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Abstract: Some amphiphilic molecules are able to interact with the lipid matrix of plant plasma
membranes and trigger the immune response in plants. This original mode of perception is not
yet fully understood and biophysical approaches could help to obtain molecular insights. In this
review, we focus on such membrane-interacting molecules, and present biophysically grounded
methods that are used and are particularly interesting in the investigation of this mode of perception.
Rather than going into overly technical details, the aim of this review was to provide to readers with
a plant biochemistry background a good overview of how biophysics can help to study molecular
interactions between bioactive amphiphilic molecules and plant lipid membranes. In particular,
we present the biomimetic membrane models typically used, solid-state nuclear magnetic resonance,
molecular modeling, and fluorescence approaches, because they are especially suitable for this field
of research. For each technique, we provide a brief description, a few case studies, and the inherent
limitations, so non-specialists can gain a good grasp on how they could extend their toolbox and/or
could apply new techniques to study amphiphilic bioactive compound and lipid interactions.

Keywords: plant plasma membrane; elicitor; lipid; amphiphiles; molecular interactions; biophysics;
biomimetic membranes

1. Introduction

Plants are fixed organisms, subject to many environmental constraints. In particular, they have to
cope with a wide variety of pathogens. Unlike mammals, plants lack mobile cells dedicated to immune
responses. They are protected by preformed physical barriers such as cuticular waxes on the plant
scale, and cell walls on the cell scale. They also produce constitutive phytoanticipin compounds
with antimicrobial properties [1]. Microorganisms that manage to bypass these defenses are then
confronted with the innate immunity of plants, which can be stimulated by various types of molecules
named elicitors. The plasma membrane (PM), separating the intracellular content from the outside,
plays a central role in plants’ ability to detect microbes [2]. While many molecular patterns are known
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to be recognized by membrane receptors, some amphiphilic molecules directly interact with plant PM
lipids while still triggering defense responses in plants [2]. Because they interact with the lipids from
the plant PM, elucidating the mode of perception of these amphiphilic elicitors may require a specific
approach compared to studying the receptor-recognized ones. In this review, we present an overview
of several biophysical techniques especially well-suited to investigating the molecular interactions
between amphiphiles and lipid membranes.

2. Specific Aspects of the Plant Plasma Membrane

The basic structure of PM, established from the fluid mosaic membrane model [3] common to all
living organisms, is a lipid bilayer in which proteins are embedded or associated to via a variety of
interactions, with a lipid-to-protein ratio of 1 to 1.4. Data accumulated since the publication of the fluid
mosaic membrane model have revealed the unexpected and outstanding complexity of PM organization,
and the essential role of lipids in the organization and intrinsic properties of PM, which appear to be
crucial for ensuring its physiological functions. The great diversity of PM lipids [4] was revealed thanks
to the development of lipidomics. Major classes of lipids are shared by all living organisms, such as
glycerolipids (mainly phospholipids), sphingolipids, and sterols [4,5]. However, between species, cell
types, or tissues within a species, the lipid composition of PMs can show a high degree of diversity,
and plant PM exhibits further striking features. While animal PM essentially contains cholesterol,
different phytosterols with diverse structures are present in plants [5]. The latter play significant roles in
regulating the order level of the membrane. Concerning sphingolipids, sphingomyelin is absent in plants,
and specific ceramides, named glycosyl-inositol-phosphoryl-ceramides (GIPCs), are the main plant
sphingolipids, while totally absent in animal PMs. For example, in the model plant Arabidopsis thaliana,
the plasma membrane is constituted of phosphatidylcholine (PC), phosphatidylethanolamine (PE),
phosphatidylinositol (PI), phosphatidic acid (PA), phosphatidylserine (PS), digalactosyldiacylglycerol
(DGDG), phophoinositides (PI) as glycerolipids, GIPCs with very long-chain fatty acids (up to 26 carbons),
glucosyl ceramide and long-chain bases for the sphingolipid class, and sitosterol, campesterol, fucosterol,
and stigmasterol together with conjugated sterols (sterylglucoside and acyl sterylglucoside) for the sterol
class [5,6]. In plants, the heterogeneity of the spatial distribution of lipids and proteins at the PM surface
has been established together with the presence of nano- to micro-scale domains exhibiting different
order levels [7–9], and the differential ability of plant lipids to generate such a biophysical heterogeneity
on model membranes was described [5]. The spatial segregation of proteins and lipids in resting state
and their dynamic relocalization within PM nanodomains to promote functional signaling platforms,
concomitant with modifications of PM order and fluidity, have been evidenced in immune signaling,
host–pathogen interactions, and particularly documented in plant–microorganism interactions [7–10]
(for a recent review, see Jaillais and Ott, 2020 [10]). Furthermore, the asymmetry of the lipid distribution
between the two leaflets of animal and plant PM is another key feature of membrane organization
and function. In animals, most of the available data on this asymmetry comes from red blood cells
and is still not yet fully elucidated. In plants, very few publications partially examine these crucial
questions. Work performed on oat root PM indicated that phospholipids dominate the cytosolic leaflet
followed by total sterols, whereas the reverse order applies to the apoplastic leaflet of the oat root PM [11].
Investigating the molecular basis of the electrostatic characteristics of plant endomembranes, Jaillais et al.
evidenced that PA and PS sensors accumulate at the PM cytosolic leaflet in A. thaliana root epidermis,
together with PI 4-phosphate (PI4P) [12]. Recent data suggested that GIPCs might be mainly located in
the outer leaflet of tobacco PM [6], but no indication about the localization of the different molecular
species of either free sterols or lipid-associated fatty acids is currently available in the literature.

3. Involvement of the Plant Plasma Membrane in Triggering the Immunity Signaling Process

Cell-surface protein receptors of the PM, called pattern recognition receptors, perceive chemical
compounds informing plant cells of need to defend themselves [13]. When activated by their ligands,
these receptors form complexes with co-receptor proteins to trigger immune responses. Biotic
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attacks are therefore recognized by molecular signatures coming from pathogens, more generally
microbes, or from plant cells themselves. They are called pathogen-, microbe-, or danger-associated
molecular patterns [14,15]. These patterns elicit the establishment of an inducible defense response
(pattern-recognition-receptor-triggered immunity, PTI). It corresponds to a suite of downstream defense
mechanisms including production of reactive oxygen species, influx of extracellular calcium, kinase
activations, and a transcriptional reprogramming [16]. Extracellular molecular patterns inducing PTI
are part of the invasion patterns that also include molecular signals produced by beneficial microbes
and effectors produced by pathogens bypassing PTI [17].

In addition to membrane protein recognition, membrane lipid dynamics are also involved in
invasion pattern perception. The FLS2 transmembrane kinase receptor of the peptide flg22 from bacterial
flagellin is less mobile in presence of its ligand [18]. FLS2 is heterogeneously distributed in the membrane
and forms transient clusters with co-receptors after flg22 recognition within nanodomains [19].
An increase of the PM order was also described after induction of the signaling cascade induced by
the different elicitors such as flg22, cryptogein, and oligogalacturonides. Cryptogein is, moreover, able
to induce an increase in membrane fluidity [20].

4. Interaction of Amphiphilic Elicitors with the Plant Plasma Membrane

Although an increasing number of elicitor–receptor couples have been identified, this type of
perception is not the only possible one [2]. For some amphiphilic compounds, the perception could be
linked to a direct interaction with the lipid part of the PM. The peptide alamethicin from the biocontrol
fungus Trichoderma viride, well-known to form pores in biomimetic membranes, induces defense
responses in A. thaliana. Defense-gene-triggering capability is correlated to the length of the peptide,
showing a link between the pore-forming activity and the bioactivity of the compound [21]. In a same
way, bacterial protein hairpins induce defenses in several plants (cell death hypersensitive response,
defense gene activation, and resistance enhancement towards pathogens) and are known to interact
with lipids and to form pores in membrane models under some experimental conditions [22]. Necrosis
and ethylene-inducing peptide 1-like (NLP) proteins are described to bind to GIPCs [23]. Elicitins from
oomycetes, with typical features of microbe-associated molecular patterns, are known to bind sterols
and other membrane lipids [24].

Amphiphilic-lipid-based compounds are also proposed to be perceived by the lipid fraction of
the plant PM. Surfactins, iturins, and fengycins, which are cyclic lipopeptides produced by Bacillus
subtilis, activate plant defenses and are described to interact with membrane lipids [25–29]. It has been
proposed that surfactin perception and triggering of plant defense mechanisms rely on a lipid-driven
process rather than a direct sensing by a high-affinity protein receptor. Surfactins with longer
acyl chain lengths show stronger interactions with membrane models and also display a higher
plant-defense-triggering activity [27]. Rhamnolipids, glycolipids secreted by the bacteria Pseudomonas
aeruginosa, trigger defense and protection in different plants and can also interact with membrane
lipids [30]. It was notably shown that rhamnolipids can form supramolecular complexes with membrane
phospholipids [31]. Interaction of rhamnolipids with biomimetic phosphatidylcholine membranes
has also been extensively studied [32–36]. Recently, a combination of biological and biophysical
approaches demonstrated that the interaction of synthetic glycolipids with biomimetic PM correlates
with the plant biological response [37]. Biophysical studies and molecular modeling simulations
showed that rhamnolipids fit into plant PM models but do not significantly affect lipid dynamics [38].
Amphiphilic phyto-oxylipins can also interact with plant biomimetic PM by modifying the lateral
organization of domains in a lipid-dependent manner [39].
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5. Biophysical Studies of Amphiphiles and Plant Plasma Membrane Interactions

5.1. Biomimetic Membrane Models

As already mentioned, the plant PM has a complex lipid architecture with the presence of a vast
diversity of lipid species and the existence of lipid domains. This complexity arises from (i) the presence
of proteins, (ii) the asymmetrical distribution of the lipids between the apoplastic and cytosolic leaflets,
and (iii) their specific lateral organization and dynamics [40].

Studies on living cells [8] can be useful for characterizing the plasma membrane at a sub-micrometric
scale, e.g., to get information on membrane dynamics and ordering [8,20], but cannot provide information
at a molecular or atomic level (e.g., compound penetration/location into membrane, specific interactions
with particular lipids, chemical determinants involved in these interactions, etc.) [41,42]. One strategy to
obtain this kind of information is to use artificially made lipid membranes, or model membranes, even if
they will never be an exhaustive representation of a real plasma membrane. With the models, the aim
is to have a versatile system with an easily tweakable lipid composition to (i) mimic certain aspects of
natural membranes and (ii) obtain complementary information using biophysical techniques unsuitable
for studies on living cells. For instance, infrared (IR) spectroscopy and nuclear magnetic resonance (NMR)
are powerful techniques for determining the precise location of an amphiphilic molecule in a lipid model
membrane, but they can hardly be applied to living cells because of the complexity of the resulting spectra.
Model membranes are also very suitable for a step-by-step approach to study the importance of specific
lipid classes on amphiphilic molecule–lipid interactions. The preparation of artificial membrane model
is relatively simple, even for more lipid complex compositions, and the only requirement is to know
the composition of the biological target membrane (e.g., the plant PM). Because the lipid composition of
a membrane is plant-, tissue-, or even organelle-specific, this information may be scarce but a few examples
exist in the literature (see, for instance, References [43–45] for A. thaliana). Of course, the closer to the real
membrane the lipid composition is, the more it will be biologically relevant, with the important caveat
that increased complexity of the model will result in a more complex interpretation of the biophysical data
(e.g., Reference [38] for NMR). Hence, it is important to choose the lipid composition with an adequate
trade-off between the membrane complexity (and thus biological relevance) and the interpretability of
experimental data. It is noteworthy to mention that this is a limitation of the biophysical techniques rather
than of the artificial membrane models.

Figure 1 presents some of the classical models that are used for the analysis of
amphiphile/membrane interactions. We focus here on three kinds of artificial membranes that
have been used to study the interactions between lipids and amphiphilic molecules: (i) liposomes,
(ii) oriented bilayers, and (iii) lipid monolayers. Other models exist, like bicelles or supported lipid
bilayers, but, as they are rarely used with the techniques presented in this review, they are not discussed.
For a more complete description of the different classes of membrane models, the reader can refer to
other reviews [46,47].

Liposomes are one of the most common models used to study membrane dynamics, phase
behavior, membrane fusion, membrane permeability and integrity, and its interaction with exogenous
molecules. Depending on their tridimensional structure, many classes of lipids, such as long-chain
phosphatidylcholines, tend to form liposomes through self-assembling in an aqueous medium [48].
Depending on the protocol used and according to their size, four classes of liposomes are commonly
employed in biophysics and are depicted in Figure 1A. Small unilamellar vesicles (SUVs) constitute
the smallest liposomes, with a typical size ranging from 20 to 80 nm. Large unilamellar vesicles
(LUVs) are bigger, with a diameter of 100 nm up to 1 µm. It is important to note the membrane
lipids rarely self-aggregate to form SUVs or LUVs. Instead, their spontaneous aggregation leads to
micrometer-scaled multilamellar vesicles (MLVs), which are thus easy to prepare. Upon extrusion
though pored membranes, MLVs can be converted to LUVs or SUVs, depending on the size of the pores.
Additionally, sonication or freeze/thaw cycles can be used to form SUVs from MLVs [49]. Finally, it is
also possible to form giant unilamellar vesicles (GUVs), which share the same size as MLVs but have
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only one lipid bilayer. Different methods can be used to prepare GUVs, like electroformation, natural
swelling, or gentle hydration (for more details concerning GUV preparation, see References [50,51]).
Whether they are SUVs, LUVs, GUVs, or MLVs, liposomes remain relatively easy to form, even with
complex lipid compositions, which constitutes a major advantage for biophysical studies. Even for
some lipids such as sterols or some phosphatidylethanolamines that do not form liposomes on their
own, it is still possible, for instance, to insert them into phosphatidylcholine membranes.

Figure 1. Graphical depiction of lipid self-assemblies classically used as membrane models in
biophysical studies. (Panel A) shows the major types of liposomes and their typical diameter (ø) range:
small unilamellar vesicle (SUV), large unilamellar vesicle (LUV), giant unilamellar vesicle (GUV),
and multilamellar vesicle (MLV). Vesicular models are drawn to scale to illustrate their discrepancies in
size and in terms of membrane curvature. (Panel B) shows oriented bilayers, where lipid bilayers are
deposed on top of glass sheets separated by thin layers of water. (Panel C) shows how lipids can orient
themselves at the air–water interface to form monolayers.

Oriented bilayers are models used mainly in solid-state nuclear magnetic resonance spectroscopy
(SS-NMR) to determine the orientation and structure of peptides and proteins in a lipid environment [52].
To prepare oriented bilayers, lipids and peptides are dissolved in an organic solvent and sprayed onto
stacked ultra-thin cover glasses. After removing the solvent, the samples are hydrated to form planar
phospholipid membranes on glass slides [53] (Figure 1B). The main advantage is the unique orientation
of the sample, perpendicular to the NMR field, which leads to a simplification of the resulting NMR
spectra [54].

As suggested by their name, lipid monolayers are constituted of a single layer located
at the air–water interface, and mimic the outer leaflet of the membrane. The hydrophobic hydrocarbon
chains orient towards the air phase and are perpendicular to the interface, whereas polar head groups
are immersed into the aqueous medium [46] (Figure 1C). To study their interactions with lipids,
exogenous molecules are injected into the aqueous phase and diffuse freely in the system. Information
concerning the adsorption kinetics, insertion and penetration of the compound, and the lipid’s capacity
to attract it can be evaluated using this model. The main advantage of the monolayer model is
the possibility to study a single lipid at a time in order to obtain valuable insight about lipid specificity
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of a given interaction. It is also the only method allowing studies with pure sterol not mixed with
another lipid. Lipid monolayers are classically used in atomic force microscopy (AFM), Brewster angle
microscopy, and tensiometry experiments, but are rarely employed in fluorescence and not at all in
solid-state NMR spectroscopy.

Finally, one point to consider when trying to obtain more relevant artificial systems is the membrane
asymmetry between the outer and inner leaflets. Asymmetrical membrane models have been developed
in the last fifteen years, notably driven by the London [55,56] and Heerklotz [57,58] groups. They
can be prepared by several methods, such as by using cyclodextrins as lipid carrier molecules [59],
using enzymes [57], by different microfluidic technologies [60], or by hemifusion between models
with different lipid compositions [61]. The development of these asymmetrical models has been
mainly focused on mammalian lipid membranes. To our knowledge, there are no reports of using
these models to mimic plant PM. This may be due to the lack of knowledge about the asymmetry of
the lipid distribution in this system [40]. However, provided the lipid composition of each leaflet is
characterized, virtually nothing prevents the use of asymmetrical membrane models in the context of
the plant PM.

5.2. Solid-State NMR Spectroscopy

Based on the observation of nuclear spin behaviors in a magnetic field, SS-NMR is a powerful
technique to characterize the behavior of biomolecules in a lipid environment [62,63]. This non-invasive
and non-destructive tool allows information to be obtained about a broad range of parameters like
biomolecule insertion and location inside the membrane [53,64,65] as well as their effects on lipid
dynamics and membrane integrity [29,38,66,67]. The main drawback of SS-NMR is that it usually
relies on isotopes with a substantially low natural abundance (2H, 13C, or 15N). As a consequence,
artificially labeled molecules are quite often used, making it inherently more difficult to use with
complex lipid compositions. Thus, the vast majority of the model membranes used in SS-NMR studies
are composed of very few lipid species (one to three). Since SS-NMR, as any biophysical technique,
provides information about molecular interactions, it can be applied to virtually any biological context.
Here, we present some examples where SS-NMR was used to study molecules interacting with lipid
membranes and that have or can be applied to amphiphilic elicitors [38].

5.2.1. Structural Information

SS-NMR is quite useful for characterizing the structure and orientation of proteins and peptides
in a lipid environment [68,69]. Compared to crystallography, SS-NMR has three great advantages:
(i) sample preparation is much easier, without the fastidious crystallization step, (ii) it is compatible with
more representative membrane models like liposomes [64,70] or oriented bilayers [65,71], and (iii) as
hydration state can be maintained, it allows better biomimicry. SS-NMR is particularly adapted to
characterizing the insertion and structures of peptidic elicitors in membrane models. 15N SS-NMR
can be used to provide information about the orientation of this helical peptide with respect to
the membrane surface just by looking at the location of the peaks in the NMR spectrum. For instance,
in the case of 15N-labeled alamethicin in interaction with oriented bilayers, the 15N NMR spectrum
indicated that the peptide is oriented perpendicularly to the membrane surface, which was interpreted
as its insertion inside the lipid bilayer [53,65].

Additional information such as the tilt angle (between the peptide long axis and the normal
to the plane of the membrane), the azimuthal angle (rotation angle around the peptide long axis),
and the peptide secondary structure can be determined using a two-dimensional 1H-15N NMR
experiment called PISEMA (polarization inversion and spin exchange at the magic angle) [72–74].
Using this experiment, Salnikov and coworkers showed that alamethicin adopts mixed α-/310-helical
structures into palmitoyl-oleyl-phosphatidyl-choline (POPC) bilayers [65].
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5.2.2. Information on Lipid Dynamics

SS-NMR spectroscopy is one of the most suitable techniques to study lipid dynamics in membrane
models. Data on the polar head group are obtained using 31P NMR (in natural abundance), while 2H
NMR on deuterated lipids gives insights into the dynamics of the hydrophobic core [75,76]. In both
cases, the information is easily extracted from the spectral width and shape, which are dominated by
the chemical shift anisotropy (CSA, ∆σ) in 31P NMR and by the quadrupolar splitting (∆νQ) in 2H
NMR (Figure 2A). Qualitatively, and for both 31P and 2H NMR, the interpretation of the spectrum is
quite straightforward, as the spectral width and the lipid dynamics are inversely proportional. Thus,
an increase of lipid dynamics (or a decrease of the order) leads to a decrease of the spectral width
and vice versa. This is illustrated Figure 2B.

Figure 2. Information on membrane dynamics obtained using solid-state NMR spectroscopy. (Panel A)
shows typical 31P NMR and 2H NMR spectra for a membrane. Thanks to chemical shift anisotropy (CSA),
the 31P NMR spectrum gives details about the lipid head group dynamics. Similarly, the quadrupolar
splitting (∆νQ) from a 2H NMR spectrum is linked to lipid chain dynamics. Typical values for both
CSA and ∆νQ are given in parentheses. (Panel B) shows the effect that a molecule can have on
membrane order when inserted into the lipid bilayer. For comparison and clarity, the NMR spectra
when the molecule is absent are represented by the dotted gray lines. In both panels, the membrane
is depicted using blue sticks for the lipid chains (gray for the rest of the atoms) and red beads for
the phosphorus atoms. In panel B, the membrane active molecule is displayed using green beads.

In addition to the qualitative interpretation, quantitative information can also be extracted
from SS-NMR spectra of lipid membranes. Undeniably, the most used quantitative parameter is
the order parameter SCD (C and D standing for carbon and deuterium, respectively), as it transcribes
the fluctuation of the orientation of the C–2H bond. Numerical values for SCD can range from 0 (highly
mobile C–2H bond) to 1 (no mobility) [77]. Hence, a decrease of SCD values due to an exogenous
elicitor means an increase of lipid disorder and dynamics, whereas a rise of SCD reflects an increase of
the lipid acyl chain rigidity. Experimentally, individual SCD values (one value per deuterated carbon
position) are easily extracted from each quadrupolar splitting, ∆νQ, visible in a 2H NMR spectrum.
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By plotting the SCD values against the carbon position, one can visualize the order profile for the lipid
membrane and thus gain access to the precise dynamics along the lipid chains, as depicted on Figure 3.

Figure 3. Illustration of how a 2H NMR spectrum can be used to obtain the order profile of a lipid
membrane. (Panel A) shows a 2H-labeled molecule of dimyristoyl-phosphatidyl-choline, namely
2H27-DMPC, where all carbons from the sn2 chain are perdeuterated. To ease the interpretation of
the figure by the reader, each deuterated methyl leading to a different quadrupolar splitting (∆νQ) is
tagged by a different color. (Panel B) shows a 2H NMR spectrum where all the ∆νQ that are visible are
labeled using the color that corresponds to the deuterated carbon position. (Panel C) shows the order
profile where the SCD value for each position is calculated directly from each ∆νQ value panel B, as
SCD and ∆νQ are proportional.

When direct extraction of the order parameter is not possible (e.g., the spectrum is too noisy) or
not necessary, one can still gather the average lipid dynamics thanks to the spectral moments [76]
and, more specifically, the first moment, M1. M1 is calculated directly from the NMR spectrum, and is
proportional to the membrane-averaged quadrupolar splitting <∆νQ>. As for the ∆νQ (or SCD), a high
value of M1 is characteristic of a rigid membrane where the lipid dynamics are rather low. M1 is thus
particularly useful to quantify the average dynamic state of a lipid membrane. Likewise, plotting
M1 against the temperature is useful for analyzing the changes in the lipid dynamics along with
the temperature, and for determining the phase transition temperature, Tm , where the lipid chains
undergo a transition from almost static (gel phase) to highly mobile and disordered (fluid phase)
(Figure 4). Such a transition seldom occurs in vivo, where biological functions require a well-balanced
amount of lipid mobility. Because a molecule that alters Tm has a direct impact on the lipid dynamics
at a given temperature, it may enhance or reduce any biological functions that depend on it (e.g., signal
transduction).

Using 2H SS-NMR and such M1 analysis, Monnier and coworkers noted a sterol-dependent
fluidization of a plant PM model induced by rhamnolipids [38]. Indeed, a decrease of the spectral
width was observed in the case of an addition of rhamnolipids to a model containing stigmasterol,
whereas no variation of 2H NMR spectrum shape was observed for the same experiment using
a model with β-sitosterol. Likewise, by substituting phytosterols by the fungal ergosterol, a stronger
increase in the lipid dynamics was noticed for the two plant PM models. These results highlight
the impact of sterol nature on the membrane destabilization induced by rhamnolipids. Hence, by
giving information at the molecular scale, 2H SS-NMR spectroscopy provides useful tools to better
understand the biological activities of rhamnolipids, like their antifungal activity and their ability
to trigger plant defenses. 1H MAS-NMR (magic angle spinning NMR) spectroscopy can also be
helpful in studying the impact of elicitors on the temperature of the gel-to-fluid phase transition.
By using this complementary approach, which does not necessitate labeled molecules, it was shown
that two elicitors, alamethicin and mycosubtilin, lower the gel-to-fluid transition temperature for
dimyristoyl-phosphatidyl-choline (DMPC) liposomes [26,78].
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Figure 4. Influence of the temperature on lipid membrane dynamics. At low temperatures (left
part), the lipids are in the gel phase where all the chains are fully elongated, leading to rather low
dynamics (i.e., highly ordered), which is transcribed by 2H NMR in a characteristic wide spectrum.
As a consequence, the values of M1 or <∆νQ>, derived from the spectral width, are also high. In contrast,
at higher temperatures (right part), the lipids are in the fluid phase and the chains are quite disordered.
The corresponding 2H NMR spectrum is narrower, leading to lower values for M1 and <∆νQ>.
The temperature where the transition between the gel phase and the fluid phase occurs is noted as Tm

(for “melting” temperature).

Membrane integrity can also be easily assessed by SS-NMR. Indeed, while liposomes give a broad
31P NMR spectrum, small vesicles or micelles (i.e., fast-tumbling objects) exhibit an identifiable
narrow peak. This can be interesting when studying the destabilizing effect of some elicitors, like
surfactin [28,29,67,79]. For example, Buchoux and coworkers used 31P NMR to study surfactin-induced
destabilization of negatively charged DMPC/dimyristoyl-phosphatidyl-glycerol (DMPG) liposomes
with a surfactin-to-lipid ratio as low as 0.02 [29]. This ratio is 10 times less than the one found by
isothermal titration calorimetry and 31P NMR experiments on neutral POPC liposomes (solubilization
to micellar structures is detected at a ratio of 0.22 using isothermal titration calorimetry and is
characterized by the emergence of an isotropic peak on the 31P NMR spectrum) [67]. This difference
highlights the critical influence of the lipid model when studying membrane-interacting molecules
like surfactin.

Finally, one limitation of SS-NMR spectroscopy is the high complexity of the spectra signal when
more than three to four classes of lipids are present. This is particularly true for lipid dynamics analysis
and structural characterization of peptides in membranes. In 2H NMR, a loss of resolution was observed
for a plant model containing six different lipid classes [38], which made the spectra significantly
harder to interpret, even if only one lipid species was deuterated (and thus observed). For a detailed
analysis of more complex systems, a combined approach with other biophysical techniques like
molecular dynamics simulations and fluorescence can be considered in order to overcome their mutual
limitations. Fluorescence spectroscopy and imaging are also interesting options to overcome a second
limitation of SS-NMR, especially concerning the study of lipid systems with a coexistence of phases.
Indeed, SS-NMR gives a global information on systems (e.g., concerning lipid dynamics, order, or
type of phases). Coexistence of phases can be visualized in 2H NMR, but it is quite impossible or
extremely difficult to quantify the enhancement or decrease of a specific phase due to the elicitor action
by this technique. This specific local information is more accessible via fluorescence or molecular
modeling approaches.
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5.3. Molecular Modeling

Molecular modeling methods are widely used for the investigation of biomolecule/membrane
interactions at the atomic level. Several tools have been developed over the years; they mainly vary in
the way molecules are represented and interact, and in the subsequent molecular information obtained.
In this review, we focus on two particular methods that have been used to specifically study plant PMs
and their interaction with bioactive molecules (see Figure 5 for graphical depiction). The first method,
named docking, consists of the systematic analysis of the interaction of lipid molecules around a target
of interest, thus mimicking a molecule inserted into a lipid monolayer. The second method, molecular
dynamics (MD) simulations, can be used to investigate the dynamics of the molecule in a bilayer. Since
molecular modeling can be used in many biological contexts, this section focused on modeling as
a powerful toolbox with which to study molecules in membranes in order to give a good overview of
what it can bring to the understanding the modes of action of amphiphilic elicitors.

Figure 5. Examples of molecular modeling applied to amphiphilic molecule/membrane interactions.
(Panel A) shows the Hypermatrix procedure where the molecule of interest is used as a reference for
the docking of a lipid molecule (left). Many configurations of the reference molecule in interaction
with the docked lipid are generated by translation and rotation of the lipid (middle). Among all
these configurations, the one with the lowest energy (i.e., the most stable) is considered to be the best
candidate with which to characterize the molecule/lipid interaction (right). In panel A, the carbons of
the molecule of interest are represented using green beads, whereas lipid carbons are gray. For both
molecules, hydrogen, oxygen, and phosphorus atoms are represented in white, red, and orange,
respectively. (Panel B) shows a MD simulation of amphiphilic molecules (green beads) in interaction
with a lipid membrane (chains as gray wires and head groups as red beads). At the beginning of
the simulation (left), the molecules are located outside of the membrane (water is not represented for
clarity). At the end of the simulation (middle), all the molecules are located inside the lipid bilayer.
These qualitative results can be completed via quantitative analysis such the calculation of the order
profile (right) that can then be compared with experimental data.

5.3.1. Molecular Docking

Different docking methods exist in the literature, but few are dedicated to the interaction
between lipids and biomolecules. A method developed in the 80s called Hypermatrix [80] has
proven to be effective and is based on the systematic calculation of the interaction energies between
the molecules of interest (for example, plant lipids and elicitor molecules), taking the individual
orientations of the molecules at the hydrophobic/hydrophilic interface into account, and an empirical
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force-field simulating the hydrophobic energy [81]. This docking method, illustrated in Figure 5A, is
particularly useful to compare the specific interactions of the molecule of interest with different lipid
types [41,80,82]. This approach was improved few years ago by increasing the number of interacting
partners and the total number of molecules in the system; this variation is called the “big monolayer”
method [28]. This procedure notably leads to a more accurate visualization of lipid domains in
a monolayer and the potential effects due to their interactions with biomolecules [41].

Since both methods are static, their main drawback is the fact that the molecule conformations are
“frozen” and then are not modified in terms of internal coordinates following their mutual interaction.
Despite this flaw, the results obtained with Hypermatrix and big monolayer techniques are in good
agreement with various experimentally measured parameters such as the interfacial area in a monolayer,
the specificity of interaction in terms of lipid species, or the effects on lipid organization [41,83,84].

Both docking methods were previously used in order to investigate various molecules interacting
with membranes, and notably plant PM. They are complementary to experimental biophysical
approaches (notably those described in this review) and provide insight into the atomic/molecular
specificity for the interaction of biomolecules with lipids. For instance, Lenarčič and coworkers showed
that microbial cytolysin NLP interacts specifically with the GIPC, and that it plays a role in host
specificity [23]. By docking, it was shown that GIPC conformation and organization are important for
protein interaction. For cyclic lipopeptides such as surfactin docking analyses highlighted privileged lipid
partners for insertion and destabilization of the membrane, mainly dipalmitoyl-phosphatidyl-choline
(DPPC) located at the DPPC/dioleyil-phosphatidyl-choline (DOPC) domain boundaries [28,41,85].
The insertion into palmitoyl-linoleyl-phosphatidyl-choline (PLPC) and sitosterol monolayers for
synthetic rhamnolipids (RL)Alk-RL and Ac-RL was also analyzed using docking approaches, showing
different interaction patterns with PLPC, due mainly to a carboxyl group present in Alk-RL [37].
In a same way, sugar-based bola-amphiphiles have been shown to interact less with cholesterol than
with POPC, using these modeling approaches combined with experimental assays [86]. In the same way,
a green biosurfactant, hexadecylbetaine chloride, revealed a preferred interaction with sphingomyelin
compared to POPC (mammalian lipid models) [87]. Modeling has also been proven to be an efficient
tool with which to elucidate the organization of small peptides in the membrane. Those approaches
have also allowed molecules to be designed with specific membrane-interacting properties [88,89].
In the case of plant PM, only a few studies are available.

5.3.2. Molecular Dynamics Simulations

MD is a much more computationally complex method based on Newton’s equations of motion.
It gives details on the interactions at the atomic resolution, but also sheds light on the energetic
and dynamic components of the process. It involves the use of a force-field to simulate the movements
of atoms relative to each other. Force-fields are a collection of potential equations and various
parameters to reproduce stretching, bending, and rotations of bonds as well as non-bonded interactions,
such as electrostatics and Van der Waals. A wide range of force-fields are available, depending on
the molecule type to be simulated [90–92]; they are integrated within various MD packages, such
as GROMACS, AMBER, NAMD, or CHARMM [93–97]. Classical MD simulations with an all-atom
representation have a typical duration or around 100 ns up to 1 µs for membrane size from around
100 up to 1000 lipids. Coarse-grained representations, in which small groups of atoms (three to four
heavy atoms) are described using one bead per group, allowing reduced simulation time, improve
sampling [98], and represent the membrane with up to several thousand lipid molecules from different
species and for simulation times up to hundreds of microseconds. These two techniques have been
extensively applied in the past decade to study mammalian, bacterial, and organelle membranes,
leading to accurate representations of the PM, lipid nanodomain formation mechanisms, membrane
dynamics (flip-flop for example), and perturbations induced by a wide range of active molecules
(e.g., realistic membrane [99], rafts [100,101], flip-flops induced by a protein [102], peptide-induced
curvature [103]). A recent review by Marrink [104] provided a great overview of the possibilities offered
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by MD simulations for lipids and membrane investigations. Specific parameters can be extracted from
these simulations for comparison with experimental data such as area (or volume) per lipid, order
parameters of acyl chains, lateral diffusion coefficients, electrostatic potentials, depth of membrane
insertion, etc. These parameters help to confirm models and unveil new mechanisms of interaction.

In the case of plant PM, the integration and parametrization of specific plant lipids, such as
GIPCs, into force-fields are still ongoing in order to provide more realistic plant-specific membranes.
Despite the missing lipid topologies, simple plant membrane models (consisting of up to three to
four different lipid species at most) in interaction with biomolecules have been obtained using MD
simulations. A peptide from the Rem1.3 protein, involved in the protection of the plant against viral
infection, has been shown by different approaches, including MD simulations, to have a preferential
interaction with phosphoinositides from the plant PM, and this interaction is involved in lipid domain
formation [105]. A very recent study showed that molecules called hydroperoxides, produced by
plants under stress, are able to interact with a model membrane composed of PLPC, sitosterol,
and plant glucosylceramide. Hydroperoxydes perturb the lateral organization of the membrane,
and glucosylceramide is the privileged partner for lipid interaction [106]. Another study on
rhamnolipids suggested that they can insert into a POPC/PLPC bilayer in a very specific manner, in
accordance with experimental data [38]. In the light of MD simulations carried out on mammalian
or bacterial membranes, which include a vast number of lipid species, simulating domain formation,
sterol flip-flop (for animal membrane), lipid asymmetry, or other properties, it is clear that a realistic
plant PM model is now the primordial next step required in order to reach a molecular understanding
of its specificities regarding lipid dynamics, asymmetry, and interactions with bioactive molecules for
comparison with other model membranes.

5.4. Fluorescence Spectroscopy and Imaging

Fluorescence spectroscopy is a classical technique used in biophysics to study the interaction
between a biomolecule and a lipid vesicle. A fluorescent molecule called a fluorochrome is submitted
to a radiation at a specific wavelength emitted by a laser. This radiation is absorbed by the probe
and induces an electronic transition from ground state to an excitation state. Fluorescence occurs
when the excited electron relaxes to its ground state by emitting a photon at a specific wavelength
longer than the excited one. Excitation and emission wavelength are specific to each molecule
(Table 1), which constitutes the main advantage of fluorescence spectroscopy. Indeed, the molecule
of interest can be selectively excited, allowing studies on more complex systems such as living cells.
In general, biological molecules and compounds used in membrane models are poorly fluorescent.
To overcome this limitation, external fluorescent probes are classically used (Table 1). However,
close attention must be paid to the amount of probe inserted. Some fluorochromes have a large
and planar aromatic moiety and can disturb membrane dynamics if too concentrated. This is
particularly true for fluorescent synthetic lipids where the probe is grafted onto the polar heads or
the acyl chains. In general, the percentage of fluorescent probe does not exceed a few molar percent
(typically 1–5 probes for 100 molecules). Another method used to study biomolecule–lipid interactions
by fluorescence is to synthesize an analogue of the target compound containing a fluorophore
part [107,108]. For example, the fluorescent cyanophenylalanine was grafted onto alamethicin to study
its interaction with the membrane [107]. Likewise, another strategy can be to use the fluorescent
properties of a complex of two molecules that do not emit fluorescence separately. This strategy was
notably developed by Rausch and Wimley to study the leakage property of alamethicin on POPC
vesicles. For this, they used lanthanide metal terbium(III) (Tb3+) and dipicolinic acid, which present
a strong greenish emission when they are complexed [109]. Finally, it should be noted that certain
elicitors possess an intrinsic fluorescence which can be directly used to characterize their interaction
with lipids. As an example, fengycin is fluorescent thanks to the presence of tyrosine residues [110].

In contrast to SS-NMR, some fluorescence assays can be easily carried on plant cells or on
models reconstituted from lipid extracts, given their selective excitation properties (previously
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mentioned). This selectivity allowed the development of fluorescence imaging techniques able to
visualize the fluorescent dyes directly on cells. Information on lipid domains [111,112] and membrane
organization (e.g., the coexistence of gel/fluid phases) [8] became available without the use of
membrane models. In this sense, fluorescence is an ideal technique with which to obtain more
local information about membrane organization. This section presents some approaches used for
the study of elicitor–lipid interactions applied to plant cells or artificial membranes. We focus mainly
on the application of fluorescence spectroscopy and imaging to analyze membrane permeabilization,
organization, and dynamics. For a more complete review regarding fluorescence applications for
studies of biological membranes in general, readers can refer to Reference [113].

Table 1. Fluorescent probes commonly used to investigate membrane dynamics. Abbreviations:
Di-4-ANEPPDHQ: AminoNaphthylEthenylPyridinium derivative; DPH: 1,6-diphenyl-1,3,5
-hexatriene; DPH-PC: phosphatidylcholine-grafted 1,6-diphenyl-1,3,5-hexatriene; Laurdan:
6-dodecanoyl-N,N-dimethyl-2-naphthylamine; NBD-PE: phosphatidylethanolamine-grafted nitrobenz
oxadiazole; TMA-DPH: 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate.

Fluorescent Probes λexcitation (nm) λemission (nm) Membrane
Location Information Refs

Calcein 495 515 Aqueous core Permeabilization/solubilization [67,114]
Carboxyfluorescein 490–500 515–520 Aqueous core Permeabilization/solubilization [115]

Di-4-ANEPPDHQ 488 560–570 (Lβ′ phase)
610–630 (Lα phase)

Membrane
surface

Lipid order, lipid phases,
membrane dynamics [8,20]

DPH 358 430 Hydrophobic
core

Membrane dynamics, gel-to-fluid
transition temperature [34,116]

DPH-PC (“lipid-like”) 350 430 Hydrophobic
core Lipid dynamics [117]

Laurdan 340 440 (Lβ′ phase)
490 (Lα phase)

Membrane
surface

Lipid order, lipid phases,
membrane dynamics [28]

NBD-PE (“lipid-like”) 450 560 Lipid/water
interface Lipid dynamics [117]

TMA-DPH 360 435 Lipid/water
interface

Membrane dynamics, gel-to-fluid
transition temperature [34]

5.4.1. Membrane Permeabilization

Membrane permeabilization and leakage can be easily studied using calcein and carboxyfluorescein
release experiments. With these methods, the elicitor is added to preformed liposomes that contain
the fluorochrome in their aqueous compartment. Initially, the probe is self-quenched due to its high
concentration within the liposomes and no fluorescence signal is observed. If the elicitor has an effect
on the membrane model (e.g., membrane destabilization, pore formation, lysis), the probe leaks from
the liposome and is thus diluted in the external medium, leading to an increase of emitting signal
(Figure 6A). However, calcein and carboxyfluorescein release assays do not allow the precise mechanism
of lipid perturbation to be assessed. Indeed, the enhancement of fluorescence intensity is non-linearly
related to the amount of dye released and to the extent of the leakage [67]. As a consequence,
other approaches must be applied to understand the molecular mechanism behind the fluorochrome
release. The interaction between lipids and amphiphilic elicitors such as surfactin [114,115,118],
rhamnolipids [35,119], alamethicin [120], fengycin [121], and the protein Harpin HrpZ [122] have
been extensively studied using this method. For more details concerning mechanisms of liposome
leakage induced by elicitors, readers can refer to studies published by Heerklotz and coworkers on
the subject [67,114]. Some researchers have also highlighted the importance of lipid composition
on liposome permeabilization induced by elicitors. For fengycin, Fiedler and Heerklotz [118] noted
an inhibition of permeabilization for POPC liposomes containing PE or PG [118]. Similar experiments
on surfactin showed that it promotes calcein release when PG is present, but inhibits the solubilization
of liposomes that contain PE [118]. Similar results were observed by Uttlova and coworkers for
the interaction of surfactin with liposomes containing different amounts of PG, PE, and PA. By studying
surfactin influence on Bacillus subtilis lipid composition, a correlation with biological results was made
by the authors, who noticed a decrease of PG amount in the presence of the elicitor, highlighting
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the adaptation of the bacteria [115]. As mentioned above, fluorescence techniques can be applied
in models more representative of biological membranes. For example, Haapalainen and coworkers
carried out calcein release experiments induced by Harpin HrpZ on vesicles prepared from Arabidopsis
thaliana plasma membrane [122]. They observed a calcein leakage at an elicitor concentration ranging
from 20 to 50 nM, which suggested the presence of pores formed by this protein.

5.4.2. Information on Lipid Dynamics

Several techniques based on fluorescence spectroscopy are useful for the study of membrane dynamics
in artificial membranes or living cells. For example, diphenylhexatriene (DPH) and trimethylammonium
diphenylhexatriene (TMA-DPH) probes, respectively located close to the center of the bilayer and near
the lipid/water interface [123,124], are classically used for steady-state polarization measurements.
This method allows analysis of the lipid mobility and, as a consequence, the physical state of a lipid
bilayer [125,126]. Indeed, the value obtained, directly related to the degree of freedom and mobility of
the probe inside the membrane, differs according to the nature of the phase (Figure 6B). In the case of
a gel state, high steady-state polarization values are obtained, due to the rigidity of the system. During
the transition from gel to fluid phase, a large increase of rotational reorientation is observed, inducing
an abrupt decrease of fluorescence polarization value [125]. Hence, plotting fluorescence polarization
values as a function of temperature allows information to be obtained on the influence of an exogenous
compound on the transition-phase temperature of the bilayer as well as on the global dynamics of each
phases. For the latter, interpretation must be carried out carefully, especially in the case of a slight variation
which could be due not to a change of lipid dynamics but to an interaction with the molecule of interest,
which can modify the rotational motion of the probe. For example, Sanchez and coworkers observed
a slight enhancement of probe polarization due to the incorporation of 10 mol% of di-rhamnolipids in
DPPC vesicles [34]. Using Fourier-transform infrared (FTIR) spectroscopy, the authors suggested that
this increase could be due to an interaction with the elicitors and not caused by an increase in membrane
rigidity. Thus, fluorescence polarization measurement is not always a straightforward method and other
approaches have to be used to have relevant interpretations. For gel-to-fluid transition measurements,
significant differences of fluorescence polarization values are always observed between the two phases.
As a consequence, elicitors’ influences on gel-to-fluid transition have been widely studied, notably
concerning fengycins [116], alamethicins [125], and rhamnolipids [34,127].

Lipid mobility can be studied via steady-state fluorescence polarization experiments with probes
directly grafted on the lipids. Depending on the fluorochrome used, the fluorescent part can be grafted
onto the polar head or on the lipid acyl chains which allows lipid dynamics to be studied in different
sections of the membrane (i.e., close to the water interface or deeper inside the hydrophobic core).
For example, Kikukawa and Araiso used phosphatidylcholine-grafted 1,6-diphenyl-1,3,5-hexatriene
(DPH-PC) and phosphatidylethanolamine-grafted nitrobenzoxadiazole (NBD-PE) (with the fluorescent
moiety located, respectively, in the hydrophobic core and on the polar head) to measure the steady-state
fluorescence polarization variation induced by alamethicin in interaction with POPC and DOPC
vesicles [117].

Several probes, such as those from the boron-dipyrromethene (BODIPY) and DiANEPP families,
can be used to visualize specifically ordered or disordered liquid phases [128]. They insert preferentially
into ordered or disordered lipid phases, but do not allow the variation of lipid order to be quantified [128].
Lipid domains can also be visualized using Laurdan [129,130], which emits at a specific wavelength
depending on the lipid phase [131]. Thus, Laurdan blues in ordered lipid phases and greens in
disordered phases, with emission maxima at 440 and 490 nm, respectively [131,132]. Moreover,
this probe is distributed equally between ordered and disordered phases and gives access to
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a mathematical parameter used to quantify membrane global order, GPex, which is calculated
according to the following equation.

GPex =
(I440 − I490)

(I440 + I490)
(1)

Figure 6. Different fluorescence approaches used for the study of bioactive molecule/membrane
interactions. (Panel A) depicts a calcein release experiment where the membrane-active molecule is
added to a solution of liposomes filled with a solution of calcein at a concentration high enough to
be quenched (no fluorescence). If the added molecule destabilizes the lipid membrane, the calcein
will be released outside of the liposome and its concentration will decrease enough that the probe
will fluoresce. (Panel B) shows how the decrease of the steady-state anisotropy (see text for details)
when the temperature rises can be used to characterize phase transition. (Panel C) shows DOPC/DPPC
liposomes doped with two fluorescent probes: DOPE-Rho (red) and DPPE-NBD (green). As these probes
are segregated to the fluid phase (for DOPE-Rho) and gel phase (for DPPE-NBD), they can be used to
visualize and distinguish these phases. (Panel D) illustrates the different step of a fluorescence recovery
after photobleaching (FRAP) experiment: (1) fluorescent lipid membrane at equilibrium (maximum
and steady fluorescence), (2) fluorescent lipids are locally photobleached by a light pulse, (3) as the lipid
diffusion occurs, the photobleached lipids and fluorescent lipids are mixed and the bleached area blurs
out until (4) the fluorescence becomes uniform again.

As presented previously for order parameters obtained from SS-NMR, GPex values increase with
membrane order and enable the effects of an elicitor on the lipid order to be evaluated. When studying
the variation of GPex at different excitation wavelengths ranging from 440 to 490 nm, the presence of
a phase coexistence is reflected by an enhancement of GPex upon increasing excitation wavelength,
whereas the presence of either a disordered or ordered lipid phase is indicated by a decrease and any
modification of GPex values, respectively [28]. Deleu and coworkers studied the influence of surfactin
on the dynamics of DOPC/DPPC (1/1), a model presenting a coexistence between gel and fluid
phases at the temperature studied [28]. They observed different effects of surfactin on lipid models
according to its concentration. For a concentration close to the critical micelle concentration (CMC),
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the elicitor inhibited the coexistence of phases and increasesd GPex value, suggesting an enhancement
of order. At higher surfactin concentration, the effect on ordering decreased [28]. Di-4-ANEPPDHQ is
another fluorescent probe sensitive to local lipid packing, which emits at 570 and 630 nm for ordered
and disordered liquid phases, respectively [133]. As a consequence, the order of a lipid phase can
be easily visualized by imaging, since the dye exhibits a green fluorescence in ordered domains
and a red fluorescence in disordered domains ([132]; Figure 6C). Hence, membrane order level can
be quantified using the “red-to-green ratio of the membrane”, which represents the ratio of emission
fluorescence intensities recovered at 660 and 550 nm (I660/I550) [8,20,133]. Higher values have been
observed for disordered liquid phases, whereas lower values have been noticed for the ordered liquid
phase. Dinic et al. [134] noted that the presence of membrane proteins and peptides did not influence
the spectra of Laurdan and di-4-ANEPPDHQ. As a consequence, these two fluorescent probes can
be easily used in living cells. For example, Gerbeau-Pissot and coworkers used di-4-ANEPPDHQ
to show that cryptogein induced an enhancement of PM order for tobacco BY-2 cells, but had no
effect on A. thaliana PM [8,20]. It should be noted that a recent study showed that results obtained for
GPex measurement can be skewed by the use of a di-4-ANEPPDHQ probe, due to its electrochromic
properties (i.e., membrane potential dependence of the fluorescence emission spectrum) [135].

Fluorescence recovery after photobleaching (FRAP) is another classical fluorescence technique
used to study membrane dynamics and to measure lipid lateral diffusion on artificial membranes
or cells. A part of the membrane (or cell) is photobleached by a laser, which causes a total loss of
fluorescence for probes located in this area (Figure 6D). Fluorescence recovery is subsequently measured
to obtain information on the lateral mobility of probes. Fitting normalized fluorescence intensity
as function of time allows the lateral diffusion coefficient for the fluorochrome in the membrane
to be determined. As a consequence, information on fluidity, i.e., the measurement of rotational
and translational motions within the membrane, becomes available. Using FRAP, Gerbeau-Pissot
and coworkers observed an increase of PM fluidity for an addition of cryptogein in tobacco BY-2 cells [8].
Fluorescence correlation spectroscopy (FCS) is an interesting counterpart to FRAP, used to investigate
membrane dynamics and lipid lateral diffusion. FCS measures fluctuations of fluorescence intensity in
a defined volume, previously illuminated at a specific wavelength [131]. An autocorrelation function
is obtained by correlating the signal (i.e., the intensity fluctuation) at the experimental onset time, t0,
with the same signal after a lag time t0 + τ, (τ being the time interval) [131]. Hence, FCS can be used
to investigate any process that leads to a change of fluorescence, such as a fluorochrome’s diffusion
into and out of the detection volume. As an example, the influence of a molecule on gel and fluid
phase dynamics can be easily measured using FCS [136], which makes it a good alternative to SS-NMR
for gathering this kind of information. Compared to FRAP, FCS allows work at significantly lower
fluorochrome concentrations (1 pM to 100 nM) thanks to its better sensitivity [131]. However, FCS
signals are overly sensitive to the fluorochrome concentration and can deteriorate if this concentration
is too significant. Using FCS is also more relevant than FRAP for the analysis of very fast motions (< µs),
but is not well-suited to the study of slow-diffusing molecules [131,137]. Fluorescence cross-correlation
spectroscopy (FCCS) is another method similar to FCS that can be used to measure the interactions
between molecules that have fluorophores with different fluorescence emission wavelength [138].
In contrast to FCS, fluorescence intensity fluctuations of the two fluorochromes are detected separately
using two different detectors. The auto-correlation function G(τ) correlates the fluctuation of the first
probe at t0 with the fluctuation of the second after a lag time t0 + τ [131,138]. If G(τ) = 0, fluorescence
intensity fluctuations of the two probes are different and they do not interact. On the other hand, if
G(τ) , 0, they are linked and diffuse together towards the detection volume. The amplitude of G(τ)
depends on the fraction of the probes that are in interaction [138,139]. Hence, information on direct
interaction and micro- and nano-domain formations can be obtained using FCCS [131]. Applying
FCS-like techniques to plant cells remains challenging mainly due to the influence of concentration on
FCS signals and background noise, two factors difficult to control in vivo [137]. However, in the past
ten years, the scientific community has begun to develop alternative approaches based on FCS to
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overcome these problems. Biologists interested in the use of FCS-like measurement applied to plant
cells can read the review written by Li and coworkers on the subject [137].

6. Conclusions

Biophysics provides tools that are perfectly tailored to the investigation of molecular interactions,
especially in the case of lipid-membrane-bound amphiphiles. SS-NMR can provide a great deal of
information about lipid dynamics or about the structure of a peptide amphiphile at the cost of having to
rely on isotopically labeled molecules (e.g., 2H and 15N NMR), and can model membranes with simple
lipid compositions. Fluorescence spectroscopy and imaging provide more general information on lipid
dynamics (i.e., not at the lipid chain level) and also rely on (usually) non-natural fluorescence probes,
but they can be used on much complex systems such as whole living cells. Molecular modeling describes
molecules and lipid membranes with a finesse which simply cannot be achieved with any experimental
approaches. However, it cannot really be used on its own and intrinsically relies on experimental
validation and comparison. Combining these methods to counterbalance their respective limitations is
thus particularly interesting when studying the modes of perception of amphiphilic elicitors.

Obviously, biophysical approaches cannot replace biological ones. In particular, due to their
“bottom-up” design, they usually fail when the studied system becomes larger or more complex.
Conversely, biology is good at studying more complex systems like cells, tissues, or even whole
organisms, but its description of the interactions at the molecular level is weak at best. To assess
the whole picture, it appears essential to apply a multidisciplinary approach combining biology,
biochemistry, and biophysics, and we hope this review will help non-specialists to grasp how
biophysical methods can be used in the context of amphiphilic elicitors.
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