
IX ECCOMAS Thematic Conference on Smart Structures and Materials
SMART 2019

A. Benjeddou, N. Mechbal and J.F. Deü (Eds)
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Abstract. Resonant shunt circuit applied on a transducer like piezoelectric or voice coil is widely used as
a passive control technique to damp a specific vibration mode. While very simple and robust, the damp-
ing capability is proportional to the electromechanical coupling of the transducer. On the other hand, one
of the major difficulties that arises in practical implementation of purely active vibration control is the
power consumption required for conditioners and control units. The idea of using hybrid control system
is proposed in this study to combine the passive shunt device with an active control in order to improve
the performance with low power consumption. Both active voltage source and active current source are
proposed and compared. The method of maximum damping, i.e. maximizing the exponential time-decay
rate of the response subjected to the external impulse forcing function, is used to optimize the parame-
ters of the passive and hybrid control systems. The advantage of using hybrid control configuration in
comparison with purely active control system is also investigated in terms of power consumption.

1 INTRODUCTION

Recently, the electromagnetic shunt damper has been proposed as a very simple and effective pas-
sive control technique. The key idea of this technique is to connect a capacitor of capacitance (C) and
a resistor of resistance (R) to the electromagnetic transducer of inductance (L) to form the resonant R-
L-C circuit. The absorber dissipates the vibrational energy by the resistor when the resonance of the
circuit is tuned close to the resonance of the primary system thanks to the tuned capacitor [1]. Many
optimization methods have been proposed to optimize the parameter of R and C. de Marneffe [2] op-
timized the parameters through the root-locus analysis and H∞ minimization when the system is under
the base excitation. He has also compared the resonant R-L-C shunt with a resistive shunt. Inoue et al.
[3] derived the optimal parameters by using the fixed point theory for the mechanical vibration absorber
proposed by Den Hartog [4]. In [5], the optimal parameters have been obtained analytically using both
H2 and H∞ optimization methods which are to minimize the root-mean-square (RMS) vibration under
random excitation and the peak amplitude in the frequency domain, respectively. Moreover, Zhu et al.
[6] studied the analogy between the electromagnetic shunt damper and a tuned mass damper (TMD).
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Then, the optimal parameters of electromagnetic shunt have been adapted from the optimal parameters
of the TMD (obtained by Ormondroyd and Den Hartog [7]) by using an equivalent mass, stiffness and
damping coefficient for the electromagnetic shunt damper. The main shortcoming of this method is that
the optimal parameters could be used only when the equivalent mass ratio is small enough because a full
dynamic analogy was not given.
The hybrid control system may be an effective control configuration by combining the advantages of
both active and passive control systems [8]. In other words, the active part of a hybrid system requires
much less power than a similar purely active system, while providing better vibration suppression than
the passive system alone. Despite this interest, no one to the best of our knowledge has studied the hy-
bridization of the passive electromagnetic shunt damper with an active control system for the purpose of
vibration damping improvement.
In the literature, there are a number of studies on active-passive hybrid piezoelectric network (APPN).
In 1994, Agnes [9] proposed the concept of APPN and Tsai et al [10] presented more insight and fun-
damental understandings to the APPN configuration. Basically, the APPN integrates piezoelectric shunt
damping with an active voltage or charge source to improve the control performance of the structure
[11]. Morgan et al. [12] used active coupling feedback to enhance the electromechanical coupling of the
transducer. In most studies about the APPN, a collocated piezoelectric sensor has been used to generate
the feedback signal. However, MingMing el al. [13] employed a velocity feedback control for the appli-
cation of the APPN by using a displacement sensor. The optimal values of the resistance and inductance
could be quite different from those of the purely passive system in the case of APPN. Therefore, Tsai el
al. [14] proposed a methodology to determine the optimal values of the resistor and inductor simultane-
ously with the control law.
In the present study, the active-passive hybrid electromagnetic shunt damper is proposed. This paper is
organized as follows. First, a purely passive electromagnetic shunt damper is studied and the parame-
ters of the R and C are optimized according to the method of maximum damping in Section 2. Then
in Section 3, the hybrid configuration is modeled by combining both active voltage source in series and
current source in parallel with the designed RC circuit, respectively. The power which flows between the
structure and the transducer thanks to the application of active control system of hybrid configuration is
discussed in Section 4. The conclusions are drawn in Section 5.

2 PASSIVE CONTROL SYSTEM

Figure 1 shows the system under consideration. It is an undamped single-degree-of-freedom (SDOF)
oscillator with a mass m, spring k and a electromagnetic device connected to a resistor of resistance R
and a capacitor of capacitance C. The system is excited under the disturbance force fd ; in particular, the
impulse forcing amplitude is examined. The electromagnetic device which is made of a permanent mag-
net and a coil has the following parameters: coupling constant T , coil inductance L and coil resistance
Rcoil . It can generate a force fa which is proportional to the current i flowing inside the coil. In addition,
the voltage across the transducer V is proportional to the velocity of the mass. The governing equations
of motion are written as:

mẍ+ kx = fd + fa (1a)

fa =−Ti =−T q̇ (1b)

V = Lq̈+Rq̇+
1
C

q = T ẋ (1c)

where q is the charge flowing inside the coil. For the sake of simplicity, R is considered as the total re-
sistance of the circuit (Figure 1b). The above equations are normalized with respect to the dimensionless
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time τ = ω0t where ω0 =
√

k/m as below:

x′′1 + x1 = f −β1ω0x′2 (2a)

x′′2 +2ξαx′2 +α
2x2 = β2/ω0x′1 (2b)

where the normalized parameters are:

τ = ω0t, x1(τ) = x(t), x2(τ) = q(t), Ω = ω/ω0, f =
1
k

fd , β1 =
T
k

β2 =
T
L
, β = β1β2, ω f =

1√
LC

, α =
ω f

ω0
, ξ =

R
2

√
C
L

(3)

The transfer function of the system from the normalized external force f to the normalized displacement
of the mass x1 is then given by:

x1

f
=

s2 +2ξαs+α2

(s2 +1)(s2 +2ξαs+α2)+βs2 (4)

where s= jΩ is the Laplace variable. According to Eq. (4), the passive control system adds another DOF
to the system which makes the closed-loop response having two complex poles. In order to obtain the
optimal parameters, the method of maximum damping, i.e. minimizing the settling time of the transient
response of the system to the impulse disturbance, is used. This can be achieved by realizing equal
damping ratio and tuning frequency for both poles of the closed-loop response. In other words, two
poles are merged together. In this case, the normalized transfer function can be simplified as:

x1

f
=

s2 +2ξαs+α2

(s2 +2ηγs+ γ2)2 (5)
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Figure 1: Single-degree-of-freedom (SDOF) oscillator combined with the electromagnetic shunt damper.
(a) Mechanical model and (b) Electrical equivalent model of the transducer
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where η is the damping ratio, ωc, and γ = ωc/ω0 are the resonance frequency and the normalized
resonance frequency of the closed-loop response function, respectively. By matching the polynomial
coefficients of the denominators of Eq. 4 and Eq. 5, the set of equations can be obtained as below:

4ηγ = 2ξα (6a)

4η
2
γ

2 +2γ
2 = α

2 +β+1 (6b)

4ηγ
3 = 2ξα (6c)

γ
4 = α

2 (6d)

From Eqs. (6a), (6c) and (6d), it can be concluded that

γopt = αopt = 1 (7)
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Figure 2: For the attached passive RC circuit, (a) root-locus of the system for a specific value of the
resistance R and capacitance C, (b) frequency response as well as (c) the impulse response for different
values of R
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which means that the optimal frequency of the circuit and the closed-loop resonance frequency of the
system are equal to the resonance frequency of the primary system. Considering the above equation and
Eq. (6b) yields:

ξopt =
√

β (8)

As a consequence, the optimal parameters of resistance and capacitance can be obtained as:

Copt =
1

Lω2
0

(9a)

Ropt =
2T√
kCopt

(9b)

In the remaining of the paper, the following numerical values have been used: m=1kg, k = 104N/m,
T =1N/Amp, L = Lcoil = 10−3H, and Rcoil = 0Ω (the resistance of the coil is included in R). The root-
locus of the system with an attached passive RC shunt circuit is shown in Figure 2a. The locus consists
of two loops (red and blue) starting from the pole of the primary system (red pole) and the pole of the
resonant shunt (blue pole), respectively. One of the loop goes to origin and the other one goes to infinity.
Both loops are intersecting at one point thanks to employing the optimal values of resistance Ropt and
capacitance Copt . Figure 2b shows the frequency response for five different values of the resistance R.
All the curves are intersecting at two points which are called fixed-points. For R < Ropt , two resonances
with equal peaks appear in the vicinity of the resonance frequency of the primary system. The controller
is no longer effective in the terms of amplitude reduction when R→ 0. In addition, the performance
degradation can also be observed when R > Ropt . Especially when R→ ∞, the controlled system acts
like a primary system with no additional damping. The impulse response in time domain is also shown in
Figure 2c for three different values of R. As it can be seen, the minimum settling time could be achieved
by considering the designed optimal value of R obtained in Eq. (9b)

3 HYBRID CONTROL SYSTEM

From Eqs. (6)-(8) and (3), it can be concluded that the optimal closed-loop damping is ηopt =
T/(2

√
kL). This shows that the stiffness of the structure as well as the coupling constant and the induc-

tance of the transducer limit the maximum achievable damping obtained by the passive control system.
The potential of using active control to improve the control performance of the system in the terms of
magnitude of the response is investigated.
In the present study, two different configurations for the hybridization of the passive resonant shunt with
an active control are considered (Figure 3). In the first configuration shown in Figure 3a, the electro-
magnetic transducer is connected in series with RC elements and an active voltage source. The active
voltage source is proportional to the velocity of the structure. The total voltage across the transducer
(V ) is then obtained by the summation of the active input voltage (Vin) and the voltage across the RC
shunt circuit (Vshunt). Furthermore in the second configuration shown in Figure 3b, the electromagnetic
transducer is connected in series with RC circuit, and the active current source is in parallel with the
shunting elements. Considering this configuration, the total current flowing in the transducer (i) is given
by the summation of the input active current (iin) and the current flowing inside the RC shunt circuit
(ishunt = q̇shunt).
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Figure 3: Schematic of a SDOF oscillator attached to an hybrid control system consisting of an electro-
magnetic transducer connected to the passive RC shunt (a) in series with an active voltage source and (b)
in parallel with an active current source

3.1 Hybridization with an active voltage source

Considering the active voltage source, the equations of the motion are modified as:

mẍ+ x = fd + fa (10a)

fa =−T ∗q̇ (10b)

Lq̈+Rq̇+
1
C

q+Vin = T ẋ (10c)

Vin =−C1T ẋ (10d)

By substituting Eq. (10d) into Eq. (10c), it can be seen that the active voltage source directly affects
the effective coupling constant of the transducer. It is assumed that the transducer is ideal and there
is a perfect balance between the electrical energy and the mechanical energy which means there is no
energy to be stored in the transducer [15]. According to the concept of energy conservation principle
[16], the variation of the stored energy is the sum of the external power input and the internal power
generation. This concept can be written for the electromagnetic transducer in the presence of the active
voltage source when there is no shunt as:

dW =V dq+ fadx = T (1+C1)
dx
dt

idt +T ∗idx (11)
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where d and W are the derivative operator and the stored energy, respectively. By equating the above
equation to zero, T ∗ can be obtained as:

T ∗ = T (1+C1) (12)

Figure 4a shows the root locus of the system, shunted with RC circuit and the active voltage source in
series, for the variation of feedback gain C1. One sees that the system is stable because the poles are
always placed in the left half plane of the locus for all values of the feedback gain C1. The locus has two
complex poles and two zeros at the origin. By increasing the value of the feedback gain C1, one pole goes
toward the origin and the other one goes to infinity. It makes the system having two different resonances
in the vicinity of the primary ones with the lower values of the damping than the damping of the passive
control system. According to the Eq. (9b), the optimal values of the resistance R is proportional to the
coupling constant of the transducer. Considering the new constant of the transducer Eq. (12), the optimal
value of the resistance can be modified as:

R∗opt =
2T√

kc
(1+C1) (13)

Figure 5a compares the frequency response of the system with the passive control system combined with
the active voltage source for two different values of the feedback gain C1. For each value of C1, the
result is shown with and without correction of the resistance R according to Eq. (13) and Eq. (9b),
respectively. By updating the value of the resistance in this case, more energy can be dissipated in the
resistor which leads to increase the damping of the system. The greater value of the resistance is required
by the application of the active voltage source than the purely passive system. In order to have a fail-safe
and optimum design, the value of resistance should be changed to the lower one when the active control
is turned off. For a specific value of the feedback gain C1, the impulse response is shown in Figure 5b
when the value of the resistance R is modified based on Eq. (13). It can be seen that the exponential
time-decay rate is maximized by updating the value of the resistance.
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Figure 4: Root-locus of the system shunted with RC circuit combined with (a) active voltage source
under and (b) active current source
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Figure 5: With the application of the passive control system combined with the active voltage source, (a)
the frequency response of the system for different values of the feedback gain C1 as well as the resistance
R and (b) the impulse response with and without the correction of the resistance R

3.2 Hybridization with an active current source

The equations of the motion with the application of the active current source read:

mẍ+ kx = fd + fa (14a)

fa =−T (q̇+ iin) (14b)

iin =
C2

T
ẋ (14c)

Lq̈+Rq̇+
1
C

q = T ẋ (14d)

The corresponding root locus of the system is shown in Figure 4b for the variation of feedback gain
C2. The system is always stable by the application of the active current source because the closed-
loop poles are always in the left half plane. Two poles are moving on the blue and red branches. The
optimal feedback gain C2 can be obtained when the two loops are intersecting at one point. Considering
λ =C2ω0/k and Eqs. (3), (7), as well as (8), the normalized equations of motion are written as:

x′′1 + x1 = f −β1ω0x′2−λx′1 (15a)

x′′2 +2
√

βx′2 + x2 = β2/ω0x′1 (15b)

The closed-loop transfer function from the normalized disturbance force f to the normalized displace-
ment x1 is obtained as:

x1

f
=

s2 +2
√

βs+1

(s2 +λs+1)(s2 +2
√

βs+1)+βs2
(16)

When the two poles of the system have the same damping µ and normalized resonance frequency δ, the
closed-loop transfer function can be re-written as:

x1

f
=

s2 +2
√

βs+1
(s2 +2µδs+δ2)2 (17)
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The following equations are obtained by equating the polynomial coefficients of the denominator of the
fraction on the right hand side of Eqs. (16) and (17):

4µδ = 2
√

β+λ (18a)

4µ2
δ

2 +2δ
2 = 2

√
βλ+β+2 (18b)

4µδ
3 = 2

√
β+λ (18c)

δ
4 = 1 (18d)

The optimal value of the normalized tuning frequency δ is obtained from Eq. (18d) as:

δopt = 1 (19)

which shows that the closed-loop system has the same resonance frequency as the resonance frequency
of the primary one. The optimal value of the normalized feedback gain can be realized by substituting
the damping ratio µ obtained from Eq. (18a) and Eq. (19) into Eq. (18b):

λopt = 4
√

β (20)

which yields:

Copt
2 = 4

T
ω0

√
k
L

(21)

It should be mentioned that the parameters of the passive RC circuit do not change. Figure 6a compares
the frequency response of the passive control system combined with the active current source for two
different values of the feedback gain C2. The optimal value is first used for the feedback gain C2 = 126.49
and then it is increased to C2 = 200 when a closed-loop pole touches the real axis and the other one merge
with the zero. In this case, the zero canceled one of the poles and the other one adds damping to the
system. This gain (C2 = 200) can be defined as the second optimal value due to the fact that it has almost
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Figure 6: With the application of the passive control system combined with the active current source,
(a) the frequency response and (b) the impulse response of the system for two different values of the
feedback gain C2
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the same settling time (Figure 6b) as the one corresponding to the first optimal value. For more than this
value of the gain, the settling time is no longer minimized although it might realize lower magnitude of
response than the magnitude of response obtained with the optimal values of the feedback gain. It should
be mentioned that by the application of the active current source, the hybrid control system is fail-safe
because it will continue to behave as the passive electromagnetic shunt damper described in Section 2
when the controller is turned off. The controller behaves like a direct-velocity-feedback (DVF) which is
able to damp several modes as well. This topic is proposed for the future study.

4 POWERFLOW ANALYSIS

In the previous section, it was shown that the hybrid control system can improve the control perfor-
mance of the system in terms of the amplitude of response at the resonance frequency. A question may
arise here is what is the main advantage of using hybrid control system compared to the purely active
control system. To answer this question, it is proposed to analyze the powerflow between the device and
the primary structure due to the fact that an active control system requires an external power source for
its operation. The less external power required, the better. The power which flows at the interface of the
structure and the actuator device can be written as:

P(s) = Faa(s)× ẋ∗(s) (22)

where P, Faa and ẋ∗ are the power, the control force applied by the active control system, and the complex
conjugate of the velocity of the mass, respectively. Considering s = jω, the real part of P is called the
active power which corresponds to the dissipative behavior and the imaginary part is named the reactive
power which corresponds to the energy exchanging between the device and the structure [17].
The average active power Pac and the reactive power Pre can be written as:

Pac = 1/2ℜ(P(s)) =
f 2
d
2

ℜ(G f (s)×GCL(s)×G∗CL(s)) (23a)

Pre = 1/2ℑ(P(s)) =
f 2
d
2

ℑ(G f (s)×GCL(s)×G∗CL(s)) (23b)

where G f (s) and GCl(s) are the transfer function from the velocity of the structure to the control force
and the transfer function from the input force disturbance to the velocity. The superscripts ′′∗′′ represents
the complex conjugate transpose.
For a unit forcing amplitude, Figure 7a compares the active and reactive power at a specific value of
the closed-loop damping for purely active control system and the hybrid control system using active
voltage source and current source, separately. DVF is used for the purely active control system. One can
be observed that the active power for all configurations is always positive through the entire frequency
range. This means that the device does not deliver energy in the system and it is hyperstable. The reactive
power for hybrid control system when active voltage source is applied is positive before the resonance
frequency and negative after that. This shows the amount of energy exchanged between the structure and
the transducer. The total positive and negative reactive power is almost zero.
Figure 7b compares the H2 norm of the active power as a function of the closed-loop damping ratio.
One sees that the active power is zero for 16% damping ratio and below. This is because the passive
control system is doing the job. While there is no external power required to realize 16% damping ratio
by the passive control system, a similar purely active control system requires a large amount of external
power. In addition, the active power for the hybrid control systems is always less than purely active
control system. However, for high value of the closed-loop damping, the active power for the hybrid
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Figure 7: Comparison between the purely active control system (DVF) and Hybrid control systems using
active voltage source and current source separately. (a) active and reactive power for a specific closed-
loop damping ratio, (b) the H2 norm of the active power

configurations is close to the active power for purely active control system. The is because most of the
work is done by the active portion of the hybrid systems.

5 CONCLUSIONS

The hybridization of the passive electromagnetic shunt damper with the active control systems has
been proposed and analyzed in details. The RC shunt has been used in series with an electromagnetic
transducer as the passive control system and its parameters has been optimized based on the method of
maximum damping. Both the active voltage source in series with RC elements and the active current
source in parallel with it have been proposed for the hybrid configurations. It was shown that the system
’electromagnetic device + active voltage source’ can be seen as an equivalent transducer with enhanced
coupling constant T ; equivalence formulas have been presented. In this case, it was shown that the
optimal value of the resistance R is modified to a greater value as a function of the feedback gain C1
in order to improve the damping of the system. In addition, it was shown that the active current source
behaves like a DVF. In this case, the feedback gain C2 has been optimized based on the method of
maximum damping while there is no need to change the parameters of passive RC circuit. Moreover,
the power consumption was highlighted to compare the hybrid control systems and purely active control
system (using DVF). As a consequence, it has been demonstrated that both hybrid control systems can
improve the control performance of the purely passive system while it has less power consumption in
comparison with purely active control system.
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