternate bases (, (H—g/ﬁ, HT\/E) and (1.7, ﬁ)

At the opposite, it may happen that an infinite word a is a B-representation of 1 for
different alternate bases 3 but that none of these are such that a is greedy. As an illustra-
tion, by Proposition 38, for all purely periodic infinite words a over N, all alternate bases
B such that valg(a) = 1 are such that a is not the B-expansion of 1.

Example 44. The infinite word (10)“ is a representation of 1 with respect to the three
alternate bases considered in Example 43. However, the infinite words (10)% is purely
periodic therefore, by Proposition 38, it is not the expansion of 1 in any alternate base.

7.3. The B-shift. We define sets of finite words Yg, for h € [0,p — 1] as follows. If
dj(1) = toty -~ - then we let
Ygn={to---ti—2s: £ €N>y, fmodp=nh, t;—1 >0, se€ [0t —1]}.

Note that Ygj, is empty if and only if for all £ € N>q such that £ mod p = h, t,_; = 0. So,
unlike the sets Xg 5, defined in Section 6, the sets Yg 5, can be infinite. More precisely, Yg 5,
is infinite if and only if there exists infinitely many ¢ € N> such that £ mod p = h and
tp_1 > 0.

Proposition 45. We have

p—1

p—1 p—1
Dﬁ = U YB,ho ( U Yg(ho)’hl ( U Yg(ho+h1)’h2 ( T )))
ho=0 h1=0 ho=0

Proof. 1t is easily seen that for all h € [0,p — 1],

p—1
U Y = U Xy
h=0

eN>
The conclusion follows from Proposition 34. O
p—1
Corollary 46. We have Dg = U YBJLDB(h).
h=0

In the case where all d*ﬁ(i) (1) are ultimately periodic, we define an automaton Ag over

the finite alphabet Ag. Let %, (1) =t - ;) (ti; -1,

mi+n;—1

Q= {aqijr:i,j €[0,p—1], k€ [0,m; +n; —1]}.

)w. The set of states is
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The set I of initial states and the set F' of final states are defined as
I={giip:i€[0,p—1]} and F=Q.

The (partial) transition function 6: @ x Ag — @ of the automaton Ag is defined as follows.
For each i,j € [0,p — 1] and each k € [0,m; + n; — 1], we have

, . if k 1
8(gs s t) = J Git+ D modpi1 ALK Zmi 4
4i,(j+1) mod p,m; else

and for all s € [0, t,(f) — 1], we have
5((]i,j,k7 s) = 4(j+1) mod p,(j+1) mod p,0-

Example 47. Let 8 = (¢%,3++/5). Then dgw)(1) = 2(30)* and dgn)(1) = 5(03)“.
The corresponding automaton Ag is depicted in Figure 1. By removing the non-accessible

0,1,2

2
2
YRS
0,1,2
40,1,0

0,1,2

<Q1,0,0) @

0,1,2,3,4 5
o o
5
3

0,1,2

3

Xg
00

0,1,2,3,4

FIGURE 1. The automaton A(m).

states, we obtain the automaton of Figure 2.

The following result extends a result of Bertrand-Mathis for real bases [2]. Recall that
a subshift S of AN is called sofic if the language Fac(S) C A* is accepted by a finite
automaton.
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40,0,0

2 3

0
D w— D
3

FIGURE 2. An accessible automaton accepting Fac(X (m)).

Theorem 48. The B-shift X3 is sofic if and only if for all i € [0,p — 1], d*ﬁ(i)(l) 18
ultimately periodic.

Proof. Suppose that for all ¢ € [0,p — 1], d;(i)(l) is ultimately periodic. We show that
the automaton Ag accepts the language Fac(¥g). From Propositions 32 and 33, we obtain
that

p—1
(7.2) Fac(Xg) = Pref(Ag) = U Pref(D g ).

i=0
Therefore, it suffices to show that for each i € [0,p — 1], the language accepted from the
initial state g; ;0 is precisely Pref(Dg ). Let thus i € [0,p —1].

First, consider a word w accepted from g; ; 0. By Corollary 36, if w is a prefix of d;(i) (1)
then w € Pref(Dﬁ(i)). Otherwise, by construction of Ag, w starts with some u € Yﬁ(i)ﬁo
where hg = |u| mod p. Moreover, the state reached after reading u from g; ; ¢ is g; j 0 where
j = (i + hp) mod p. We obtain that w € Pref(DB(i)) by iterating the reasoning and by
using Proposition 45.

Conversely, let w € Pref (D/B(i) ). By Proposition 45, we know that there exists £ € N and
ho,...,hy € [0,p — 1] such that w = g - up_1z with uy € YB(Hhﬁ...hkﬂ)’hk for all k €

[0,¢—1] and z is a (possibly empty) prefix of d;(il) (1) where iy = (i+ho+---+hy_1) mod p.
(3)

By construction of Ag, by reading ug from the state q; 9. we reach the state g;, i, 0 where

i1 = (i + ho) mod p. Then, by reading u; from the latter state, we reach the state gi, ,.0

where i9 = (i + hg + hq) mod p. By iterating the argument, after reading wug - - us_1, we

end up in the state ¢;, ;, 0. Since x is a prefix of d;(iz) (1), it is possible to read x from the

state ¢;,,,0 in Ag. Since all states of Ag are final, we obtain that w is accepted from g; ; o.
We turn to the necessary condition. Let

*B(i) (1) = t(()i)tgi) -+ for every i € [0,p — 1].
Suppose that j € [0,p — 1] is such that d*ﬁ(j)(l) is not ultimately periodic. Our aim is

to find an infinite sequence (w(™),,en of finite words over Ag such that for all distinct
m,n € N, the words w(™ and w(™ are not right-congruent with respect to Fac(¥g). Recall
that words = and y are not right-congruent with respect to a language L if 27 'L # y 'L,
i.e. if there exists some word z such that either 2z € L and yz ¢ L, or xz ¢ L and yz € L.
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If we succeed then we will know that the number of right-congruence classes is infinite and
we will be able to conclude that Fac(¥g) is not accepted by a finite automaton.

We define a partition (Gi,...,Gq) of [0,p — 1] as follows. Let r = Card{dg(i)(l): i€
[0,p — 1]} and let iy,...,4, € [0,p — 1] be such that d*ﬁ(il)(l), . ,d*ﬁ(ir)(l) are pairwise
distinct. Without loss of generality, we can suppose that d*ﬁ(il)(l) Slox t Slex d*ﬁ(ir)(l).

Let ¢ € [1,7] be the unique index such that d;(iq)(l) = d;(j)(l). We set

Gy ={i € [0.p —1: diyy (1) = iy (1)} for s € [Lig—1]
and
Gy ={i€[0,p—1]: d*g(i)(l) < d*gm(l)}-

For each s € [1,q — 1], we write G5 = {is1,...,05q,} Where ig; < ... < i5q, and we
use the convention that isq,+1 = is41,1 for s < ¢ —2 and 4414, ,+1 = j. Moreover,
we let g € N>; be such that for all i,7" € [0,p — 1] such that d*ﬁ(i)(l) # d;(i,)(l), the
length-g prefixes of dg(i)(l) and d;(i,)(l) are distinct. Then, for s € [1,¢ — 1], we define
Cs to be the least ¢ € N>q such that tgi)prc > 0. Finally, let N € N>; be such that
pN > max{g,C1,...,Cy_1}.

For all m € N, consider

w™ = (H H t(()zs) .. tézi)lop(2N+1)_g+Zs,k+l—Zs,k) t(()]) L tg:,)—l'

s=1k=1

For all m € N, s € [1,q — 1] and k € [1, o], the factor téis) . "t;i)lOp@NH)_g”Svk“_iS»k
has length p(2N + 1) + i p41 — isk, and hence occurs at a position congruent to sy — 41,1
() ©))

modulo p in w(™). Similarly, for all m € N, the factor ty - --t;,, occurs at a position

congruent to j — 411 modulo p in w(™) . These observations will be crucial in what follows.
The situation is illustrated in Figure 3.

w(m) — ’U}Ll ’UJLQ e wl,al
o o

[
0 11,2—1%1,1 11,00 —%1,1
Ws,1 Ws,2 ce Ws, g
[ [ [
1s,1—21,1 1s,2—11,1 Is,as —1,1

Wq—1,1 Wg—1,2 Wq—1,004-1
[ [ L
ig—1,1—1%1,1 1g—1,2—1%1,1 1g—1,1—1%1,1
() ()
)t
J—i1,1

FIGURE 3. Factorization of the word w(™). The black dots designate the

positions modulo p of the occurrences of the factors wy, s and t(()j ). tg)_l

in w(m)7 Where wk7s — tgls) e t;ij)lop(zN‘i‘l)_g"ris,k-ﬁ—l_iS,k_
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Now, let m,n € N be distinct. Since d*(.)(l) is not ultimately periodic, o™ (dg(j)(l)) #

”(d* ;»(1)). Thus, there exists £ € N>; such that £ .. V) =9 .. t(lé , and

m+L—2
#) t—1 7 t7(1]+€ 1- Without loss of generality, we suppose that t(])+£ > tfj}re ;- Let
) ()
-1

=ty -ty ;- Our aim is to show that w™ 2 € Fac(Xg) and w™z ¢ Fac(Zg).
In order to obtain that w(™z € Fac(Xg), we show that w(™z € Pref(DB(iLl)). First,

for all s € [1,¢ — 1] and k € [1, as], t(zs ~--t§ij)1005 € Yﬂ(isyk) (+C.) mod p° Second, for all

€ [0,p—1], 0 € Y 1 Third, by Corollary 36, for all h € [0,p — 1], t(()j)---tg)_lz €
Pref(Yj) 5,). The conclusion follows from Proposition 45.

In view of (7.2), in order to prove that w(™z ¢ Fac(Zg), it suffices to show that for all

€ [0,p — 1], w2z ¢ Pref(Dﬁ(i)). Proceed by contradiction and let ¢ € [0,p — 1] and
w € Dﬁ(i) such that w(™z is a prefix of w. By Theorem 26, for all s € [1,¢], the factor
t(()is) e téiﬂOCS occurs at a position e in w such that (i +e) mod p belongs to G1 U+ - -UG.
For s = 1, we obtain that for all k € [1, ], (¢ + 414 — ¢1,1) mod p € Gy, and hence that

G = {(’L + 2'1,1 — il,l) mod p, ..., (’L + il,al — il,l) mod p}.
For s = 2, we get that for all k € [1,a], (i +iax — ¢11) modp € G1 UGy, If (i +
ik — t1,1) mod p € Gy for some k € [1,as], then there exists k' € [1,aq] such that
(¢ +idgp —i1,1) mod p = (i + i1 — 41,1) mod p, hence such that ip) = iy, which is
impossible since G; and G9 are pairwise disjoint. It follows that

Gy ={(i +i21 —41,1) mod p, ..., (i +i2,4, —%1,1) mod p}.
By iterating the reasoning, we obtain that

Gs={(i+1is1 —i11) modp,...,(i+ 154, —i1,1) mod p} forall se[l,qg—1].

We finally get that (i4j—i1,1) mod p belongs to G4. Then d;((i+j—i1,1) mod py (1) Zlex d;m( ).
Let r be the position where the factor téj ). tfﬁl occurs in w™ | and hence also in w since

w™z is a prefix of w. We have seen that r = j — i1, (mod p). Since w € Dﬁ(i), it follows
from Theorem 26 that

o (w) <lex dgmr)( )= dg((m i1 mod p) (1) <lex d;(j)(l)-

We have thus reached a contradiction since the factor téj ). -‘tiﬁlz is lexicographically

greater than the length-(n + ¢) prefix of dg(a>( ). O

Note that, in the classical case p = 1, the previous proof is much shorter since Fac(X

8) =
Pref(Dg), and hence we can directly deduce that the words té] ). t%)_l and té] ). g)
(where in fact, j = 0) are not right-congruent with respect to Fac(Xg3).

Interestingly, some new phenomena occur in our extended framework when looking at
subshifts of finite type. A subshift S of AY is said to be of finite type if its minimal set of
forbidden factors is finite. For p = 1, it is well known that the S-shift is of finite type if and
only if dg(1) is finite [2]. However, this result does not generalize to p > 2 as is illustrated
by the following example.

Example 49. Consider the alternate base 8 = (1+r 5+\ﬁ) of Example 20. Then
dg(o)(l) = 200(10)¥ and d;(l)(l) = (10)“. We see that all words in 2(00)*2 are factors

avoided by ¥g, so the 3-shift X3 is not of finite type.
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