10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Article
Asynchronous Semantic Background Subtraction

Anthony Cioppa ““'*, Marc Braham “" and Marc Van Droogenbroeck

Montefiore Institute, University of Liege, Quartier Polytech 1, Allée de la Découverte 10, 4000 Liege, Belgium;
anthony.cioppa@uliege.be (A.C.); m.braham@uliege be (M.B.); m.vandroogenbroeck@uliege.be (M.V.D.)
* Correspondence: anthony.cioppa@uliege.be

Version June 19, 2020 submitted to J. Imaging

Keywords: Background subtraction; motion detection; scene labeling; semantic segmentation; video
processing.

Abstract: The method of Semantic Background Subtraction (SBS), which combines semantic
segmentation and background subtraction, has recently emerged for the task of segmenting moving
objects in video sequences. While SBS has been shown to improve background subtraction, a
major difficulty is that it combines two streams generated at different frame rates. This results
in SBS operating at the slowest frame rate of the two streams, usually being the one of the semantic
segmentation algorithm. We present a method, referred to as “Asynchronous Semantic Background
Subtraction” (ASBS), able to combine a semantic segmentation algorithm with any background
subtraction algorithm asynchronously. It achieves performances close to that of SBS while operating at
the fastest possible frame rate, being the one of the background subtraction algorithm. Our method
consists in analyzing the temporal evolution of pixel features to possibly replicate the decisions
previously enforced by semantics when no semantic information is computed. We showcase ASBS
with several background subtraction algorithms and also add a feedback mechanism that feeds
the background model of the background subtraction algorithm to upgrade its updating strategy
and, consequently, enhance the decision. Experiments show that we systematically improve the
performance, even when the semantic stream has a much slower frame rate than the frame rate of the
background subtraction algorithm. In addition, we establish that, with the help of ASBS, a real-time
background subtraction algorithm, such as ViBe, stays real time and competes with some of the best
non-real-time unsupervised background subtraction algorithms such as SuBSENSE.

1. Introduction

The goal of background subtraction (shortened to BGS in the following) algorithms is to
automatically segment moving objects in video sequences using a background model fed with features,
hand-designed or learned by a machine learning algorithm, generally computed for each video frame.
Then, the features of the current frame are compared to the features of the background model to
classify pixels either in the background or in the foreground. While being fast, these techniques remain
sensitive to illumination changes, dynamic backgrounds, or shadows that are often segmented as
moving objects.

Background subtraction has been an active field of research during the last years [1]. It was
promoted by the development of numerous variations of the GMM [2] and KDE [3] algorithms, and the
emergence of innovative algorithms such as SOBS [4], ViBe [5], SuBSENSE [6], PAWCS [7], IUTIS-5 [8],
and PCA variants [9,10]. Research in this field can count on large datasets annotated with ground-truth
data such as the BMC dataset [11], the CDNet 2014 dataset [12], or the LASIESTA dataset [13], which
was an incentive to develop supervised algorithms. In [14], Braham and Van Droogenbroeck were
the first to propose a background subtraction method using a deep neural network; this work paved
the way to other methods, proposed recently [15-18]. Methods based on deep learning have better

Submitted to J. Imaging , pages 1 —20 www.mdpi.com/journal/jimaging

http://www.mdpi.com
https://orcid.org/0000-0002-5314-9015
https://orcid.org/0000-0001-9162-3411
https://orcid.org/0000-0001-6260-6487
http://www.mdpi.com/journal/jimaging

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

Version June 19, 2020 submitted to . Imaging 2 of 20

segmentation performances, but they rely on the availability of a fair amount of annotated training
data; to some extent, they have lost their ability to deal with any camera operating in an unknown
environment. Note however that, in their seminal work [14], Braham and Van Droogenbroeck present a
variation of the network that is trained on ground-truth data generated by an unsupervised algorithm,
thus requiring no annotations at all; this idea was later reused by Babaee etal. [19].

Rather than building novel complicated methods to overcome problems related to challenging
operational conditions such as illumination changes, dynamic backgrounds, the presence of ghosts,
shadows, camouflage or camera jitter, another possibility consists in leveraging the information
provided by a universal semantic segmentation algorithm for improving existing BGS algorithms.
Semantic segmentation of images consists in labeling each pixel of an image with the class of its
enclosing object or region. It is a well-covered area of research, but it is only recently that it has
achieved the level of performance needed for real applications thanks to the availability of large
annotated datasets such as ADE20K [20], VOC2012 [21], Cityscapes [22] or COCO [23], and novel deep
neural networks [24-26]. In the following, we use the term semantics to denote the output of any of
these semantic segmentation networks.

The performances achieved by these deep networks for the task of semantic segmentation have
motivated their use for various computer vision tasks such as optical flow computation [27], or motion
segmentation [28,29]. The underlying idea is to segment objects and characterize their motion using,
in our case, background subtraction in video sequences [30]. It is important to note that semantic
segmentation algorithms are trained with annotated datasets that contain varied types of objects, most
of which do not appear in videos such as those of the CDNet 2014 dataset. In other words, semantic
segmentation algorithms are not tailored for the task of motion detection. While this is a suitable
feature to deal with arbitrary unknown scenes, it requires to validate if a network works well on the
typical images encountered in background subtraction.

Recently, Braham et al. [30] presented the semantic background subtraction method (named SBS
hereafter), that leverages semantics for improving background subtraction algorithms. This method,
which combines semantics and the output of a background subtraction algorithm, reduces the mean
error rate up to 20% for the 5 best unsupervised algorithms on CDNet 2014 [12]. Unfortunately, in
practice, it is often much slower to compute semantic segmentation than it is to perform background
subtraction. Consequently, to avoid reducing the frame rate of the images processed by background
subtraction, semantics needs to be computed on a dedicated hardware (such as a modern GPU) and
fed asynchronously, that is with missing semantic frames.

Problem Statement

To better understand the problem, let us analyze the timing diagram of SBS, as displayed in
Figure 1. For this time analysis, we assume that a GPU is used for semantic segmentation, and a CPU
is used for both the BGS algorithm and the SBS method. When the GPU is available, it starts analyzing
the input frame, otherwise it skips it. In the scenario of a BGS algorithm being faster than the semantic
segmentation network, which is the scenario that we examine in this paper, the BGS algorithm starts as
soon as the previous processing is over. The CPU then waits until semantics has been computed and a
semantic frame S; is available. The timeline analysis of SBS shows that: (1) with respect to the input
frame, the output frame is delayed by the time to compute semantics and to process the segmentation
map (this delay is unavoidable and constant), and (2) the output frame rate is mainly driven by the
slowest operation. It results that some output frames would be skipped, although the CPU computes
all the intermediate masks by the BGS algorithm. For example, in the case of Figure 1, it is possible to
apply the BGS algorithm to I;», but not to process By, with the help of semantics. In other words,
the slowest operation dictates its thythm (expressed in terms of frame rate) to the entire processing
chain. Hence, the semantics and the output have equal frame rates. This is not a problem as long as the
output frame rate (or equivalently that of semantics) is faster than the input frame rate. However, the

85

86

87

88

89

920

91

92

93

94

95

926

97

98

929

Version June 19, 2020 submitted to . Imaging 3 0f 20

I; Iy Iiyo Iiys Iiyy Iiys
Input 25 fps

Si—s

Semantics ~ 5 fps
GPU usage

Background subtraction
CPU usage

Processing by SBS
CPU usage

Figure 1. Timing diagram of a naive real-time implementation of the semantic background subtraction
(SBS) method when the frame rate of semantics is too slow to handle all the frames in real time. From
top to bottom, the time lines represent: the input frames I;, the computation of semantics S; by the
semantic segmentation algorithm (on GPU), the computation of intermediate segmentation masks By
by the BGS algorithm (on CPU), and the computation of output segmentation masks D; by the SBS
method (on CPU). Vertical lines indicate when an image is available and filled rectangular areas display
when a GPU or CPU performs a task. Arrows show the inputs required by the different tasks. This
diagram shows that even when the background subtraction algorithm is real time with respect to the
input frame rate, it is the computation of semantics that dictates the output frame rate.

Table 1. Comparison of the best mean F; score achieved for two semantic networks used in combination
with SBS on the CDNet 2014 dataset. These performances are obtained considering the SBS method,
where the output of the BGS algorithm is replaced by the ground-truth masks. This indicates how the
semantic information used in SBS would deteriorate a perfect BGS algorithm.

Networks SBS with PSPNet [25] | SBS with MaskRCNN [26]
Best mean F; 0.953 0.674

semantics frame rate is generally slower than the input frame rate, which means that it is not possible
to process the video at its full frame rate, or in order words, that the processing of SBS is not real time.

To increase the output frame rate to its nominal value, we need to either accelerate the production
of semantics, which induces the choice of a faster but less accurate semantic network, or to interpolate
the missing semantics. Our analysis on semantic networks showed that faster networks are not
exploitable because of their lack of precision. Also, semantic segmentation networks should be
preferred to instance segmentation networks. For example, we had to discard MaskRCNN [26] and
prefer the PSPNet network [25], as shown in Table 1. An alternative option is to interpolate missing
semantics. Naive ideas would be to skip the SBS processing step in the absence of semantics or to
repeat the last pixelwise semantic information when it is missing. Both ideas proved unsuccessful,
as shown in our experiments (see Section 4). A better idea is to avoid any mechanism that would
substitute itself to the difficult calculation of semantics and, instead, replicate the decisions enforced
previously with the help of semantics to compensate for the lack of semantics later on. The underlying
question is whether or not we should trust and repeat decisions taken by SBS [30]. This idea has already
been applied in one of our recent work, called Real-time Semantic Background Subtraction [31] (noted
RT-SBS) with ViBe, a real-time BGS algorithm, and forms the basis of our new method, ASBS. This
paper presents our method in a complementary way to the original paper, with further experiments
and generalizes it to all background subtraction algorithms, including non-real-time ones.

Version June 19, 2020 submitted to . Imaging 4 0f 20

Table 2. Decision table as implemented by SBS. Rows corresponding to “don’t-care” values (X) cannot
be encountered, assuming that gg < TrG.

Bi(x,y) | S;°(x,y) <t | Sio(x,y) > TG || Di(x,y)
BG false false BG
BG false true FG
BG true false BG
BG true true X
FG false false FG
FG false true FG
FG true false BG
FG true true X

The paper is organized as follows. Section 2 describes the semantic background subtraction (SBS)
method that underpins our developments. In Section 3, we first discuss the classification problem of
background subtraction and take into account the specificities of semantics. Then, we describe our
new method. Experimental results are provided in Section 4, and compared with those of the original
semantic background subtraction method when semantics is missing for some frames. Finally, we
conclude in Section 5.

Contributions. We summarize our contributions as follows. (i) We propose a novel method, called
ASBS, for the task of background subtraction. (ii) We alleviate the problem of the slow computation of
semantics by substituting it for some frames with the help of a change detection algorithm. This makes
our method usable in real time. (iii) We show that at a semantic framerate corresponding to real-time
computations, we achieve results close to that of SBS, meaning that our substitute for semantics is
adequate. (iv) We show that our method ASBS with a real-time BGS algorithm such as ViBe and a
simple feedback mechanism achieves performances close to the ones of non real-time state-of-the-art
BGS algorithms such as SuBSENSE, while satisfying the real-time constraint.

2. Description of the semantic background subtraction method

Semantic background subtraction (SBS) [30,32] is a method based on semantics provided by deep
segmentation networks that enriches the pixel-wise decisions of a background subtraction algorithm.
In this section, we detail how SBS uses semantics to improve the classification of a BGS algorithm.
This description is necessary as SBS underpins our strategy to improve background subtraction in the
absence of semantics for some frames.

SBS combines three results at each pixel (x,y): the original classification result between
background (BG) and foreground (FG) at time ¢, as produced by a chosen BGS algorithm, denoted
by B; € {BG,FG}, and two booleans based on the semantic signals SE¢ € [0,1] and SF¢ € [-1,1],
derived from a semantic probability estimate defined hereinafter. These results are then combined to
output the final result D; € {BG, FG}, as detailed in Table 2.

The two semantic signals (SPS and SFC) are derived from a semantic probability estimate at each
pixel location, denoted by ps ;(x, y). This value is an estimate of the probability that pixel (x, y) belongs
to one of the objects contained in a set of potentially moving objects (person, car, etc) and depends
on the segmentation network itself. The authors of [30] use the PSPNet [25] semantic segmentation
network and compute pg;(x, y) by applying a softmax function on the vector of output scores for this
pixel and add up the obtained values for the subset of classes of interest (see Section 4.1 for more
implementation details).

The first semantic signal, SPS(x,y), is the semantic probability estimate itself: SPS(x,y) =
ps+(x,y). It has a low value when the probability is close to zero, meaning that there is no object of

136

137

138

Version June 19, 2020 submitted to . Imaging 50f 20

interest for that pixel. According to rulel, if this signal is lower than a threshold g, the pixel is
labeled as background:

rule1 : if SP(x,y) < 13, then D;(x,y) + BG. (1)

A convenient interpretation of rule 1 is that when it is activated (that is, when the condition is true), the
decision of the BGS algorithm is shadowed. Consequently, the amount of false positives (pixels wrongly
classified in the foreground), typically generated by illumination changes, dynamic backgrounds or
the presence of ghosts, is reduced since the semantic segmentation is unaffected by these well-known
BGS problems.

The second semantic signal, SfC(x, y), aims at improving the detection of foreground objects by
detecting a local increase of the semantic probability estimate compared to a semantic background
model, denoted by M;. The signal SFC is calculated as the difference between the current semantic
probability estimate and the value stored in the semantic background model:

SiC(x,y) = pse(x,y) — Mi(x,y), ¢)

where the semantic background model M; is initialized via:

Mo(x,y) ¢ pso(x,y), 3)
and is possibly updated for each pixel only if the pixel is classified as belonging to the background:
if Di(x,y) =BG, theny, Miy1(x,y) < psi(x,y), 4)

with the expression “if A then, B” meaning that action B is applied with a probability « if condition A
is true. The goal for M;(x,y) is to store the semantic probability estimate of the background in that
pixel. When the value of SFG(x,) is large, a jump in the semantic probability estimate for pixel (x,)
is observed, and we activate rule 2 as defined by:

rule2 : if SF¢(x,y) > Trg, then Dy(x,y) + FG, ®)

where TG is a second positive threshold.

Again, when the condition of rule2 is fulfilled, the result of the BGS algorithm is shadowed.
This second rule aims at reducing the number of missing foreground detections, for example when
a foreground object and the background appear to have similar colors (this is known as the color
camoulflage effect). Note that, with a proper choice of threshold values 13 < Trg, both rules are
fully compatible meaning that they are never activated simultaneously. This relates to the “don’t-care”
situations described in Table 2.

The decision table of Table 2 also shows that, when none of the two rules are activated, we use the
result of the companion BGS algorithm as a fallback decision:

fallback : D¢(x,y) < Bi(x,y). (6)

3. Asynchronous semantic background subtraction

To combine the output of any background subtraction to semantics according to SBS in real
time, it is necessary to calculate semantics at least at the same frame rate as the input video or BG5S
stream, which is currently not achievable with high performances on any kind of videos, even on a
GPU. Instead of lowering the frame rate or reducing the image size, an alternative possibility consists
to interpolate missing semantics. Naive ideas, such as skipping the combination step of SBS in the
absence of semantics or repeating the last pixelwise semantic information when it is missing, have
proved unsuccessful, as shown in our experiments (see Section 4). Hence, it is better to find a substitute

Version June 19, 2020 submitted to . Imaging 6 of 20

for missing semantics. Obviously, it is unrealistic to find a substitute that would be as powerful as
full semantics while being faster to calculate. Instead, we propose to replicate the decisions enforced
previously with the help of semantics to compensate for the lack of semantics later on. The underlying
question is whether or not we should trust and repeat decisions taken by SBS [30]. This idea is the
basis of our new method.

The cornerstone for coping with missing semantics is the fact that the true class (foreground or
background) of a pixel generally remains unchanged between consecutive video frames, as long as
the object in that pixel remains static. It is therefore reasonable to assume that if a correct decision
is enforced with the help of semantics for a given pixel location and video frame, the same decision
should be taken in that pixel location for the subsequent frames (when semantics is not computed)
if the features of that pixel appear to be unchanged. Our method, named Asynchronous Semantic
Background Subtraction (ASBS), thus consists in interpolating the decisions of SBS by memorizing
information about the activation of rules as well as the pixel features, which we chose to be the input
color in our case, when semantics is computed (SBS is then applied), and copying the decision of the
last memorized rule when semantics is not computed if the color remains similar (which tends to
indicate that the object is the same).

To further describe ASBS, let us first focus on a substitute for rule 1, denoted rule A hereafter,
that replaces rule 1 in the absence of semantics. If rule 1 was previously activated in pixel (x,y) while
the current color has remained similar, then D;(x, y) should be set to the background. To enable this
mechanism, we have to store, in a rule map denoted by R, if rule 1 of SBS is activated; this is indicated
by R(x,y)<1. Simultaneously, we memorize the color of that pixel in a color map, denoted by C. With
these components, rule A becomes:

rule A : if R(x,y) =1 and dist (C(x,y), I(x,y)) < Ta,
then D;(x,y) < BG,)

where 74 is a fixed threshold applied on the Manhattan (or Euclidean) distance between the color
C(x,y) stored in the color map and the input color I;(x, y). Theoretically, it is also possible to refine the
color model by adopting a model used by a BGS algorithm in which case the distance function should
be chosen accordingly; our choice to favor a simple model instead proved effective.

Likewise, we can replace rule 2 by rule B in the absence of semantics. When rule 2 is activated,
this decision is stored in the rule map (this is indicated by R(x,y)<2), and the color of the pixel is
stored in the color map C. Rule B thus becomes:

rule B: if R(x,y) =2 and dist (C(x,y), I:(x,y)) < 1B,
then Dy(x,y) < FG. ®)

where 73 is a second threshold. Again, when neither rule A nor rule B are activated, the BGS decision
is used as a fallback decision.

The updates of the rules and color map are detailed in Algorithm 1. It is an add-on for SBS that
memorizes decisions and colors based on computed semantics upon activation of a rule. The second
component of ASBS, described in Algorithm 2, is the application of rule A, rule B, or the fallback
decision, when no semantics is available.

Note that the two pseudo-codes, which define pixel-wise operations, could be applied within
the same video frame if the semantics was only computed inside a specific region-of-interest. In
that scenario, we would apply the pseudo-code of Algorithm 2 for pixels without semantics and
the pseudo-code of Algorithm 1 for pixels with semantics. It is therefore straightforward to adapt
the method from a temporal sub-sampling to a spatial sub-sampling, or to a combination of both.
However, a typical setup is that semantics is computed for the whole frame and is skipped for the next
few frames at a regular basis. In section 4, we evaluate ASBS for this temporal sub-sampling since it

Version June 19, 2020 submitted to . Imaging 7 of 20

Is semantics computed

4 for pixel (x,y)?
BGS Yes No
~ Semantic Color
' background | ;-+---» Ma
- model P
o | o |
< I N | g
'g_i | Rule Map
> = C| T ¥ T
Bt Apply | Apply,
Rule 1 Rule A |
Rule 2 ' Rule B
Fallback | Fallback
SBS /
/ ASBS

D¢

Figure 2. Schematic representation of our method named ASBS, extending SBS [30], capable to
combine the two asynchronous streams of semantics and background subtraction masks to improve
the performances of BGS algorithms. When semantics is available, ASBS applies Rule 1, Rule 2, or
selects the fallback, and it updates the color and rule maps. Otherwise, ASBS applies Rule A, Rule B, or
it selects the fallback.

Version June 19, 2020 submitted to . Imaging 8 of 20

Algorithm 1 Pseudo-code of ASBS for pixels with semantics. The rule and color maps are updated
during the application of SBS (note that R is initialized with zero values at the program start).

Require: I; is the input color frame (at time #)
1: for all (x,y) with semantics do

2. Di(x,y) < apply SBSin (x,y)
3: if rule 1 was activated then

4 R(x,y) 1

5: C(x,y) «+ L(x,y)

6: else if rule 2 was activated then
7: R(x,y) <2

8: C(x,y) < L(x,y)

9: else

10: R(x,y) «+ 0

11: end if

12: end for

Algorithm 2 Pseudo-code of ASBS for pixels without semantics, rule A, rule B or the fallback are
applied.

Require: I; is the input color frame (at time ¢)
1: for all (x,y) without semantics do

2; if R(x,y) = 1 then

3: if dist (C(x,v), Ii(x,y)) < T4 then
4: D:(x,y) < BG

5: end if

6: else if R(x,y) = 2 then

7: if dist (C(x,v), It(x,y))) < tp then
8: Dt(x, y) +— FG

9: end if
10: else
11: Di(x,y) < Bi(x,y)
12: end if
13: end for

has a unique implementation, while spatial sub-sampling can involve complex strategies for choosing
the regions where to compute the semantics and is application-dependent anyway. Our method,
illustrated in Figure 2 for the case of entire missing semantic frames, is applicable in combination with
virtually any BGS algorithm.

Timing diagrams of ASBS

The ASBS method introduces a small computational overhead (a distance has to be computed
for some pixels) and memory increase (a rule map and a color map are memorized). However, these
overheads are negligible with respect to the computation of semantics. The practical benefits of ASBS
can be visualized on a detailed timing diagram of its components. For a formal discussion, we use the
following notations:

e [, St, By, Dy respectively denote an arbitrary input, semantics, background segmented by the
BGS algorithm, and the background segmented by ASBS, indexed by ¢.

e J; represents the time between two consecutive input frames.

o Ag, Ap, Ap are the times needed to calculate the semantics, the BGS output, and to apply SBS or
ASBS, which are supposed to be the same, respectively. These times are reasonably constant.

236

237

238

240

Version June 19, 2020 submitted to . Imaging 9 of 20

I I Iiyo Iiys Iiyy Iiys

Semantics &~ 5 fps
GPU usage

Background subtraction
CPU usage

Dy D Dy Dy

Dy 13 ¢ ¢ Dy
Procgs}s)%lguz)gg?SBS i rule 1/2 i rule A/B i rule A/B i rule A/B i rule A/B i rule 1/2

Figure 3. Timing diagram of ASBS in the case of a real-time BGS algorithm (Ap < ¢7) satisfying the

time

condition Ag + Ap < J;. Note that the output stream is delayed by a constant Ag + Ap time with
respect to the input stream.

We assume that semantics is calculated on a GPU, whereas the BGS and the application of the rules are
calculated on a single threaded CPU hardware. Also, the frame rate of semantics is supposed to be
smaller than that of BGS; thatis Ag > Ap.

We now examine two different scenarios. The first scenario is that of a real-time BGS algorithm
(Ap < ¢;) satistying the condition A + Ap < ¢;. This scenario, illustrated in Figure 3, can be obtained
with the ViBe [5] BGS algorithm for example; this scenario is further described in [31]. On the timing
diagram, it can be seen that the output frame rate is then equal to the input frame rate, all frames being
segmented either by SBS (rule 1/2) or ASBS (rule A/ B) with a time delay corresponding approximately
to Ag. We present illustrative numbers for this timing diagram in Section 4.4.

In a second scenario, the frame rate of the BGS is too slow to accommodate to real time with
ASBS. It means that Ag + Ap > J;. In this case, the output frame rate is mainly dictated by Ag, since
Ap >> Ap. The input frame rate can then be viewed as slowed down by the BGS algorithm, in
which case the timing diagrams fall back to the same case as a real-time BGS algorithm by artificially
changing 6; to §;, where §; = Ag + Ap > §;. It is a scenario that, unfortunately, follows the current
trend to produce better BGS algorithms at the price of more complexity and lower processing frame
rates. Indeed, according to our experiments and [33], the top unsupervised BGS algorithms ranked on
the CDNet web site (see http://changedetection.net) are not real time.

4. Experimental results

In this section, we evaluate the performances of our novel method ASBS and compare them to
those of the original BGS algorithm and those of the original SBS method [30]. First, in Section 4.1, we
present our evaluation methodology. This comprises the choice of a dataset along with the evaluation
metric, and all needed implementation details about ASBS, such as how we compute the semantics,
and how we choose the values of the different thresholds. In Section 4.2, we evaluate ASBS when
combined with state-of-the-art BGS algorithms. Section 4.3 is devoted to a possible variant of ASBS
which includes a feedback mechanism that can be applied to any conservative BGS algorithm. Finally,
we discuss the computation time of ASBS in Section 4.4.

4.1. Evaluation methodology

For the quantitative evaluation, we chose the CDNet 2014 dataset [12] which is composed of 53
video sequences taken in various environmental conditions such as bad weather, dynamic backgrounds

http://changedetection.net

Version June 19, 2020 submitted to . Imaging 10 of 20

and night conditions, as well as different video acquisition conditions, such as PTZ and low frame rate
cameras. This challenging dataset is largely employed within the background subtraction community
and currently serves as the reference dataset to compare state-the-art BGS techniques.

We compare performances on this dataset according to the overall F; score, which is one of the
most widely used performance scores for this dataset. For each video, F; is computed by:

B 2TP ©)
~ 2TP+FP+FEN’

where TP (true positives) is the number of foreground pixels correctly classified, FP (false positives) the
number of background pixels incorrectly classified, and FN (false negatives) the number of foreground
pixels incorrectly classified. The overall F; score on the entire dataset is obtained by first averaging
the F1 scores over the videos, then over the categories, according the common practice of CDNet [12].
Note that this averaging introduces inconsistencies between overall scores that can be avoided by
using summarization instead, as described in [34], but to allow a fair comparison with the other BGS
algorithms, we decided to stick to the original practice of [12] for our experiments.

We compute the semantics as in [30], that is with the semantic segmentation network PSPNet [25]
trained on the ADE20K dataset [35] (using the public implementation [36]). The network outputs a
vector containing 150 real numbers for each pixel, where each number is associated to a particular
object class within a set of 150 mutually exclusive classes. The semantic probability estimate pg;(x,y)
is computed by applying a softmax function to this vector and summing the values obtained for classes
that belong to a subset of classes that are relevant for motion detection. We use the same subset of
classes as in [30] (person, car, cushion, box, boot, boat, bus, truck, bottle, van, bag and bicycle), whose
elements correspond to moving objects of the CDNet 2014 dataset.

For dealing with missing semantics, since the possibilities to combine spatial and temporal
sampling schemes are endless, we have restricted the study to the case of a temporal sub-sampling of
one semantic frame per X original frames; this sub-sampling factor is referred to as X:1 hereafter. In
other scenarios, semantics could be obtained at a variable frame rate or for some variable regions of
interest, or even a mix of these sub-sampling schemes.

The four thresholds are chosen as follows. For each BGS algorithm, we optimize the thresholds
(t8G, TrG) of SBS with a grid search to maximize its overall F; score. Then, in a second time, we freeze
the optimal thresholds (T, Ti;) found by the first grid search and optimize the thresholds (74, 5) of
ASBS by a second grid search for each pair (BGS algorithm, X:1), to maximize the overall F; score once
again. Such methodology allows a fair comparison between SBS and ASBS as the two techniques use
the same common parameters (735, T) and ASBS is compared to an optimal SBS method. Note that
the & parameter is chosen as in [30].

The segmentation maps of the BGS algorithms are either taken directly from the CDNet 2014
website (when no feedback mechanism is applied) or computed using the public implementations
available at [37] for ViBe [5] and [38] for SuBSENSE [6] (when the feedback mechanism of Section 4.3
is applied).

R

4.2. Performances of ASBS

A comparison of the performances obtained with SBS and ASBS for four state-of-the-art BGS
algorithms (IUTIS-5 [8], PAWCS [7], SuBSENSE [6], and WebSamBe [39]) and for different sub-sampling
factors is provided in Figure 4. For the comparison with SBS, we used two naive heuristics for dealing
with missing semantic frame as, otherwise, the evaluation would be done on a subset of the original
images as illustrated in Figure 1. The first heuristic simply copies B; in D; for frames with missing
semantics. The second heuristic uses the last available semantic frame S; in order to still apply rule 1
and rule 2 even when no up-to-date semantic frames are available. Let us note that this last naive
heuristic corresponds to using ASBS with 74 and tp chosen big enough so that the condition on the
color of each pixel is always satisfied.

Version June 19, 2020 submitted to . Imaging 11 0f 20

IUTIS-5 [8] PAWCS [7]
0.81 T T [T T
‘ 0.78 %
08 0.7\
© \
g ‘\
5 0.79 0.76 *G\&
B\S\B\B*B\E—ELE—EF 555588800004 0.75 | E\Bﬂﬂ\ﬁ’a\sfa/aﬂ—&ﬂﬂ_e,g/a;ﬁ e e
078 | | | | I I I
1 5 10 15 20 25 1 5 10 15 20 25
SuBSENSE [6] WeSamBe [39]
079 [T T B T T
i 0.79 |
i
= \
o)
>
¢} B\&Mﬁ
0.75 E;E*”E’E'*EFEFEI—EI»EI—EI*EFEFEI»EI—EI—EI*EFEI—EF¥] 0.75 L E\B’B’Bﬂﬂ—a—g—aﬂ—aﬂﬂaaﬂﬂﬂij
074 | | | | | | | |
1 5 10 15 20 25 1 5 10 15 20 25
Temporal sub-sampling factor X:1 Temporal sub-sampling factor X:1
— Original BGS —=— SBS (with copy of By) SBS (with copy of S;) —— ASBS without feedback

Figure 4. Overall F; scores obtained with SBS and ASBS for four state-of-the-art BGS algorithms and
different sub-sampling factors. The performances of ASBS decrease much more slowly than those
of SBS with the decrease of the semantic frame rate and, therefore, are much closer to those of the
ideal case (SBS with all semantic maps computed, that is SBS 1:1), meaning that ASBS provides better
decisions for frames without semantics. On average, ASBS with 1 frame of semantics out of 25 frames
(ASBS 25:1) performs as well as SBS, with copy of B, with 1 frame of semantics out of 2 frames (SBS
2:1).

As can be seen, the performances of ASBS decrease much more slowly than those of SBS with the
decrease of the semantic frame rate and, therefore, are much closer to those of the ideal case (SBS with
all semantic maps computed, that is SBS 1:1), meaning that ASBS provides better decisions for frames
without semantics.

A second observation can be made concerning the heuristic repeating S;. The performances
become worse than the ones of the original BGS for semantic frame rates lower than 1 out of 5
frames, but they are better than SBS when repeating B; for high semantic frame rates. This observation
emphasizes the importance of checking the color feature as done with ASBS instead of blindly repeating
the corrections induced by semantics. The performances for lower frame rates are not represented
for the sake of figure clarity but still decrease linearly to very low performances. For example, in the
case of IUTIS_5, the performance drops to 0.67 at 25:1. In the rest of the paper, when talking about
performances on SBS at different frame rates, we only consider the heuristic where we copy B; as it is
the one that behaves the best, given our experimental setup. Finally, it can be seen that, on average,
ASBS with 1 frame of semantics out of 25 frames (ASBS 25:1) performs as well as SBS, with copy of By,
with 1 frame of semantics out of 2 frames (SBS 2:1).

In Figure 5, we also compare the effects of SBS with copied B; in D; for frames with missing
semantics, and ASBS for different BGS algorithms by looking at their performances in the mean
ROC space of CDNet 2014 (ROC space where the false and true foreground rates are computed

Version June 19, 2020 submitted to . Imaging

Mean true foreground rate

0.90

Zoom in the mean ROC space

0.80

0.75 4

0.70

0.65

0.60

0.55

0.00

001 002 003 004 005 006 007
Mean false foreground rate

(a) SBS at 5:1

0.08

o
o
o

12 of 20

Zoom in the mean ROC space

o o o o
~ ~ [=:] -]
Qo w o w
:

Mean true foreground rate
o
o
v

0.60 1

0.55

0.00

001 002 003 004 005 006 007
Mean false foreground rate

(b) ASBS at 5:1 (ours)

0.08

Figure 5. Effects of SBS and ASBS on BGS algorithms in the mean ROC space of CDNet 2014 [12]. Each
point represents the performance of a BGS algorithm and the end of the associated arrow indicates the
performance after application of the methods for a temporal sub-sampling factor of 5:1. We observe
that SBS improves the performances, but only marginally, whereas ASBS moves the performances
much closer to the oracle (upper left corner).

according to the rules of [12]). The points represent the performances of different BGS algorithms
whose segmentation maps can be downloaded on the dataset website. The arrows represent the effects
of SBS and ASBS for a temporal sub-sampling factor of 5:1. This choice of frame rate is motivated by
the fact that it is the frame rate at which PSPNet can produce the segmentation maps on a GeForce
GTX Titan X GPU. We observe that SBS improves the performances, but only marginally, whereas
ASBS moves the performances much closer to the oracle (upper left corner).

To better appreciate the positive impact of our strategy for replacing semantics, we also provide a
comparative analysis of the F; score by only considering the frames without semantics. We evaluate
the relative improvement of the F; score of ASBS, SBS and the second heuristic (SBS with copies of
St) compared to the original BGS algorithm (which is equivalent to the first heuristic, SBS with copies
of By). In Figure 6, we present our analysis on a per-category basis, in the same fashion as in [30]. As
shown, the performances of ASBS are close to the ones of SBS for almost all categories, indicating
that our substitute for semantics is adequate. We can also observe that the second heuristic does not
perform well, and often degrades the results compared the original BGS algorithm. In this Figure, SBS
appears to fail for two categories: “night videos” and “thermal”. This results from the ineffectiveness
of PSPNet to process videos of these categories, as this network is not trained with such image types.
Interestingly, ASBS is less impacted than SBS because it refrains from copying some wrong decisions
enforced by semantics.

Finally, in Figure 7, we provide the evolution of the optimal parameters 74 and 73 with
the temporal sub-sampling factor (in the case of PAWCS). The optimal value decreases with the
sub-sampling factor, implying that the matching condition on colors become tighter or, in other
words, that rule A and rule B should be activated less frequently for lower semantic frame rates, as a
consequence of the presence of more outdated colors in the color map for further images.

4.3. A feedback mechanism for SBS and ASBS

The methods SBS and ASBS are designed to be combined to a BGS algorithm to improve the
quality of the final segmentation, but they do not affect the decisions taken by the BGS algorithm itself.
In this section, we explore possibilities to embed semantics inside the BGS algorithm itself, which
would remain blind to semantics otherwise. Obviously, this requires to craft modifications specific to a
particular algorithm or family of algorithms, which can be effortful as explained hereinafter.

Version June 19, 2020 submitted to . Imaging 13 of 20

B SBS
IEEm ASBS
I Heuristic n°2

Bad Weather -r
Baseline _l'
Camera Jitter -F
Dynamic Background r
Intermittent Object Motion -
Low Framerate -

Night Videos

Categories

PTZ

Shadow

Thermal

Turbulence

Whole CDNET dataset

y
1

-30 -20 -10 0 10 20 30 40
Improvement on F (%)

Figure 6. Per-category analysis. We display the relative improvements of the F; score of SBS, ASBS, and
the second heuristic compared with the original algorithms, by considering only the frames without
semantics (at a 5:1 semantic frame rate).

Evolution of the optimal values of T4 and 3

105

85

65

45

Optimal value

S5t | | | |]
5 10 15 20 25
Temporal sub-sampling factor X:1

Figure 7. Evolution of the optimal thresholds 74 and 75 of the ASBS method when the semantic frame
rate is reduced. Note that the Manhattan distance associated to these thresholds is computed on 8-bit
color values. The results are shown here for the PAWCS algorithm, and follow the same trend for the
other BGS algorithms considered in Figure 4.

334

Version June 19, 2020 submitted to . Imaging 14 of 20

BGS Algorithm

Input Frame —,. Distance function ——r B,

Background model

Background model «—— update function

! | SBS
1 : or
ASBS

Feedback

v

Dy

Figure 8. Our feedback mechanism, which impacts the decisions of any BGS algorithm whose model
update is conservative, consists to replace the BG/FG segmentation of the BGS algorithm by the final
segmentation map improved by semantics (either by SBS or ASBS) to update the internal background
model.

The backbone of many BGS algorithms is composed of three main parts. First, an internal model
of the background is kept in memory, for instance in the form of color samples or other types of
features. Second, the input frame is compared to this model via a distance function to classify pixels as
background or foreground. Third, the background model is updated to account for changes in the
background over time.

A first possibility to embed semantics inside the BGS algorithm is to include semantics directly
in a joint background model integrating color and semantic features. This requires to formulate the
relationships that could exist between them and to design a distance function accounting for these
relationships, which is not trivial. Therefore, we propose a second way of doing so by incorporating
semantics during the update, which is straightforward for algorithms whose model updating policy is
conservative (as introduced in [5]). For those algorithms, the background model in pixel (x,y) may
be updated if B;(x,y) = BG, but it is always left unchanged if Bi(x,y) = FG, which prevents the
background model from being corrupted with foreground features. In other words, the segmentation
map B; serves as an updating mask. As D; produced by SBS or ASBS is an improved version of B;, we
can advantageously use D; instead of B; to update the background model, as illustrated in Figure 8.
This introduces a semantic feedback which improves the internal background model and, consequently,
the next segmentation map By 1, whether or not semantics is computed.

To appreciate the benefit of a semantic feedback, we performed experiments for two well-known
conservative BGS algorithms, ViBe and SuBSENSE, using the code made available by the authors (see
[37] for ViBe and [38] for SUBSENSE). Let us note that the performances for SuBSENSE are slightly
lower than the ones reported in Figure 4 as there are small discrepancies between the performance
reported on the CDNet web site and the ones obtained with the available source code.

Figure 9 (left column) reports the results of ASBS with the feedback mechanism on ViBe and
SuBSENSE, and compares them to the original algorithm and the SBS method. Two main observations
can be made. First, as for the results of the previous section, SBS and ASBS both improve the
performances even when the semantic frame rate is low. Also, ASBS always performs better. Second,

Version June 19, 2020 submitted to . Imaging 15 of 20

ViBe + ASBS with feedback evaluated on Dy ViBe + ASBS with feedback evaluated on By

0.75 075 ‘ ‘ ‘ ‘]

0.7

0.657&\3\3 T 065

g
B
58555 55885080885 0800

0.7

Mean F;

0.6 | \ | | 0.6 | | | |
5 10 15 20 25 5 10 15 20 25
SuBSENSE + ASBS with feedback evaluated on Dy SuBSENSE + ASBS with feedback evaluated on B;
0.78 5 0.78 T T T T
)
§ 075 0.75 | R
=
0.73 0.73
5 10 15 20 25
Temporal sub-sampling factor X:1 Temporal sub-sampling factor X:1
— Original BGS —=— SBS —— Feedback —— ASBS without feedback ASBS with feedback

Figure 9. Comparison of the performances, computed with the mean F; score on the CDNet 2014, of
SBS and ASBS when there is a feedback that uses D; to update the model of the BGS algorithm. The
results are given with respect to a decreasing semantic frame rate. It can be seen that SBS and ASBS
always improve the results of the original BGS algorithm and that a feedback is beneficial. Graphs in
the right column show that the intrinsic quality of the BGS algorithms is improved, as their output By,
prior to any combination with semantics, produces higher mean F; scores.

including the feedback always improves the performances for both SBS and ASBS, and for both BGS
algorithms. In the case of ViBe, the performance is much better when the feedback is included. For
SuBSENSE, the performance is also improved, but only marginally. This might be due to the fact
that ViBe has a very straightforward way of computing the update of the background model while
SuBSENSE uses varying internal parameters and heuristics, calculated adaptively. It is thus more
difficult to interpret the impact of a better updating map on SuBSENSE than it is on ViBe.

We also investigated to what extend the feedback provides better updating maps to the BGS
algorithm. For conservative algorithms, this means that, internally, the background model is built with
better features. This measure can be evaluated using the output of the classification map, B;.

For that purpose, we compared the original BGS algorithm and the direct output, that is B in
Figure 8, of the feedback method when the updating map is replaced by D; obtained by either SBS or
ASBS. As can be seen in Figure 9 (right column), using the semantic feedback always improves the
BGS algorithm whether the updating map is obtained from SBS or ASBS. This means that the internal
background model of the BGS algorithm is always enhanced and that, consequently, a feedback helps
the BGS algorithm to take better decisions.

Finally, let us note that ViBe, which is a real-time BGS algorithm, combined with semantics
provided at a real-time rate (about 1 out of 5 frames) and with the feedback from ASBS has a mean F
performance of 0.746, which is the same performance as the original SUBSENSE algorithm (0.746) that
is not real time [33]. This performance corresponds to the performance of RT-SBS presented in [31].

Version June 19, 2020 submitted to . Imaging 16 of 20

Table 3. Mean computation time Ap (ms/frame) of SBS and ASBS.

Ap(SBS) 1.56
Ap(ASBS : frames with semantics) 2.12
Ap(ASBS : frames withoutsemantics) | 0.8

It can be seen that our method can thus help real-time algorithms to reach performances of the top
unsupervised BGS algorithms while meeting the real-time constraint, which is a huge advantage in
practice. We illustrate our two novel methods, ASBS and the feedback, in Figure 10 on one video of
each category of the CDNet2014 dataset using ViBe as BGS algorithm.

One last possible refinement would consist to adapt the updating rate of the background model
according to a rule map similar to that of ASBS. More specifically, if B;(x,y) = FG and D;(x,y) = BG,
we could assume that the internal background model in pixel (x, y) is inadequate and, consequently, we
could increase the updating rate in that pixel. Tests performed on ViBe showed that the performances
are improved with this strategy. However, this updating rate adaptation has to be tailored for each
BGS algorithm specifically; therefore, we did not consider this final refinement in our experiments.
We only evaluated the impact of the feedback mechanism on BGS algorithms with a conservative
updating policy, and avoided any particular refinement that would have biased the evaluation.

4.4. Time analysis of ASBS

In this section, we show the timing diagram of ASBS and provide typical values for the different
computation durations.

The timing diagram of ASBS with feedback is presented in Figure 11. The inclusion of a feedback
has two effects. First, we need to include the feedback time A in the time needed for the background
subtraction algorithm Ap. In our case, as we only substitute the updating map by Dy, it can be
implemented as a simple pointer replacement and therefore Ar is negligible (in the following, we take
Ar ~ 0ms). Second, we have to wait for the ASBS (or SBS) to finish before starting the background
subtraction of the next frame.

Concerning the computation time of BGS algorithms, Roy ef al. [33] have provided a reliable
estimate of the processing speed of leading unsupervised background subtraction algorithms. They
show that the best performing ones are not real time. Only a handful of algorithms are actually real
time, such as ViBe that can operate at about 200 fps on CDNet 2014 dataset, that is Ap = 5ms. With
PSPNet, the semantic frame rate is of about 5 to 7 fps for a NVIDIA GeForce GTX Titan X GPU, which
corresponds to Ag ~ 200 ms. It means that for 25 fps videos, we have access to semantics about once
every 4 to 5 frames. In addition, Table 3 reports our observation about the mean execution time per
frame of Ap for SBS and ASBS. These last tests were performed on a single thread running on a single
processor Intel(R) Xeon(X) E5-2698 v4 2.20GHz.

Thus, in the case of ViBe, we start from a frame rate of about 200 fps in its original version to
reach about 160 fps when using ASBS, which is still real time. This is important because, as shown
in Section 4.3, the performances of ViBe with ASBS at a semantic frame rate of 1 out of 5 frames and
feedback is the same as SuBSENSE that, alone, runs at a frame rate lower than 25 fps [33]. Hence,
thanks to ASBS, we can replace BGS algorithms that work well but are too complex to run in real time
and are often difficult to interpret by a combination of a much simpler BGS algorithm and a processing
based on semantics, regardless of the frame rate of the last. Furthermore, ASBS is much easier to
optimize as the parameters that we introduce are few in number and easy to interpret. In addition,
we could also fine-tune the semantics, by selecting a dedicated set of objects to be considered, for a
scene-specific setup. It is our belief that there are still some margins for further improvements.

Version June 19, 2020 submitted to . Imaging 17 of 20

ASBS + Feedback

Original Ground Truth

2]
‘ 'l=u

Figure 10. Illustration of the results of ASBS using ViBe as BGS algorithm. From left to right, we
provide the original color image, the ground truth, the BGS as provided by the original ViBe algorithm,
using our ASBS method without any feedback, and using ASBS and a feedback. Each line corresponds
to a representative frame of a video in each category of CDNet2014.

441

442

443

444

445

Version June 19, 2020 submitted to . Imaging 18 of 20

Input 25 fps l | l |
1 1
| |
| |
| |
| |

Semantics ~ 5 fps
GPU usage

Background subtraction
CPU usage

Processing by ASBS
with feedback
CPU usage

KD AF

Figure 11. Timing diagram of ASBS with a feedback mechanism in the case of a real-time BGS algorithm
(Ap < 07) satisfying the condition Ag + Ap < 61 and the computation of semantics being not real-time
(Ag > 41). Note that the feedback time A is negligible.

5. Conclusion

In this paper, we presented a novel method, named ASBS, based on semantics for improving the
quality of segmentation masks produced by background subtraction algorithms when semantics is not
computed for all video frames. ASBS, which is derived from the semantic background subtraction
method, is applicable to any off-the-shelf background subtraction algorithm and introduces two new
rules in order to repeat semantic decisions, even when semantics and the background are computed
asynchronously. We also presented a feedback mechanism to update the background model with
better samples and thus take better decisions. We showed that ASBS improves the quality of the
segmentation masks compared to the original semantic background subtraction method applied only
to frames with semantics. Furthermore, ASBS is straightforward to implement and cheap in terms of
computation time and memory consumption. We also showed that applying ASBS with the feedback
mechanism allows to elevate an unsupervised real-time background subtraction algorithm to the
performance of non real-time state-of-the-art algorithms.

A more general conclusion is that, when semantics is missing for some frames but needed to
perform a task (in our case, the task of background subtraction), our method provides a convenient
and effective mechanism to interpolate the missing semantics. The mechanism of ASBS might thus
enable real-time computer vision tasks requiring semantic information.

Implementations of ASBS in the Python language for CPU and GPU are available at the following
address https://github.com/cioppaanthony/rt-sbs.

Acknowledgment

A. Cioppa has a grant funded by the FRIA, Belgium. This work is part of a patent application (US
2019/0197696 A1).

1. Bouwmans, T. Traditional and recent approaches in background modeling for foreground detection: An
overview. Computer Science Review 2014, 11-12, 31-66.
2. Stauffer, C.; Grimson, E. Adaptive background mixture models for real-time tracking. IEEE International

Conference on Computer Vision and Pattern Recognition (CVPR); , 1999; Vol. 2, pp. 246-252.

https://github.com/cioppaanthony/rt-sbs

457

458

459

460

461

462

463

472

473

474

475

476

a77

487

488

489

490

491

492

493

Version June 19, 2020 submitted to . Imaging 19 of 20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Elgammal, A.; Harwood, D.; Davis, L. Non-parametric Model for Background Subtraction. European
Conference on Computer Vision (ECCV). Springer, 2000, Vol. 1843, Lecture Notes in Computer Science, pp.
751-767.

Maddalena, L.; Petrosino, A. A Self-Organizing Approach to Background Subtraction for Visual
Surveillance Applications. IEEE Transactions on Image Processing 2008, 17, 1168-1177.

Barnich, O.; Van Droogenbroeck, M. ViBe: A universal background subtraction algorithm for video
sequences. IEEE Transactions on Image Processing 2011, 20, 1709-1724.

St-Charles, P.L.; Bilodeau, G.A.; Bergevin, R. SUBSENSE: A Universal Change Detection Method with
Local Adaptive Sensitivity. IEEE Transactions on Image Processing 2015, 24, 359-373.

St-Charles, P.L.; Bilodeau, G.A.; Bergevin, R. Universal Background Subtraction Using Word Consensus
Models. IEEE Transactions on Image Processing 2016, 25, 4768—-4781.

Bianco, S.; Ciocca, G.; Schettini, R. Combination of Video Change Detection Algorithms by Genetic
Programming. IEEE Transactions on Evolutionary Computation 2017, 21, 914-928.

Javed, S.; Mahmood, A.; Bouwmans, T.; Jung, SK. Background-Foreground Modeling Based on
Spatiotemporal Sparse Subspace Clustering. IEEE Transactions on Image Processing 2017, 26, 5840-5854.
Ebadi, S.; Izquierdo, E. Foreground Segmentation with Tree-Structured Sparse RPCA. IEEE Transactions on
Pattern Analysis and Machine Intelligence 2018, 40, 2273-2280.

Vacavant, A.; Chateau, T, Wilhelm, A, Lequiévre, L. A Benchmark Dataset for Outdoor
Foreground /Background Extraction. Asian Conference on Computer Vision (ACCV). Springer, 2012, Vol.
7728, Lecture Notes in Computer Science, pp. 291-300.

Wang, Y.; Jodoin, PM.; Porikli, F.; Konrad, J.; Benezeth, Y.; Ishwar, P. CDnet 2014: An Expanded Change
Detection Benchmark Dataset. IEEE International Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW); , 2014; pp. 393—400.

Cuevas, C.; Yanez, E.; Garcia, N. Labeled dataset for integral evaluation of moving object detection
algorithms: LASIESTA. Computer Vision and Image Understanding 2016, 152, 103-117.

Braham, M.; Van Droogenbroeck, M. Deep Background Subtraction with Scene-Specific Convolutional
Neural Networks. IEEE International Conference on Systems, Signals and Image Processing (IWSSIP),
2016, pp. 1-4.

Bouwmans, T.; Garcia-Garcia, B. Background Subtraction in Real Applications: Challenges, Current
Models and Future Directions. CoRR 2019, abs/1901.03577.

Lim, L.; Keles, H. Foreground Segmentation Using Convolutional Neural Networks for Multiscale Feature
Encoding. Pattern Recognition Letters 2018, 112, 256-262.

Wang, Y.; Luo, Z.; Jodoin, PM. Interactive Deep Learning Method for Segmenting Moving Objects. Pattern
Recognition Letters 2017, 96, 66-75.

Zheng, W.B.; Wang, K.E; Wang, FY. Background Subtraction Algorithm With Bayesian Generative
Adversarial Networks. Acta Automatica Sinica 2018, 44, 878-890.

Babaee, M.; Dinh, D.; Rigoll, G. A Deep Convolutional Neural Network for Background Subtraction.
Pattern Recognition 2018, 76, 635-649.

Zhou, B.; Zhao, H.; Puig, X,; Fidler, S.; Barriuso, A.; Torralba, A. Scene Parsing through ADE20K Dataset.
IEEE International Conference on Computer Vision and Pattern Recognition (CVPR); , 2017; pp. 5122-5130.
Everingham, M.; Van Gool, L.; Williams, C.; Winn, J.; Zisserman, A. The PASCAL Visual Object
Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC /voc2012/
workshop/index.html.

Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele,
B. The Cityscapes Dataset for Semantic Urban Scene Understanding. IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR); , 2016; pp. 3213-3223.

Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P; Zitnick, C. Microsoft COCO:
Common Objects in Context. European Conference on Computer Vision (ECCV). Springer, 2014, Vol. 8693,
Lecture Notes in Computer Science, pp. 740-755.

Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR);, 2014; pp. 580-587.

http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

498

499

500

509

510

511

512

513

514

515

Version June 19, 2020 submitted to . Imaging 20 of 20

25. Zhao, H.; Shi, J.; Qi, X.; Wang, X,; Jia,]. Pyramid Scene Parsing Network. IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR); , 2017; pp. 6230-6239.

26. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. CoRR 2018, abs/1703.06870.

27. Sevilla-Lara, L.; Sun, D.; Jampani, V.; Black, M.]. Optical Flow with Semantic Segmentation and Localized
Layers. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp.
3889-3898.

28. Vertens,].; Valada, A.; Burgard, W. SMSnet: Semantic motion segmentation using deep convolutional
neural networks. IEEE/RS] International Conference on Intelligent Robots and Systems (IROS); , 2017; pp.
582-589.

29. Reddy, N.; Singhal, P,; Krishna, K. Semantic Motion Segmentation Using Dense CRF Formulation. Indian
Conference on Computer Vision Graphics and Image Processing; , 2014; pp. 1-8.

30. Braham, M.; Piérard, S.; Van Droogenbroeck, M. Semantic Background Subtraction. IEEE International
Conference on Image Processing (ICIP); , 2017; pp. 4552—-4556.

31. Cioppa, A.; Van Droogenbroeck, M.; Braham, M. Real-Time Semantic Background Subtraction. IEEE
International Conference on Image Processing (ICIP); , 2020.

32. Van Droogenbroeck, M.; Braham, M.; Piérard, S. Foreground and background detection method. European
Patent Office, EP 3438929 A1, 2017.

33. Roy, S.; Ghosh, A. Real-Time Adaptive Histogram Min-Max Bucket (HMMB) Model for Background
Subtraction. IEEE Transactions on Circuits and Systems for Video Technology 2018, 28, 1513-1525.

34. Piérard, S.; Van Droogenbroeck, M. Summarizing the performances of a background subtraction algorithm
measured on several videos. IEEE International Conference on Image Processing (ICIP); , 2020.

35. Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic understanding of scenes through
the ADE20K dataset. CoRR 2016, abs/1608.05442.

36. Zhao, H.; Shi, J.; Qi, X,; Wang, X.; Jia,]. Implementation of PSPNet. https://github.com/hszhao/PSPNet,
2016.

37. Barnich, O.; Van Droogenbroeck, M. Code for ViBe. https://orbi.uliege.be/handle/2268/145853.

38. St-Charles, P.L. Code for SuBSENSE. https:/ /bitbucket.org/pierre_luc_st_charles/subsense.

39. Jiang, S.; Lu, X. WeSamBE: A Weight-Sample-Based Method for Background Subtraction. IEEE Transactions
on Circuits and Systems for Video Technology 2018, 28, 2105-2115.

© 2020 by the authors. Submitted to J. Imaging for possible open access publication
under the terms and conditions of the Creative Commons Attribution (CC BY) license
(http:/ /creativecommons.org/licenses /by /4.0/).

https://github.com/hszhao/PSPNet
https://orbi.uliege.be/handle/2268/145853
https://bitbucket.org/pierre_luc_st_charles/subsense
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Description of the semantic background subtraction method
	Asynchronous semantic background subtraction
	Experimental results
	Evaluation methodology
	Performances of ASBS
	A feedback mechanism for SBS and ASBS
	Time analysis of ASBS

	Conclusion
	References

