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Abstract: The method of Semantic Background Subtraction (SBS), which combines semantic3

segmentation and background subtraction, has recently emerged for the task of segmenting moving4

objects in video sequences. While SBS has been shown to improve background subtraction, a5

major difficulty is that it combines two streams generated at different frame rates. This results6

in SBS operating at the slowest frame rate of the two streams, usually being the one of the semantic7

segmentation algorithm. We present a method, referred to as “Asynchronous Semantic Background8

Subtraction” (ASBS), able to combine a semantic segmentation algorithm with any background9

subtraction algorithm asynchronously. It achieves performances close to that of SBS while operating at10

the fastest possible frame rate, being the one of the background subtraction algorithm. Our method11

consists in analyzing the temporal evolution of pixel features to possibly replicate the decisions12

previously enforced by semantics when no semantic information is computed. We showcase ASBS13

with several background subtraction algorithms and also add a feedback mechanism that feeds14

the background model of the background subtraction algorithm to upgrade its updating strategy15

and, consequently, enhance the decision. Experiments show that we systematically improve the16

performance, even when the semantic stream has a much slower frame rate than the frame rate of the17

background subtraction algorithm. In addition, we establish that, with the help of ASBS, a real-time18

background subtraction algorithm, such as ViBe, stays real time and competes with some of the best19

non-real-time unsupervised background subtraction algorithms such as SuBSENSE.20

1. Introduction21

The goal of background subtraction (shortened to BGS in the following) algorithms is to22

automatically segment moving objects in video sequences using a background model fed with features,23

hand-designed or learned by a machine learning algorithm, generally computed for each video frame.24

Then, the features of the current frame are compared to the features of the background model to25

classify pixels either in the background or in the foreground. While being fast, these techniques remain26

sensitive to illumination changes, dynamic backgrounds, or shadows that are often segmented as27

moving objects.28

Background subtraction has been an active field of research during the last years [1]. It was29

promoted by the development of numerous variations of the GMM [2] and KDE [3] algorithms, and the30

emergence of innovative algorithms such as SOBS [4], ViBe [5], SuBSENSE [6], PAWCS [7], IUTIS-5 [8],31

and PCA variants [9,10]. Research in this field can count on large datasets annotated with ground-truth32

data such as the BMC dataset [11], the CDNet 2014 dataset [12], or the LASIESTA dataset [13], which33

was an incentive to develop supervised algorithms. In [14], Braham and Van Droogenbroeck were34

the first to propose a background subtraction method using a deep neural network; this work paved35

the way to other methods, proposed recently [15–18]. Methods based on deep learning have better36
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segmentation performances, but they rely on the availability of a fair amount of annotated training37

data; to some extent, they have lost their ability to deal with any camera operating in an unknown38

environment. Note however that, in their seminal work [14], Braham and Van Droogenbroeck present a39

variation of the network that is trained on ground-truth data generated by an unsupervised algorithm,40

thus requiring no annotations at all; this idea was later reused by Babaee et al. [19].41

Rather than building novel complicated methods to overcome problems related to challenging42

operational conditions such as illumination changes, dynamic backgrounds, the presence of ghosts,43

shadows, camouflage or camera jitter, another possibility consists in leveraging the information44

provided by a universal semantic segmentation algorithm for improving existing BGS algorithms.45

Semantic segmentation of images consists in labeling each pixel of an image with the class of its46

enclosing object or region. It is a well-covered area of research, but it is only recently that it has47

achieved the level of performance needed for real applications thanks to the availability of large48

annotated datasets such as ADE20K [20], VOC2012 [21], Cityscapes [22] or COCO [23], and novel deep49

neural networks [24–26]. In the following, we use the term semantics to denote the output of any of50

these semantic segmentation networks.51

The performances achieved by these deep networks for the task of semantic segmentation have52

motivated their use for various computer vision tasks such as optical flow computation [27], or motion53

segmentation [28,29]. The underlying idea is to segment objects and characterize their motion using,54

in our case, background subtraction in video sequences [30]. It is important to note that semantic55

segmentation algorithms are trained with annotated datasets that contain varied types of objects, most56

of which do not appear in videos such as those of the CDNet 2014 dataset. In other words, semantic57

segmentation algorithms are not tailored for the task of motion detection. While this is a suitable58

feature to deal with arbitrary unknown scenes, it requires to validate if a network works well on the59

typical images encountered in background subtraction.60

Recently, Braham et al. [30] presented the semantic background subtraction method (named SBS61

hereafter), that leverages semantics for improving background subtraction algorithms. This method,62

which combines semantics and the output of a background subtraction algorithm, reduces the mean63

error rate up to 20% for the 5 best unsupervised algorithms on CDNet 2014 [12]. Unfortunately, in64

practice, it is often much slower to compute semantic segmentation than it is to perform background65

subtraction. Consequently, to avoid reducing the frame rate of the images processed by background66

subtraction, semantics needs to be computed on a dedicated hardware (such as a modern GPU) and67

fed asynchronously, that is with missing semantic frames.68

Problem Statement69

To better understand the problem, let us analyze the timing diagram of SBS, as displayed in70

Figure 1. For this time analysis, we assume that a GPU is used for semantic segmentation, and a CPU71

is used for both the BGS algorithm and the SBS method. When the GPU is available, it starts analyzing72

the input frame, otherwise it skips it. In the scenario of a BGS algorithm being faster than the semantic73

segmentation network, which is the scenario that we examine in this paper, the BGS algorithm starts as74

soon as the previous processing is over. The CPU then waits until semantics has been computed and a75

semantic frame St is available. The timeline analysis of SBS shows that: (1) with respect to the input76

frame, the output frame is delayed by the time to compute semantics and to process the segmentation77

map (this delay is unavoidable and constant), and (2) the output frame rate is mainly driven by the78

slowest operation. It results that some output frames would be skipped, although the CPU computes79

all the intermediate masks by the BGS algorithm. For example, in the case of Figure 1, it is possible to80

apply the BGS algorithm to It+2, but not to process Bt+2 with the help of semantics. In other words,81

the slowest operation dictates its rhythm (expressed in terms of frame rate) to the entire processing82

chain. Hence, the semantics and the output have equal frame rates. This is not a problem as long as the83

output frame rate (or equivalently that of semantics) is faster than the input frame rate. However, the84
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Figure 1. Timing diagram of a naive real-time implementation of the semantic background subtraction
(SBS) method when the frame rate of semantics is too slow to handle all the frames in real time. From
top to bottom, the time lines represent: the input frames It, the computation of semantics St by the
semantic segmentation algorithm (on GPU), the computation of intermediate segmentation masks Bt

by the BGS algorithm (on CPU), and the computation of output segmentation masks Dt by the SBS
method (on CPU). Vertical lines indicate when an image is available and filled rectangular areas display
when a GPU or CPU performs a task. Arrows show the inputs required by the different tasks. This
diagram shows that even when the background subtraction algorithm is real time with respect to the
input frame rate, it is the computation of semantics that dictates the output frame rate.

Table 1. Comparison of the best mean F1 score achieved for two semantic networks used in combination
with SBS on the CDNet 2014 dataset. These performances are obtained considering the SBS method,
where the output of the BGS algorithm is replaced by the ground-truth masks. This indicates how the
semantic information used in SBS would deteriorate a perfect BGS algorithm.

Networks SBS with PSPNet [25] SBS with MaskRCNN [26]
Best mean F1 0.953 0.674

semantics frame rate is generally slower than the input frame rate, which means that it is not possible85

to process the video at its full frame rate, or in order words, that the processing of SBS is not real time.86

To increase the output frame rate to its nominal value, we need to either accelerate the production87

of semantics, which induces the choice of a faster but less accurate semantic network, or to interpolate88

the missing semantics. Our analysis on semantic networks showed that faster networks are not89

exploitable because of their lack of precision. Also, semantic segmentation networks should be90

preferred to instance segmentation networks. For example, we had to discard MaskRCNN [26] and91

prefer the PSPNet network [25], as shown in Table 1. An alternative option is to interpolate missing92

semantics. Naive ideas would be to skip the SBS processing step in the absence of semantics or to93

repeat the last pixelwise semantic information when it is missing. Both ideas proved unsuccessful,94

as shown in our experiments (see Section 4). A better idea is to avoid any mechanism that would95

substitute itself to the difficult calculation of semantics and, instead, replicate the decisions enforced96

previously with the help of semantics to compensate for the lack of semantics later on. The underlying97

question is whether or not we should trust and repeat decisions taken by SBS [30]. This idea has already98

been applied in one of our recent work, called Real-time Semantic Background Subtraction [31] (noted99

RT-SBS) with ViBe, a real-time BGS algorithm, and forms the basis of our new method, ASBS. This100

paper presents our method in a complementary way to the original paper, with further experiments101

and generalizes it to all background subtraction algorithms, including non-real-time ones.102
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Table 2. Decision table as implemented by SBS. Rows corresponding to “don’t-care” values (X) cannot
be encountered, assuming that τBG < τFG.

Bt(x, y) SBG
t (x, y) ≤ τBG SFG

t (x, y) ≥ τFG Dt(x, y)
BG false false BG
BG false true FG
BG true false BG
BG true true X
FG false false FG
FG false true FG
FG true false BG
FG true true X

The paper is organized as follows. Section 2 describes the semantic background subtraction (SBS)103

method that underpins our developments. In Section 3, we first discuss the classification problem of104

background subtraction and take into account the specificities of semantics. Then, we describe our105

new method. Experimental results are provided in Section 4, and compared with those of the original106

semantic background subtraction method when semantics is missing for some frames. Finally, we107

conclude in Section 5.108

Contributions. We summarize our contributions as follows. (i) We propose a novel method, called109

ASBS, for the task of background subtraction. (ii) We alleviate the problem of the slow computation of110

semantics by substituting it for some frames with the help of a change detection algorithm. This makes111

our method usable in real time. (iii) We show that at a semantic framerate corresponding to real-time112

computations, we achieve results close to that of SBS, meaning that our substitute for semantics is113

adequate. (iv) We show that our method ASBS with a real-time BGS algorithm such as ViBe and a114

simple feedback mechanism achieves performances close to the ones of non real-time state-of-the-art115

BGS algorithms such as SuBSENSE, while satisfying the real-time constraint.116

2. Description of the semantic background subtraction method117

Semantic background subtraction (SBS) [30,32] is a method based on semantics provided by deep118

segmentation networks that enriches the pixel-wise decisions of a background subtraction algorithm.119

In this section, we detail how SBS uses semantics to improve the classification of a BGS algorithm.120

This description is necessary as SBS underpins our strategy to improve background subtraction in the121

absence of semantics for some frames.122

SBS combines three results at each pixel (x, y): the original classification result between123

background (BG) and foreground (FG) at time t, as produced by a chosen BGS algorithm, denoted124

by Bt ∈ {BG, FG}, and two booleans based on the semantic signals SBG
t ∈ [0, 1] and SFG

t ∈ [−1, 1],125

derived from a semantic probability estimate defined hereinafter. These results are then combined to126

output the final result Dt ∈ {BG, FG}, as detailed in Table 2.127

The two semantic signals (SBG
t and SFG

t ) are derived from a semantic probability estimate at each128

pixel location, denoted by pS,t(x, y). This value is an estimate of the probability that pixel (x, y) belongs129

to one of the objects contained in a set of potentially moving objects (person, car, etc) and depends130

on the segmentation network itself. The authors of [30] use the PSPNet [25] semantic segmentation131

network and compute pS,t(x, y) by applying a softmax function on the vector of output scores for this132

pixel and add up the obtained values for the subset of classes of interest (see Section 4.1 for more133

implementation details).134

The first semantic signal, SBG
t (x, y), is the semantic probability estimate itself: SBG

t (x, y) =

pS,t(x, y). It has a low value when the probability is close to zero, meaning that there is no object of
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interest for that pixel. According to rule 1, if this signal is lower than a threshold τBG, the pixel is
labeled as background:

rule 1 : if SBG
t (x, y) ≤ τBG, then Dt(x, y)← BG . (1)

A convenient interpretation of rule 1 is that when it is activated (that is, when the condition is true), the135

decision of the BGS algorithm is shadowed. Consequently, the amount of false positives (pixels wrongly136

classified in the foreground), typically generated by illumination changes, dynamic backgrounds or137

the presence of ghosts, is reduced since the semantic segmentation is unaffected by these well-known138

BGS problems.139

The second semantic signal, SFG
t (x, y), aims at improving the detection of foreground objects by

detecting a local increase of the semantic probability estimate compared to a semantic background
model, denoted by Mt. The signal SFG

t is calculated as the difference between the current semantic
probability estimate and the value stored in the semantic background model:

SFG
t (x, y) = pS,t(x, y)−Mt(x, y) , (2)

where the semantic background model Mt is initialized via:

M0(x, y)← pS,0(x, y) , (3)

and is possibly updated for each pixel only if the pixel is classified as belonging to the background:

if Dt(x, y) = BG, thenα Mt+1(x, y)← pS,t(x, y) , (4)

with the expression “if A thenα B” meaning that action B is applied with a probability α if condition A
is true. The goal for Mt(x, y) is to store the semantic probability estimate of the background in that
pixel. When the value of SFG

t (x, y) is large, a jump in the semantic probability estimate for pixel (x, y)
is observed, and we activate rule 2 as defined by:

rule 2 : if SFG
t (x, y) ≥ τFG, then Dt(x, y)← FG , (5)

where τFG is a second positive threshold.140

Again, when the condition of rule 2 is fulfilled, the result of the BGS algorithm is shadowed.141

This second rule aims at reducing the number of missing foreground detections, for example when142

a foreground object and the background appear to have similar colors (this is known as the color143

camouflage effect). Note that, with a proper choice of threshold values τBG < τFG, both rules are144

fully compatible meaning that they are never activated simultaneously. This relates to the “don’t-care”145

situations described in Table 2.146

The decision table of Table 2 also shows that, when none of the two rules are activated, we use the
result of the companion BGS algorithm as a fallback decision:

fallback : Dt(x, y)← Bt(x, y). (6)

3. Asynchronous semantic background subtraction147

To combine the output of any background subtraction to semantics according to SBS in real148

time, it is necessary to calculate semantics at least at the same frame rate as the input video or BGS149

stream, which is currently not achievable with high performances on any kind of videos, even on a150

GPU. Instead of lowering the frame rate or reducing the image size, an alternative possibility consists151

to interpolate missing semantics. Naive ideas, such as skipping the combination step of SBS in the152

absence of semantics or repeating the last pixelwise semantic information when it is missing, have153

proved unsuccessful, as shown in our experiments (see Section 4). Hence, it is better to find a substitute154
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for missing semantics. Obviously, it is unrealistic to find a substitute that would be as powerful as155

full semantics while being faster to calculate. Instead, we propose to replicate the decisions enforced156

previously with the help of semantics to compensate for the lack of semantics later on. The underlying157

question is whether or not we should trust and repeat decisions taken by SBS [30]. This idea is the158

basis of our new method.159

The cornerstone for coping with missing semantics is the fact that the true class (foreground or160

background) of a pixel generally remains unchanged between consecutive video frames, as long as161

the object in that pixel remains static. It is therefore reasonable to assume that if a correct decision162

is enforced with the help of semantics for a given pixel location and video frame, the same decision163

should be taken in that pixel location for the subsequent frames (when semantics is not computed)164

if the features of that pixel appear to be unchanged. Our method, named Asynchronous Semantic165

Background Subtraction (ASBS), thus consists in interpolating the decisions of SBS by memorizing166

information about the activation of rules as well as the pixel features, which we chose to be the input167

color in our case, when semantics is computed (SBS is then applied), and copying the decision of the168

last memorized rule when semantics is not computed if the color remains similar (which tends to169

indicate that the object is the same).170

To further describe ASBS, let us first focus on a substitute for rule 1, denoted rule A hereafter,171

that replaces rule 1 in the absence of semantics. If rule 1 was previously activated in pixel (x, y) while172

the current color has remained similar, then Dt(x, y) should be set to the background. To enable this173

mechanism, we have to store, in a rule map denoted by R, if rule 1 of SBS is activated; this is indicated174

by R(x, y)←1. Simultaneously, we memorize the color of that pixel in a color map, denoted by C. With175

these components, rule A becomes:176

rule A : if R(x, y) = 1 and dist (C(x, y), It(x, y)) ≤ τA,

then Dt(x, y)← BG , (7)

where τA is a fixed threshold applied on the Manhattan (or Euclidean) distance between the color177

C(x, y) stored in the color map and the input color It(x, y). Theoretically, it is also possible to refine the178

color model by adopting a model used by a BGS algorithm in which case the distance function should179

be chosen accordingly; our choice to favor a simple model instead proved effective.180

Likewise, we can replace rule 2 by rule B in the absence of semantics. When rule 2 is activated,181

this decision is stored in the rule map (this is indicated by R(x, y)←2), and the color of the pixel is182

stored in the color map C. Rule B thus becomes:183

rule B : if R(x, y) = 2 and dist (C(x, y), It(x, y)) ≤ τB,

then Dt(x, y)← FG . (8)

where τB is a second threshold. Again, when neither rule A nor rule B are activated, the BGS decision184

is used as a fallback decision.185

The updates of the rules and color map are detailed in Algorithm 1. It is an add-on for SBS that186

memorizes decisions and colors based on computed semantics upon activation of a rule. The second187

component of ASBS, described in Algorithm 2, is the application of rule A, rule B, or the fallback188

decision, when no semantics is available.189

Note that the two pseudo-codes, which define pixel-wise operations, could be applied within190

the same video frame if the semantics was only computed inside a specific region-of-interest. In191

that scenario, we would apply the pseudo-code of Algorithm 2 for pixels without semantics and192

the pseudo-code of Algorithm 1 for pixels with semantics. It is therefore straightforward to adapt193

the method from a temporal sub-sampling to a spatial sub-sampling, or to a combination of both.194

However, a typical setup is that semantics is computed for the whole frame and is skipped for the next195

few frames at a regular basis. In section 4, we evaluate ASBS for this temporal sub-sampling since it196
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Figure 2. Schematic representation of our method named ASBS, extending SBS [30], capable to
combine the two asynchronous streams of semantics and background subtraction masks to improve
the performances of BGS algorithms. When semantics is available, ASBS applies Rule 1, Rule 2, or
selects the fallback, and it updates the color and rule maps. Otherwise, ASBS applies Rule A, Rule B, or
it selects the fallback.
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Algorithm 1 Pseudo-code of ASBS for pixels with semantics. The rule and color maps are updated
during the application of SBS (note that R is initialized with zero values at the program start).
Require: It is the input color frame (at time t)

1: for all (x, y) with semantics do
2: Dt(x, y)← apply SBS in (x, y)
3: if rule 1 was activated then
4: R(x, y)← 1
5: C(x, y)← It(x, y)
6: else if rule 2 was activated then
7: R(x, y)← 2
8: C(x, y)← It(x, y)
9: else

10: R(x, y)← 0
11: end if
12: end for

Algorithm 2 Pseudo-code of ASBS for pixels without semantics, rule A, rule B or the fallback are
applied.
Require: It is the input color frame (at time t)

1: for all (x, y) without semantics do
2: if R(x, y) = 1 then
3: if dist (C(x, y), It(x, y)) ≤ τA then
4: Dt(x, y)← BG
5: end if
6: else if R(x, y) = 2 then
7: if dist (C(x, y), It(x, y))) ≤ τB then
8: Dt(x, y)← FG
9: end if

10: else
11: Dt(x, y)← Bt(x, y)
12: end if
13: end for

has a unique implementation, while spatial sub-sampling can involve complex strategies for choosing197

the regions where to compute the semantics and is application-dependent anyway. Our method,198

illustrated in Figure 2 for the case of entire missing semantic frames, is applicable in combination with199

virtually any BGS algorithm.200

Timing diagrams of ASBS201

The ASBS method introduces a small computational overhead (a distance has to be computed202

for some pixels) and memory increase (a rule map and a color map are memorized). However, these203

overheads are negligible with respect to the computation of semantics. The practical benefits of ASBS204

can be visualized on a detailed timing diagram of its components. For a formal discussion, we use the205

following notations:206

• It, St, Bt, Dt respectively denote an arbitrary input, semantics, background segmented by the207

BGS algorithm, and the background segmented by ASBS, indexed by t.208

• δI represents the time between two consecutive input frames.209

• ∆S, ∆B, ∆D are the times needed to calculate the semantics, the BGS output, and to apply SBS or210

ASBS, which are supposed to be the same, respectively. These times are reasonably constant.211
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Figure 3. Timing diagram of ASBS in the case of a real-time BGS algorithm (∆B < δI) satisfying the
condition ∆B + ∆D < δI . Note that the output stream is delayed by a constant ∆S + ∆D time with
respect to the input stream.

We assume that semantics is calculated on a GPU, whereas the BGS and the application of the rules are212

calculated on a single threaded CPU hardware. Also, the frame rate of semantics is supposed to be213

smaller than that of BGS; that is ∆S > ∆B.214

We now examine two different scenarios. The first scenario is that of a real-time BGS algorithm215

(∆B < δI) satisfying the condition ∆B + ∆D < δI . This scenario, illustrated in Figure 3, can be obtained216

with the ViBe [5] BGS algorithm for example; this scenario is further described in [31]. On the timing217

diagram, it can be seen that the output frame rate is then equal to the input frame rate, all frames being218

segmented either by SBS (rule 1/2) or ASBS (rule A/B) with a time delay corresponding approximately219

to ∆S. We present illustrative numbers for this timing diagram in Section 4.4.220

In a second scenario, the frame rate of the BGS is too slow to accommodate to real time with221

ASBS. It means that ∆B + ∆D > δI . In this case, the output frame rate is mainly dictated by ∆B, since222

∆B >> ∆D. The input frame rate can then be viewed as slowed down by the BGS algorithm, in223

which case the timing diagrams fall back to the same case as a real-time BGS algorithm by artificially224

changing δI to δ̃I , where δ̃I = ∆B + ∆D > δI . It is a scenario that, unfortunately, follows the current225

trend to produce better BGS algorithms at the price of more complexity and lower processing frame226

rates. Indeed, according to our experiments and [33], the top unsupervised BGS algorithms ranked on227

the CDNet web site (see http://changedetection.net) are not real time.228

4. Experimental results229

In this section, we evaluate the performances of our novel method ASBS and compare them to230

those of the original BGS algorithm and those of the original SBS method [30]. First, in Section 4.1, we231

present our evaluation methodology. This comprises the choice of a dataset along with the evaluation232

metric, and all needed implementation details about ASBS, such as how we compute the semantics,233

and how we choose the values of the different thresholds. In Section 4.2, we evaluate ASBS when234

combined with state-of-the-art BGS algorithms. Section 4.3 is devoted to a possible variant of ASBS235

which includes a feedback mechanism that can be applied to any conservative BGS algorithm. Finally,236

we discuss the computation time of ASBS in Section 4.4.237

4.1. Evaluation methodology238

For the quantitative evaluation, we chose the CDNet 2014 dataset [12] which is composed of 53239

video sequences taken in various environmental conditions such as bad weather, dynamic backgrounds240

http://changedetection.net
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and night conditions, as well as different video acquisition conditions, such as PTZ and low frame rate241

cameras. This challenging dataset is largely employed within the background subtraction community242

and currently serves as the reference dataset to compare state-the-art BGS techniques.243

We compare performances on this dataset according to the overall F1 score, which is one of the244

most widely used performance scores for this dataset. For each video, F1 is computed by:245

F1 =
2TP

2TP + FP + FN
, (9)

where TP (true positives) is the number of foreground pixels correctly classified, FP (false positives) the246

number of background pixels incorrectly classified, and FN (false negatives) the number of foreground247

pixels incorrectly classified. The overall F1 score on the entire dataset is obtained by first averaging248

the F1 scores over the videos, then over the categories, according the common practice of CDNet [12].249

Note that this averaging introduces inconsistencies between overall scores that can be avoided by250

using summarization instead, as described in [34], but to allow a fair comparison with the other BGS251

algorithms, we decided to stick to the original practice of [12] for our experiments.252

We compute the semantics as in [30], that is with the semantic segmentation network PSPNet [25]253

trained on the ADE20K dataset [35] (using the public implementation [36]). The network outputs a254

vector containing 150 real numbers for each pixel, where each number is associated to a particular255

object class within a set of 150 mutually exclusive classes. The semantic probability estimate pS,t(x, y)256

is computed by applying a softmax function to this vector and summing the values obtained for classes257

that belong to a subset of classes that are relevant for motion detection. We use the same subset of258

classes as in [30] (person, car, cushion, box, boot, boat, bus, truck, bottle, van, bag and bicycle), whose259

elements correspond to moving objects of the CDNet 2014 dataset.260

For dealing with missing semantics, since the possibilities to combine spatial and temporal261

sampling schemes are endless, we have restricted the study to the case of a temporal sub-sampling of262

one semantic frame per X original frames; this sub-sampling factor is referred to as X:1 hereafter. In263

other scenarios, semantics could be obtained at a variable frame rate or for some variable regions of264

interest, or even a mix of these sub-sampling schemes.265

The four thresholds are chosen as follows. For each BGS algorithm, we optimize the thresholds266

(τBG, τFG) of SBS with a grid search to maximize its overall F1 score. Then, in a second time, we freeze267

the optimal thresholds (τ∗BG, τ∗FG) found by the first grid search and optimize the thresholds (τA, τB) of268

ASBS by a second grid search for each pair (BGS algorithm, X:1), to maximize the overall F1 score once269

again. Such methodology allows a fair comparison between SBS and ASBS as the two techniques use270

the same common parameters (τ∗BG, τ∗FG) and ASBS is compared to an optimal SBS method. Note that271

the α parameter is chosen as in [30].272

The segmentation maps of the BGS algorithms are either taken directly from the CDNet 2014273

website (when no feedback mechanism is applied) or computed using the public implementations274

available at [37] for ViBe [5] and [38] for SuBSENSE [6] (when the feedback mechanism of Section 4.3275

is applied).276

4.2. Performances of ASBS277

A comparison of the performances obtained with SBS and ASBS for four state-of-the-art BGS278

algorithms (IUTIS-5 [8], PAWCS [7], SuBSENSE [6], and WebSamBe [39]) and for different sub-sampling279

factors is provided in Figure 4. For the comparison with SBS, we used two naive heuristics for dealing280

with missing semantic frame as, otherwise, the evaluation would be done on a subset of the original281

images as illustrated in Figure 1. The first heuristic simply copies Bt in Dt for frames with missing282

semantics. The second heuristic uses the last available semantic frame St in order to still apply rule 1283

and rule 2 even when no up-to-date semantic frames are available. Let us note that this last naive284

heuristic corresponds to using ASBS with τA and τB chosen big enough so that the condition on the285

color of each pixel is always satisfied.286
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Figure 4. Overall F1 scores obtained with SBS and ASBS for four state-of-the-art BGS algorithms and
different sub-sampling factors. The performances of ASBS decrease much more slowly than those
of SBS with the decrease of the semantic frame rate and, therefore, are much closer to those of the
ideal case (SBS with all semantic maps computed, that is SBS 1:1), meaning that ASBS provides better
decisions for frames without semantics. On average, ASBS with 1 frame of semantics out of 25 frames
(ASBS 25:1) performs as well as SBS, with copy of Bt, with 1 frame of semantics out of 2 frames (SBS
2:1).

As can be seen, the performances of ASBS decrease much more slowly than those of SBS with the287

decrease of the semantic frame rate and, therefore, are much closer to those of the ideal case (SBS with288

all semantic maps computed, that is SBS 1:1), meaning that ASBS provides better decisions for frames289

without semantics.290

A second observation can be made concerning the heuristic repeating St. The performances291

become worse than the ones of the original BGS for semantic frame rates lower than 1 out of 5292

frames, but they are better than SBS when repeating Bt for high semantic frame rates. This observation293

emphasizes the importance of checking the color feature as done with ASBS instead of blindly repeating294

the corrections induced by semantics. The performances for lower frame rates are not represented295

for the sake of figure clarity but still decrease linearly to very low performances. For example, in the296

case of IUTIS_5, the performance drops to 0.67 at 25:1. In the rest of the paper, when talking about297

performances on SBS at different frame rates, we only consider the heuristic where we copy Bt as it is298

the one that behaves the best, given our experimental setup. Finally, it can be seen that, on average,299

ASBS with 1 frame of semantics out of 25 frames (ASBS 25:1) performs as well as SBS, with copy of Bt,300

with 1 frame of semantics out of 2 frames (SBS 2:1).301

In Figure 5, we also compare the effects of SBS with copied Bt in Dt for frames with missing302

semantics, and ASBS for different BGS algorithms by looking at their performances in the mean303

ROC space of CDNet 2014 (ROC space where the false and true foreground rates are computed304



Version June 19, 2020 submitted to J. Imaging 12 of 20

(a) SBS at 5:1 (b) ASBS at 5:1 (ours)

Figure 5. Effects of SBS and ASBS on BGS algorithms in the mean ROC space of CDNet 2014 [12]. Each
point represents the performance of a BGS algorithm and the end of the associated arrow indicates the
performance after application of the methods for a temporal sub-sampling factor of 5:1. We observe
that SBS improves the performances, but only marginally, whereas ASBS moves the performances
much closer to the oracle (upper left corner).

according to the rules of [12]). The points represent the performances of different BGS algorithms305

whose segmentation maps can be downloaded on the dataset website. The arrows represent the effects306

of SBS and ASBS for a temporal sub-sampling factor of 5:1. This choice of frame rate is motivated by307

the fact that it is the frame rate at which PSPNet can produce the segmentation maps on a GeForce308

GTX Titan X GPU. We observe that SBS improves the performances, but only marginally, whereas309

ASBS moves the performances much closer to the oracle (upper left corner).310

To better appreciate the positive impact of our strategy for replacing semantics, we also provide a311

comparative analysis of the F1 score by only considering the frames without semantics. We evaluate312

the relative improvement of the F1 score of ASBS, SBS and the second heuristic (SBS with copies of313

St) compared to the original BGS algorithm (which is equivalent to the first heuristic, SBS with copies314

of Bt). In Figure 6, we present our analysis on a per-category basis, in the same fashion as in [30]. As315

shown, the performances of ASBS are close to the ones of SBS for almost all categories, indicating316

that our substitute for semantics is adequate. We can also observe that the second heuristic does not317

perform well, and often degrades the results compared the original BGS algorithm. In this Figure, SBS318

appears to fail for two categories: “night videos” and “thermal”. This results from the ineffectiveness319

of PSPNet to process videos of these categories, as this network is not trained with such image types.320

Interestingly, ASBS is less impacted than SBS because it refrains from copying some wrong decisions321

enforced by semantics.322

Finally, in Figure 7, we provide the evolution of the optimal parameters τA and τB with323

the temporal sub-sampling factor (in the case of PAWCS). The optimal value decreases with the324

sub-sampling factor, implying that the matching condition on colors become tighter or, in other325

words, that rule A and rule B should be activated less frequently for lower semantic frame rates, as a326

consequence of the presence of more outdated colors in the color map for further images.327

4.3. A feedback mechanism for SBS and ASBS328

The methods SBS and ASBS are designed to be combined to a BGS algorithm to improve the329

quality of the final segmentation, but they do not affect the decisions taken by the BGS algorithm itself.330

In this section, we explore possibilities to embed semantics inside the BGS algorithm itself, which331

would remain blind to semantics otherwise. Obviously, this requires to craft modifications specific to a332

particular algorithm or family of algorithms, which can be effortful as explained hereinafter.333
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Figure 6. Per-category analysis. We display the relative improvements of the F1 score of SBS, ASBS, and
the second heuristic compared with the original algorithms, by considering only the frames without
semantics (at a 5:1 semantic frame rate).
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Figure 7. Evolution of the optimal thresholds τA and τB of the ASBS method when the semantic frame
rate is reduced. Note that the Manhattan distance associated to these thresholds is computed on 8-bit
color values. The results are shown here for the PAWCS algorithm, and follow the same trend for the
other BGS algorithms considered in Figure 4.
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Figure 8. Our feedback mechanism, which impacts the decisions of any BGS algorithm whose model
update is conservative, consists to replace the BG/FG segmentation of the BGS algorithm by the final
segmentation map improved by semantics (either by SBS or ASBS) to update the internal background
model.

The backbone of many BGS algorithms is composed of three main parts. First, an internal model334

of the background is kept in memory, for instance in the form of color samples or other types of335

features. Second, the input frame is compared to this model via a distance function to classify pixels as336

background or foreground. Third, the background model is updated to account for changes in the337

background over time.338

A first possibility to embed semantics inside the BGS algorithm is to include semantics directly339

in a joint background model integrating color and semantic features. This requires to formulate the340

relationships that could exist between them and to design a distance function accounting for these341

relationships, which is not trivial. Therefore, we propose a second way of doing so by incorporating342

semantics during the update, which is straightforward for algorithms whose model updating policy is343

conservative (as introduced in [5]). For those algorithms, the background model in pixel (x, y) may344

be updated if Bt(x, y) = BG, but it is always left unchanged if Bt(x, y) = FG, which prevents the345

background model from being corrupted with foreground features. In other words, the segmentation346

map Bt serves as an updating mask. As Dt produced by SBS or ASBS is an improved version of Bt, we347

can advantageously use Dt instead of Bt to update the background model, as illustrated in Figure 8.348

This introduces a semantic feedback which improves the internal background model and, consequently,349

the next segmentation map Bt+1, whether or not semantics is computed.350

To appreciate the benefit of a semantic feedback, we performed experiments for two well-known351

conservative BGS algorithms, ViBe and SuBSENSE, using the code made available by the authors (see352

[37] for ViBe and [38] for SuBSENSE). Let us note that the performances for SuBSENSE are slightly353

lower than the ones reported in Figure 4 as there are small discrepancies between the performance354

reported on the CDNet web site and the ones obtained with the available source code.355

Figure 9 (left column) reports the results of ASBS with the feedback mechanism on ViBe and356

SuBSENSE, and compares them to the original algorithm and the SBS method. Two main observations357

can be made. First, as for the results of the previous section, SBS and ASBS both improve the358

performances even when the semantic frame rate is low. Also, ASBS always performs better. Second,359
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Figure 9. Comparison of the performances, computed with the mean F1 score on the CDNet 2014, of
SBS and ASBS when there is a feedback that uses Dt to update the model of the BGS algorithm. The
results are given with respect to a decreasing semantic frame rate. It can be seen that SBS and ASBS
always improve the results of the original BGS algorithm and that a feedback is beneficial. Graphs in
the right column show that the intrinsic quality of the BGS algorithms is improved, as their output Bt,
prior to any combination with semantics, produces higher mean F1 scores.

including the feedback always improves the performances for both SBS and ASBS, and for both BGS360

algorithms. In the case of ViBe, the performance is much better when the feedback is included. For361

SuBSENSE, the performance is also improved, but only marginally. This might be due to the fact362

that ViBe has a very straightforward way of computing the update of the background model while363

SuBSENSE uses varying internal parameters and heuristics, calculated adaptively. It is thus more364

difficult to interpret the impact of a better updating map on SuBSENSE than it is on ViBe.365

We also investigated to what extend the feedback provides better updating maps to the BGS366

algorithm. For conservative algorithms, this means that, internally, the background model is built with367

better features. This measure can be evaluated using the output of the classification map, Bt.368

For that purpose, we compared the original BGS algorithm and the direct output, that is Bt in369

Figure 8, of the feedback method when the updating map is replaced by Dt obtained by either SBS or370

ASBS. As can be seen in Figure 9 (right column), using the semantic feedback always improves the371

BGS algorithm whether the updating map is obtained from SBS or ASBS. This means that the internal372

background model of the BGS algorithm is always enhanced and that, consequently, a feedback helps373

the BGS algorithm to take better decisions.374

Finally, let us note that ViBe, which is a real-time BGS algorithm, combined with semantics375

provided at a real-time rate (about 1 out of 5 frames) and with the feedback from ASBS has a mean F1376

performance of 0.746, which is the same performance as the original SuBSENSE algorithm (0.746) that377

is not real time [33]. This performance corresponds to the performance of RT-SBS presented in [31].378
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Table 3. Mean computation time ∆D (ms/frame) of SBS and ASBS.

∆D(SBS) 1.56
∆D(ASBS : frames with semantics) 2.12

∆D(ASBS : frames without semantics) 0.8

It can be seen that our method can thus help real-time algorithms to reach performances of the top379

unsupervised BGS algorithms while meeting the real-time constraint, which is a huge advantage in380

practice. We illustrate our two novel methods, ASBS and the feedback, in Figure 10 on one video of381

each category of the CDNet2014 dataset using ViBe as BGS algorithm.382

One last possible refinement would consist to adapt the updating rate of the background model383

according to a rule map similar to that of ASBS. More specifically, if Bt(x, y) = FG and Dt(x, y) = BG,384

we could assume that the internal background model in pixel (x, y) is inadequate and, consequently, we385

could increase the updating rate in that pixel. Tests performed on ViBe showed that the performances386

are improved with this strategy. However, this updating rate adaptation has to be tailored for each387

BGS algorithm specifically; therefore, we did not consider this final refinement in our experiments.388

We only evaluated the impact of the feedback mechanism on BGS algorithms with a conservative389

updating policy, and avoided any particular refinement that would have biased the evaluation.390

4.4. Time analysis of ASBS391

In this section, we show the timing diagram of ASBS and provide typical values for the different392

computation durations.393

The timing diagram of ASBS with feedback is presented in Figure 11. The inclusion of a feedback394

has two effects. First, we need to include the feedback time ∆F in the time needed for the background395

subtraction algorithm ∆B. In our case, as we only substitute the updating map by Dt, it can be396

implemented as a simple pointer replacement and therefore ∆F is negligible (in the following, we take397

∆F ' 0 ms). Second, we have to wait for the ASBS (or SBS) to finish before starting the background398

subtraction of the next frame.399

Concerning the computation time of BGS algorithms, Roy et al. [33] have provided a reliable400

estimate of the processing speed of leading unsupervised background subtraction algorithms. They401

show that the best performing ones are not real time. Only a handful of algorithms are actually real402

time, such as ViBe that can operate at about 200 fps on CDNet 2014 dataset, that is ∆B = 5 ms. With403

PSPNet, the semantic frame rate is of about 5 to 7 fps for a NVIDIA GeForce GTX Titan X GPU, which404

corresponds to ∆S ' 200 ms. It means that for 25 fps videos, we have access to semantics about once405

every 4 to 5 frames. In addition, Table 3 reports our observation about the mean execution time per406

frame of ∆D for SBS and ASBS. These last tests were performed on a single thread running on a single407

processor Intel(R) Xeon(X) E5-2698 v4 2.20GHz.408

Thus, in the case of ViBe, we start from a frame rate of about 200 fps in its original version to409

reach about 160 fps when using ASBS, which is still real time. This is important because, as shown410

in Section 4.3, the performances of ViBe with ASBS at a semantic frame rate of 1 out of 5 frames and411

feedback is the same as SuBSENSE that, alone, runs at a frame rate lower than 25 fps [33]. Hence,412

thanks to ASBS, we can replace BGS algorithms that work well but are too complex to run in real time413

and are often difficult to interpret by a combination of a much simpler BGS algorithm and a processing414

based on semantics, regardless of the frame rate of the last. Furthermore, ASBS is much easier to415

optimize as the parameters that we introduce are few in number and easy to interpret. In addition,416

we could also fine-tune the semantics, by selecting a dedicated set of objects to be considered, for a417

scene-specific setup. It is our belief that there are still some margins for further improvements.418
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Original ASBS + FeedbackBGS ASBSGround Truth

Figure 10. Illustration of the results of ASBS using ViBe as BGS algorithm. From left to right, we
provide the original color image, the ground truth, the BGS as provided by the original ViBe algorithm,
using our ASBS method without any feedback, and using ASBS and a feedback. Each line corresponds
to a representative frame of a video in each category of CDNet2014.



Version June 19, 2020 submitted to J. Imaging 18 of 20

Input 25 fps

Semantics ≈ 5 fps
GPU usage

Background subtraction
CPU usage

Processing by ASBS

CPU usage

It It+1 It+2 It+3 It+4 It+5

St

time

Bt−4

Dt−5 Dt

Bt−5

Dt−4 Dt−3 Dt−2 Dt−1

Bt−3 Bt−2 Bt−1 Bt Bt+1

with feedback

Feedback Feedback Feedback Feedback Feedback∆B

∆D

∆S

∆F

δI

Figure 11. Timing diagram of ASBS with a feedback mechanism in the case of a real-time BGS algorithm
(∆B < δI) satisfying the condition ∆B + ∆D < δI and the computation of semantics being not real-time
(∆S > δI). Note that the feedback time ∆F is negligible.

5. Conclusion419

In this paper, we presented a novel method, named ASBS, based on semantics for improving the420

quality of segmentation masks produced by background subtraction algorithms when semantics is not421

computed for all video frames. ASBS, which is derived from the semantic background subtraction422

method, is applicable to any off-the-shelf background subtraction algorithm and introduces two new423

rules in order to repeat semantic decisions, even when semantics and the background are computed424

asynchronously. We also presented a feedback mechanism to update the background model with425

better samples and thus take better decisions. We showed that ASBS improves the quality of the426

segmentation masks compared to the original semantic background subtraction method applied only427

to frames with semantics. Furthermore, ASBS is straightforward to implement and cheap in terms of428

computation time and memory consumption. We also showed that applying ASBS with the feedback429

mechanism allows to elevate an unsupervised real-time background subtraction algorithm to the430

performance of non real-time state-of-the-art algorithms.431

A more general conclusion is that, when semantics is missing for some frames but needed to432

perform a task (in our case, the task of background subtraction), our method provides a convenient433

and effective mechanism to interpolate the missing semantics. The mechanism of ASBS might thus434

enable real-time computer vision tasks requiring semantic information.435

Implementations of ASBS in the Python language for CPU and GPU are available at the following436

address https://github.com/cioppaanthony/rt-sbs.437
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