

Article

Asynchronous Semantic Background Subtraction

Anthony Cioppa *, Marc Braham and Marc Van Droogenbroeck

Montefiore Institute, University of Liège, Quartier Polytech 1, Allée de la Découverte 10, 4000 Liège, Belgium; anthony.cioppa@uliege.be (A.C.); m.braham@uliege.be (M.B.); m.vandroogenbroeck@uliege.be (M.V.D.)

* Correspondence: anthony.cioppa@uliege.be

Version June 19, 2020 submitted to *J. Imaging*

1 **Keywords:** Background subtraction; motion detection; scene labeling; semantic segmentation; video
2 processing.

3 **Abstract:** The method of Semantic Background Subtraction (SBS), which combines semantic
4 segmentation and background subtraction, has recently emerged for the task of segmenting moving
5 objects in video sequences. While SBS has been shown to improve background subtraction, a
6 major difficulty is that it combines two streams generated at different frame rates. This results
7 in SBS operating at the slowest frame rate of the two streams, usually being the one of the semantic
8 segmentation algorithm. We present a method, referred to as “Asynchronous Semantic Background
9 Subtraction” (ASBS), able to combine a semantic segmentation algorithm with any background
10 subtraction algorithm asynchronously. It achieves performances close to that of SBS while operating at
11 the fastest possible frame rate, being the one of the background subtraction algorithm. Our method
12 consists in analyzing the temporal evolution of pixel features to possibly replicate the decisions
13 previously enforced by semantics when no semantic information is computed. We showcase ASBS
14 with several background subtraction algorithms and also add a feedback mechanism that feeds
15 the background model of the background subtraction algorithm to upgrade its updating strategy
16 and, consequently, enhance the decision. Experiments show that we systematically improve the
17 performance, even when the semantic stream has a much slower frame rate than the frame rate of the
18 background subtraction algorithm. In addition, we establish that, with the help of ASBS, a real-time
19 background subtraction algorithm, such as ViBe, stays real time and competes with some of the best
20 non-real-time unsupervised background subtraction algorithms such as SuBSENSE.

21 1. Introduction

22 The goal of background subtraction (shortened to BGS in the following) algorithms is to
23 automatically segment moving objects in video sequences using a background model fed with features,
24 hand-designed or learned by a machine learning algorithm, generally computed for each video frame.
25 Then, the features of the current frame are compared to the features of the background model to
26 classify pixels either in the background or in the foreground. While being fast, these techniques remain
27 sensitive to illumination changes, dynamic backgrounds, or shadows that are often segmented as
28 moving objects.

29 Background subtraction has been an active field of research during the last years [1]. It was
30 promoted by the development of numerous variations of the GMM [2] and KDE [3] algorithms, and the
31 emergence of innovative algorithms such as SOBS [4], ViBe [5], SuBSENSE [6], PAWCS [7], IUTIS-5 [8],
32 and PCA variants [9,10]. Research in this field can count on large datasets annotated with ground-truth
33 data such as the BMC dataset [11], the CDNet 2014 dataset [12], or the LASIESTA dataset [13], which
34 was an incentive to develop supervised algorithms. In [14], Braham and Van Droogenbroeck were
35 the first to propose a background subtraction method using a deep neural network; this work paved
36 the way to other methods, proposed recently [15–18]. Methods based on deep learning have better

37 segmentation performances, but they rely on the availability of a fair amount of annotated training
38 data; to some extent, they have lost their ability to deal with any camera operating in an unknown
39 environment. Note however that, in their seminal work [14], Braham and Van Droogenbroeck present a
40 variation of the network that is trained on ground-truth data generated by an unsupervised algorithm,
41 thus requiring no annotations at all; this idea was later reused by Babaee et al. [19].

42 Rather than building novel complicated methods to overcome problems related to challenging
43 operational conditions such as illumination changes, dynamic backgrounds, the presence of ghosts,
44 shadows, camouflage or camera jitter, another possibility consists in leveraging the information
45 provided by a universal semantic segmentation algorithm for improving existing BGS algorithms.
46 Semantic segmentation of images consists in labeling each pixel of an image with the class of its
47 enclosing object or region. It is a well-covered area of research, but it is only recently that it has
48 achieved the level of performance needed for real applications thanks to the availability of large
49 annotated datasets such as ADE20K [20], VOC2012 [21], Cityscapes [22] or COCO [23], and novel deep
50 neural networks [24–26]. In the following, we use the term *semantics* to denote the output of any of
51 these semantic segmentation networks.

52 The performances achieved by these deep networks for the task of semantic segmentation have
53 motivated their use for various computer vision tasks such as optical flow computation [27], or motion
54 segmentation [28,29]. The underlying idea is to segment objects and characterize their motion using,
55 in our case, background subtraction in video sequences [30]. It is important to note that semantic
56 segmentation algorithms are trained with annotated datasets that contain varied types of objects, most
57 of which do not appear in videos such as those of the CDNet 2014 dataset. In other words, semantic
58 segmentation algorithms are not tailored for the task of motion detection. While this is a suitable
59 feature to deal with arbitrary unknown scenes, it requires to validate if a network works well on the
60 typical images encountered in background subtraction.

61 Recently, Braham *et al.* [30] presented the semantic background subtraction method (named SBS
62 hereafter), that leverages semantics for improving background subtraction algorithms. This method,
63 which combines semantics and the output of a background subtraction algorithm, reduces the mean
64 error rate up to 20% for the 5 best unsupervised algorithms on CDNet 2014 [12]. Unfortunately, in
65 practice, it is often much slower to compute semantic segmentation than it is to perform background
66 subtraction. Consequently, to avoid reducing the frame rate of the images processed by background
67 subtraction, semantics needs to be computed on a dedicated hardware (such as a modern GPU) and
68 fed asynchronously, that is with missing semantic frames.

69 Problem Statement

70 To better understand the problem, let us analyze the timing diagram of SBS, as displayed in
71 Figure 1. For this time analysis, we assume that a GPU is used for semantic segmentation, and a CPU
72 is used for both the BGS algorithm and the SBS method. When the GPU is available, it starts analyzing
73 the input frame, otherwise it skips it. In the scenario of a BGS algorithm being faster than the semantic
74 segmentation network, which is the scenario that we examine in this paper, the BGS algorithm starts as
75 soon as the previous processing is over. The CPU then waits until semantics has been computed and a
76 semantic frame S_t is available. The timeline analysis of SBS shows that: (1) with respect to the input
77 frame, the output frame is delayed by the time to compute semantics and to process the segmentation
78 map (this delay is unavoidable and constant), and (2) the output frame rate is mainly driven by the
79 slowest operation. It results that some output frames would be skipped, although the CPU computes
80 all the intermediate masks by the BGS algorithm. For example, in the case of Figure 1, it is possible to
81 apply the BGS algorithm to I_{t+2} , but not to process B_{t+2} with the help of semantics. In other words,
82 the slowest operation dictates its rhythm (expressed in terms of frame rate) to the entire processing
83 chain. Hence, the semantics and the output have equal frame rates. This is not a problem as long as the
84 output frame rate (or equivalently that of semantics) is faster than the input frame rate. However, the

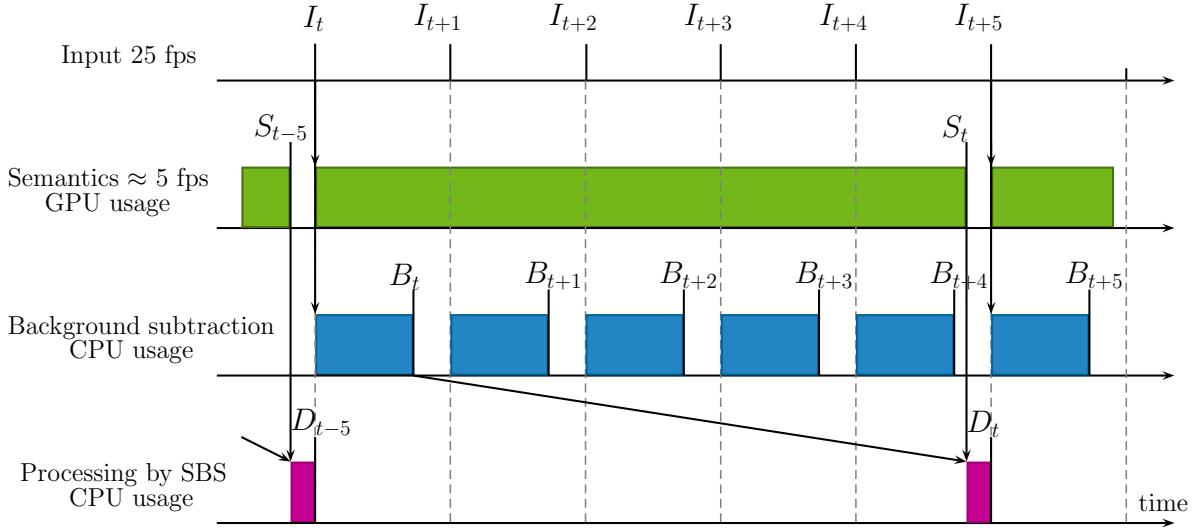


Figure 1. Timing diagram of a naive real-time implementation of the semantic background subtraction (SBS) method when the frame rate of semantics is too slow to handle all the frames in real time. From top to bottom, the time lines represent: the input frames I_t , the computation of semantics S_t by the semantic segmentation algorithm (on GPU), the computation of intermediate segmentation masks B_t by the BGS algorithm (on CPU), and the computation of output segmentation masks D_t by the SBS method (on CPU). Vertical lines indicate when an image is available and filled rectangular areas display when a GPU or CPU performs a task. Arrows show the inputs required by the different tasks. This diagram shows that even when the background subtraction algorithm is real time with respect to the input frame rate, it is the computation of semantics that dictates the output frame rate.

Table 1. Comparison of the best mean F_1 score achieved for two semantic networks used in combination with SBS on the CDNet 2014 dataset. These performances are obtained considering the SBS method, where the output of the BGS algorithm is replaced by the ground-truth masks. This indicates how the semantic information used in SBS would deteriorate a perfect BGS algorithm.

Networks	SBS with PSPNet [25]	SBS with MaskRCNN [26]
Best mean F_1	0.953	0.674

85 semantics frame rate is generally slower than the input frame rate, which means that it is not possible
 86 to process the video at its full frame rate, or in other words, that the processing of SBS is not real time.

87 To increase the output frame rate to its nominal value, we need to either accelerate the production
 88 of semantics, which induces the choice of a faster but less accurate semantic network, or to interpolate
 89 the missing semantics. Our analysis on semantic networks showed that faster networks are not
 90 exploitable because of their lack of precision. Also, semantic segmentation networks should be
 91 preferred to instance segmentation networks. For example, we had to discard MaskRCNN [26] and
 92 prefer the PSPNet network [25], as shown in Table 1. An alternative option is to interpolate missing
 93 semantics. Naive ideas would be to skip the SBS processing step in the absence of semantics or to
 94 repeat the last pixelwise semantic information when it is missing. Both ideas proved unsuccessful,
 95 as shown in our experiments (see Section 4). A better idea is to avoid any mechanism that would
 96 substitute itself to the difficult calculation of semantics and, instead, replicate the decisions enforced
 97 previously with the help of semantics to compensate for the lack of semantics later on. The underlying
 98 question is whether or not we should trust and repeat decisions taken by SBS [30]. This idea has already
 99 been applied in one of our recent work, called Real-time Semantic Background Subtraction [31] (noted
 100 RT-SBS) with ViBe, a real-time BGS algorithm, and forms the basis of our new method, ASBS. This
 101 paper presents our method in a complementary way to the original paper, with further experiments
 102 and generalizes it to all background subtraction algorithms, including non-real-time ones.

Table 2. Decision table as implemented by SBS. Rows corresponding to “don’t-care” values (X) cannot be encountered, assuming that $\tau_{BG} < \tau_{FG}$.

$B_t(x, y)$	$S_t^{BG}(x, y) \leq \tau_{BG}$	$S_t^{FG}(x, y) \geq \tau_{FG}$	$D_t(x, y)$
BG	false	false	BG
BG	false	true	FG
BG	true	false	BG
BG	true	true	X
FG	false	false	FG
FG	false	true	FG
FG	true	false	BG
FG	true	true	X

103 The paper is organized as follows. Section 2 describes the semantic background subtraction (SBS)
 104 method that underpins our developments. In Section 3, we first discuss the classification problem of
 105 background subtraction and take into account the specificities of semantics. Then, we describe our
 106 new method. Experimental results are provided in Section 4, and compared with those of the original
 107 semantic background subtraction method when semantics is missing for some frames. Finally, we
 108 conclude in Section 5.

109 **Contributions.** We summarize our contributions as follows. (i) We propose a novel method, called
 110 ASBS, for the task of background subtraction. (ii) We alleviate the problem of the slow computation of
 111 semantics by substituting it for some frames with the help of a change detection algorithm. This makes
 112 our method usable in real time. (iii) We show that at a semantic framerate corresponding to real-time
 113 computations, we achieve results close to that of SBS, meaning that our substitute for semantics is
 114 adequate. (iv) We show that our method ASBS with a real-time BGS algorithm such as ViBe and a
 115 simple feedback mechanism achieves performances close to the ones of non real-time state-of-the-art
 116 BGS algorithms such as SuBSENSE, while satisfying the real-time constraint.

117 2. Description of the semantic background subtraction method

118 Semantic background subtraction (SBS) [30,32] is a method based on semantics provided by deep
 119 segmentation networks that enriches the pixel-wise decisions of a background subtraction algorithm.
 120 In this section, we detail how SBS uses semantics to improve the classification of a BGS algorithm.
 121 This description is necessary as SBS underpins our strategy to improve background subtraction in the
 122 absence of semantics for some frames.

123 SBS combines three results at each pixel (x, y) : the original classification result between
 124 background (BG) and foreground (FG) at time t , as produced by a chosen BGS algorithm, denoted
 125 by $B_t \in \{\text{BG}, \text{FG}\}$, and two booleans based on the semantic signals $S_t^{BG} \in [0, 1]$ and $S_t^{FG} \in [-1, 1]$,
 126 derived from a semantic probability estimate defined hereinafter. These results are then combined to
 127 output the final result $D_t \in \{\text{BG}, \text{FG}\}$, as detailed in Table 2.

128 The two semantic signals (S_t^{BG} and S_t^{FG}) are derived from a semantic probability estimate at each
 129 pixel location, denoted by $p_{S,t}(x, y)$. This value is an estimate of the probability that pixel (x, y) belongs
 130 to one of the objects contained in a set of potentially moving objects (person, car, etc) and depends
 131 on the segmentation network itself. The authors of [30] use the PSPNet [25] semantic segmentation
 132 network and compute $p_{S,t}(x, y)$ by applying a softmax function on the vector of output scores for this
 133 pixel and add up the obtained values for the subset of classes of interest (see Section 4.1 for more
 134 implementation details).

135 The first semantic signal, $S_t^{BG}(x, y)$, is the semantic probability estimate itself: $S_t^{BG}(x, y) =$
 $p_{S,t}(x, y)$. It has a low value when the probability is close to zero, meaning that there is no object of

interest for that pixel. According to rule 1, if this signal is lower than a threshold τ_{BG} , the pixel is labeled as background:

$$\text{rule 1 : if } S_t^{BG}(x, y) \leq \tau_{BG}, \text{ then } D_t(x, y) \leftarrow \text{BG}. \quad (1)$$

135 A convenient interpretation of rule 1 is that when it is activated (that is, when the condition is true), the
 136 decision of the BGS algorithm is shadowed. Consequently, the amount of false positives (pixels wrongly
 137 classified in the foreground), typically generated by illumination changes, dynamic backgrounds or
 138 the presence of ghosts, is reduced since the semantic segmentation is unaffected by these well-known
 139 BGS problems.

The second semantic signal, $S_t^{FG}(x, y)$, aims at improving the detection of foreground objects by detecting a local increase of the semantic probability estimate compared to a semantic background model, denoted by M_t . The signal S_t^{FG} is calculated as the difference between the current semantic probability estimate and the value stored in the semantic background model:

$$S_t^{FG}(x, y) = p_{S,t}(x, y) - M_t(x, y), \quad (2)$$

where the semantic background model M_t is initialized via:

$$M_0(x, y) \leftarrow p_{S,0}(x, y), \quad (3)$$

and is possibly updated for each pixel only if the pixel is classified as belonging to the background:

$$\text{if } D_t(x, y) = \text{BG}, \text{ then}_{\alpha} M_{t+1}(x, y) \leftarrow p_{S,t}(x, y), \quad (4)$$

with the expression “if A then $_{\alpha}$ B ” meaning that action B is applied with a probability α if condition A is true. The goal for $M_t(x, y)$ is to store the semantic probability estimate of the background in that pixel. When the value of $S_t^{FG}(x, y)$ is large, a jump in the semantic probability estimate for pixel (x, y) is observed, and we activate rule 2 as defined by:

$$\text{rule 2 : if } S_t^{FG}(x, y) \geq \tau_{FG}, \text{ then } D_t(x, y) \leftarrow \text{FG}, \quad (5)$$

140 where τ_{FG} is a second positive threshold.

141 Again, when the condition of rule 2 is fulfilled, the result of the BGS algorithm is shadowed.
 142 This second rule aims at reducing the number of missing foreground detections, for example when
 143 a foreground object and the background appear to have similar colors (this is known as the color
 144 camouflage effect). Note that, with a proper choice of threshold values $\tau_{BG} < \tau_{FG}$, both rules are
 145 fully compatible meaning that they are never activated simultaneously. This relates to the “don’t-care”
 146 situations described in Table 2.

The decision table of Table 2 also shows that, when none of the two rules are activated, we use the result of the companion BGS algorithm as a fallback decision:

$$\text{fallback : } D_t(x, y) \leftarrow B_t(x, y). \quad (6)$$

147 3. Asynchronous semantic background subtraction

148 To combine the output of any background subtraction to semantics according to SBS in real
 149 time, it is necessary to calculate semantics at least at the same frame rate as the input video or BGS
 150 stream, which is currently not achievable with high performances on any kind of videos, even on a
 151 GPU. Instead of lowering the frame rate or reducing the image size, an alternative possibility consists
 152 to interpolate missing semantics. Naive ideas, such as skipping the combination step of SBS in the
 153 absence of semantics or repeating the last pixelwise semantic information when it is missing, have
 154 proved unsuccessful, as shown in our experiments (see Section 4). Hence, it is better to find a substitute

155 for missing semantics. Obviously, it is unrealistic to find a substitute that would be as powerful as
 156 full semantics while being faster to calculate. Instead, we propose to replicate the decisions enforced
 157 previously with the help of semantics to compensate for the lack of semantics later on. The underlying
 158 question is whether or not we should trust and repeat decisions taken by SBS [30]. This idea is the
 159 basis of our new method.

160 The cornerstone for coping with missing semantics is the fact that the true class (foreground or
 161 background) of a pixel generally remains unchanged between consecutive video frames, as long as
 162 the object in that pixel remains static. It is therefore reasonable to assume that if a correct decision
 163 is enforced with the help of semantics for a given pixel location and video frame, the same decision
 164 should be taken in that pixel location for the subsequent frames (when semantics is not computed)
 165 if the features of that pixel appear to be unchanged. Our method, named Asynchronous Semantic
 166 Background Subtraction (ASBS), thus consists in interpolating the decisions of SBS by memorizing
 167 information about the activation of rules as well as the pixel features, which we chose to be the input
 168 color in our case, when semantics is computed (SBS is then applied), and copying the decision of the
 169 last memorized rule when semantics is not computed if the color remains similar (which tends to
 170 indicate that the object is the same).

171 To further describe ASBS, let us first focus on a substitute for rule 1, denoted rule *A* hereafter,
 172 that replaces rule 1 in the absence of semantics. If rule 1 was previously activated in pixel (x, y) while
 173 the current color has remained similar, then $D_t(x, y)$ should be set to the background. To enable this
 174 mechanism, we have to store, in a rule map denoted by R , if rule 1 of SBS is activated; this is indicated
 175 by $R(x, y) \leftarrow 1$. Simultaneously, we memorize the color of that pixel in a color map, denoted by C . With
 176 these components, rule *A* becomes:

$$\begin{aligned} \text{rule } A : & \text{ if } R(x, y) = 1 \text{ and } \text{dist}(C(x, y), I_t(x, y)) \leq \tau_A, \\ & \text{then } D_t(x, y) \leftarrow \text{BG}, \end{aligned} \quad (7)$$

177 where τ_A is a fixed threshold applied on the Manhattan (or Euclidean) distance between the color
 178 $C(x, y)$ stored in the color map and the input color $I_t(x, y)$. Theoretically, it is also possible to refine the
 179 color model by adopting a model used by a BGS algorithm in which case the distance function should
 180 be chosen accordingly; our choice to favor a simple model instead proved effective.

181 Likewise, we can replace rule 2 by rule *B* in the absence of semantics. When rule 2 is activated,
 182 this decision is stored in the rule map (this is indicated by $R(x, y) \leftarrow 2$), and the color of the pixel is
 183 stored in the color map C . Rule *B* thus becomes:

$$\begin{aligned} \text{rule } B : & \text{ if } R(x, y) = 2 \text{ and } \text{dist}(C(x, y), I_t(x, y)) \leq \tau_B, \\ & \text{then } D_t(x, y) \leftarrow \text{FG}. \end{aligned} \quad (8)$$

184 where τ_B is a second threshold. Again, when neither rule *A* nor rule *B* are activated, the BGS decision
 185 is used as a fallback decision.

186 The updates of the rules and color map are detailed in Algorithm 1. It is an add-on for SBS that
 187 memorizes decisions and colors based on computed semantics upon activation of a rule. The second
 188 component of ASBS, described in Algorithm 2, is the application of rule *A*, rule *B*, or the fallback
 189 decision, when no semantics is available.

190 Note that the two pseudo-codes, which define pixel-wise operations, could be applied within
 191 the same video frame if the semantics was only computed inside a specific region-of-interest. In
 192 that scenario, we would apply the pseudo-code of Algorithm 2 for pixels without semantics and
 193 the pseudo-code of Algorithm 1 for pixels with semantics. It is therefore straightforward to adapt
 194 the method from a temporal sub-sampling to a spatial sub-sampling, or to a combination of both.
 195 However, a typical setup is that semantics is computed for the whole frame and is skipped for the next
 196 few frames at a regular basis. In section 4, we evaluate ASBS for this temporal sub-sampling since it

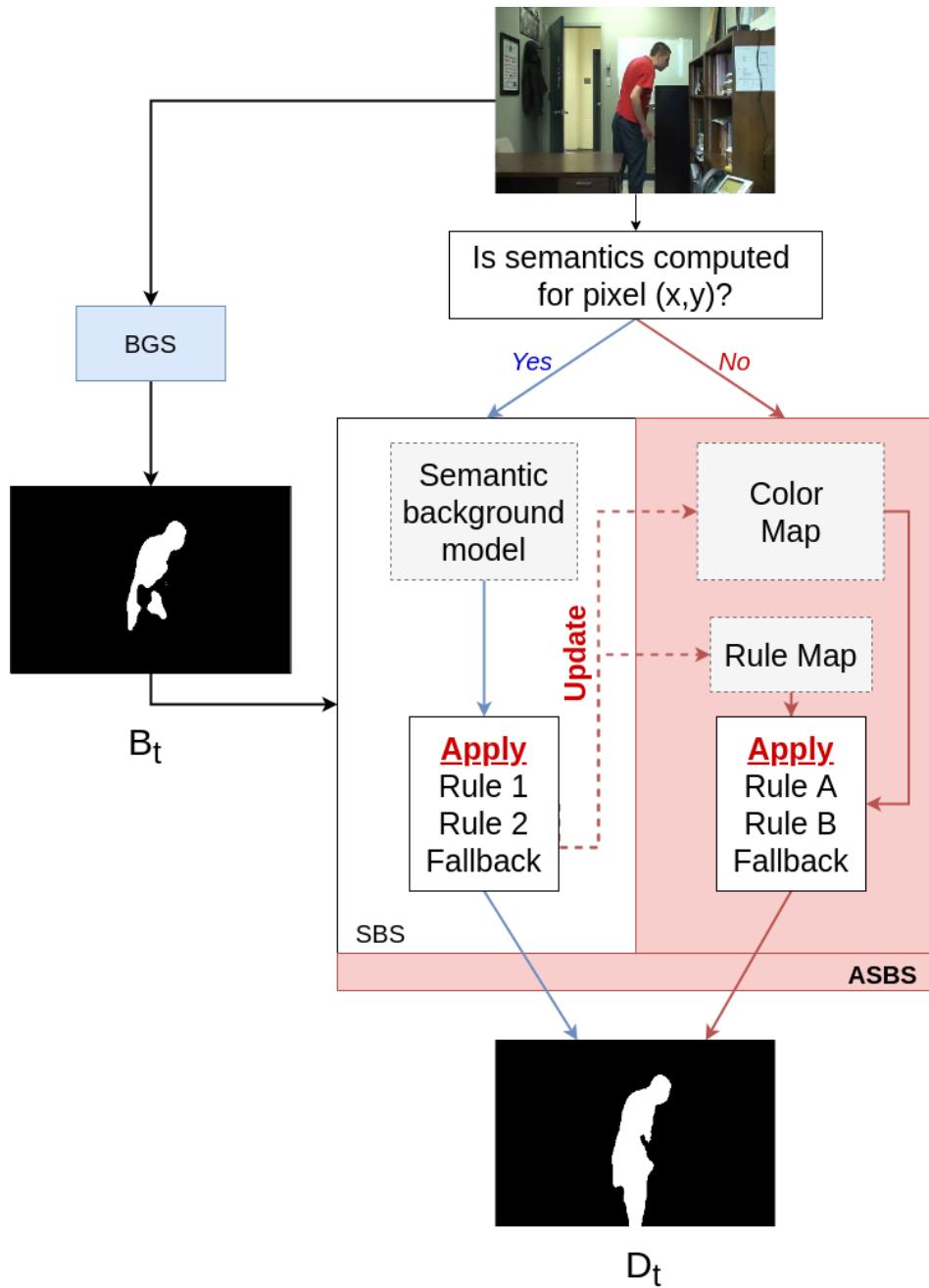


Figure 2. Schematic representation of our method named ASBS, extending SBS [30], capable to combine the two asynchronous streams of semantics and background subtraction masks to improve the performances of BGS algorithms. When semantics is available, ASBS applies Rule 1, Rule 2, or selects the fallback, and it updates the color and rule maps. Otherwise, ASBS applies Rule A, Rule B, or it selects the fallback.

Algorithm 1 Pseudo-code of ASBS for pixels with semantics. The rule and color maps are updated during the application of SBS (note that R is initialized with zero values at the program start).

Require: I_t is the input color frame (at time t)

```

1: for all  $(x, y)$  with semantics do
2:    $D_t(x, y) \leftarrow$  apply SBS in  $(x, y)$ 
3:   if rule 1 was activated then
4:      $R(x, y) \leftarrow 1$ 
5:      $C(x, y) \leftarrow I_t(x, y)$ 
6:   else if rule 2 was activated then
7:      $R(x, y) \leftarrow 2$ 
8:      $C(x, y) \leftarrow I_t(x, y)$ 
9:   else
10:     $R(x, y) \leftarrow 0$ 
11:  end if
12: end for

```

Algorithm 2 Pseudo-code of ASBS for pixels without semantics, rule A , rule B or the fallback are applied.

Require: I_t is the input color frame (at time t)

```

1: for all  $(x, y)$  without semantics do
2:   if  $R(x, y) = 1$  then
3:     if  $\text{dist}(C(x, y), I_t(x, y)) \leq \tau_A$  then
4:        $D_t(x, y) \leftarrow \text{BG}$ 
5:     end if
6:   else if  $R(x, y) = 2$  then
7:     if  $\text{dist}(C(x, y), I_t(x, y)) \leq \tau_B$  then
8:        $D_t(x, y) \leftarrow \text{FG}$ 
9:     end if
10:   else
11:      $D_t(x, y) \leftarrow B_t(x, y)$ 
12:   end if
13: end for

```

197 has a unique implementation, while spatial sub-sampling can involve complex strategies for choosing
 198 the regions where to compute the semantics and is application-dependent anyway. Our method,
 199 illustrated in Figure 2 for the case of entire missing semantic frames, is applicable in combination with
 200 virtually any BGS algorithm.

201 *Timing diagrams of ASBS*

202 The ASBS method introduces a small computational overhead (a distance has to be computed
 203 for some pixels) and memory increase (a rule map and a color map are memorized). However, these
 204 overheads are negligible with respect to the computation of semantics. The practical benefits of ASBS
 205 can be visualized on a detailed timing diagram of its components. For a formal discussion, we use the
 206 following notations:

- 207 • I_t, S_t, B_t, D_t respectively denote an arbitrary input, semantics, background segmented by the
 208 BGS algorithm, and the background segmented by ASBS, indexed by t .
- 209 • δ_I represents the time between two consecutive input frames.
- 210 • $\Delta_S, \Delta_B, \Delta_D$ are the times needed to calculate the semantics, the BGS output, and to apply SBS or
 211 ASBS, which are supposed to be the same, respectively. These times are reasonably constant.

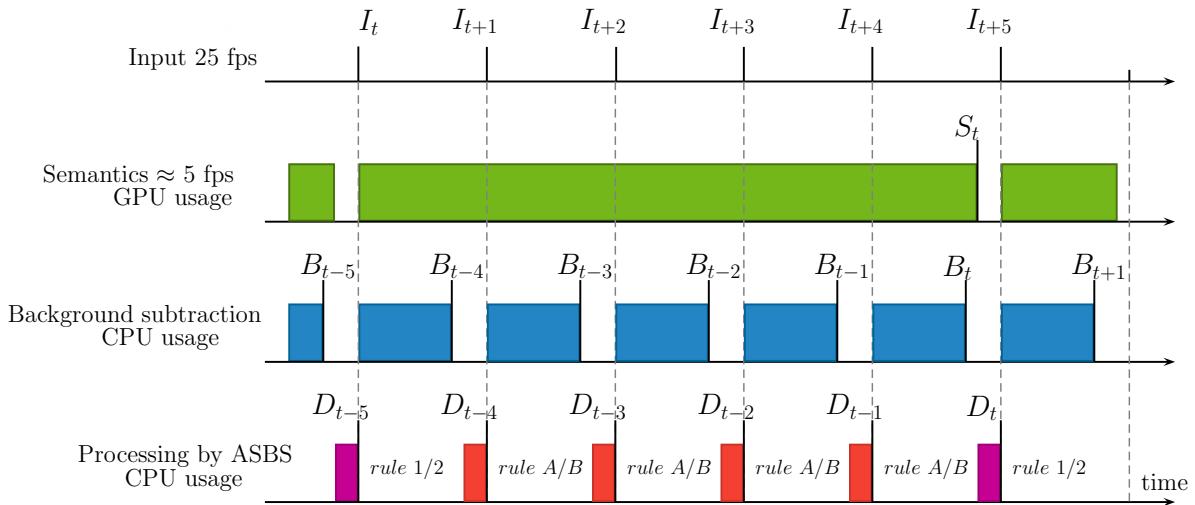


Figure 3. Timing diagram of ASBS in the case of a real-time BGS algorithm ($\Delta_B < \delta_I$) satisfying the condition $\Delta_B + \Delta_D < \delta_I$. Note that the output stream is delayed by a constant $\Delta_S + \Delta_D$ time with respect to the input stream.

212 We assume that semantics is calculated on a GPU, whereas the BGS and the application of the rules are
 213 calculated on a single threaded CPU hardware. Also, the frame rate of semantics is supposed to be
 214 smaller than that of BGS; that is $\Delta_S > \Delta_B$.

215 We now examine two different scenarios. The first scenario is that of a real-time BGS algorithm
 216 ($\Delta_B < \delta_I$) satisfying the condition $\Delta_B + \Delta_D < \delta_I$. This scenario, illustrated in Figure 3, can be obtained
 217 with the ViBe [5] BGS algorithm for example; this scenario is further described in [31]. On the timing
 218 diagram, it can be seen that the output frame rate is then equal to the input frame rate, all frames being
 219 segmented either by SBS (rule 1/2) or ASBS (rule A/B) with a time delay corresponding approximately
 220 to Δ_S . We present illustrative numbers for this timing diagram in Section 4.4.

221 In a second scenario, the frame rate of the BGS is too slow to accommodate to real time with
 222 ASBS. It means that $\Delta_B + \Delta_D > \delta_I$. In this case, the output frame rate is mainly dictated by Δ_B , since
 223 $\Delta_B \gg \Delta_D$. The input frame rate can then be viewed as slowed down by the BGS algorithm, in
 224 which case the timing diagrams fall back to the same case as a real-time BGS algorithm by artificially
 225 changing δ_I to $\tilde{\delta}_I$, where $\tilde{\delta}_I = \Delta_B + \Delta_D > \delta_I$. It is a scenario that, unfortunately, follows the current
 226 trend to produce better BGS algorithms at the price of more complexity and lower processing frame
 227 rates. Indeed, according to our experiments and [33], the top unsupervised BGS algorithms ranked on
 228 the CDNet web site (see <http://changedetection.net>) are not real time.

229 4. Experimental results

230 In this section, we evaluate the performances of our novel method ASBS and compare them to
 231 those of the original BGS algorithm and those of the original SBS method [30]. First, in Section 4.1, we
 232 present our evaluation methodology. This comprises the choice of a dataset along with the evaluation
 233 metric, and all needed implementation details about ASBS, such as how we compute the semantics,
 234 and how we choose the values of the different thresholds. In Section 4.2, we evaluate ASBS when
 235 combined with state-of-the-art BGS algorithms. Section 4.3 is devoted to a possible variant of ASBS
 236 which includes a feedback mechanism that can be applied to any conservative BGS algorithm. Finally,
 237 we discuss the computation time of ASBS in Section 4.4.

238 4.1. Evaluation methodology

239 For the quantitative evaluation, we chose the CDNet 2014 dataset [12] which is composed of 53
 240 video sequences taken in various environmental conditions such as bad weather, dynamic backgrounds

241 and night conditions, as well as different video acquisition conditions, such as PTZ and low frame rate
 242 cameras. This challenging dataset is largely employed within the background subtraction community
 243 and currently serves as the reference dataset to compare state-the-art BGS techniques.

244 We compare performances on this dataset according to the overall F_1 score, which is one of the
 245 most widely used performance scores for this dataset. For each video, F_1 is computed by:

$$F_1 = \frac{2TP}{2TP + FP + FN}, \quad (9)$$

246 where TP (true positives) is the number of foreground pixels correctly classified, FP (false positives) the
 247 number of background pixels incorrectly classified, and FN (false negatives) the number of foreground
 248 pixels incorrectly classified. The overall F_1 score on the entire dataset is obtained by first averaging
 249 the F_1 scores over the videos, then over the categories, according the common practice of CDNet [12].
 250 Note that this averaging introduces inconsistencies between overall scores that can be avoided by
 251 using summarization instead, as described in [34], but to allow a fair comparison with the other BGS
 252 algorithms, we decided to stick to the original practice of [12] for our experiments.

253 We compute the semantics as in [30], that is with the semantic segmentation network PSPNet [25]
 254 trained on the ADE20K dataset [35] (using the public implementation [36]). The network outputs a
 255 vector containing 150 real numbers for each pixel, where each number is associated to a particular
 256 object class within a set of 150 mutually exclusive classes. The semantic probability estimate $p_{S,t}(x,y)$
 257 is computed by applying a softmax function to this vector and summing the values obtained for classes
 258 that belong to a subset of classes that are relevant for motion detection. We use the same subset of
 259 classes as in [30] (person, car, cushion, box, boot, boat, bus, truck, bottle, van, bag and bicycle), whose
 260 elements correspond to moving objects of the CDNet 2014 dataset.

261 For dealing with missing semantics, since the possibilities to combine spatial and temporal
 262 sampling schemes are endless, we have restricted the study to the case of a temporal sub-sampling of
 263 one semantic frame per X original frames; this sub-sampling factor is referred to as $X:1$ hereafter. In
 264 other scenarios, semantics could be obtained at a variable frame rate or for some variable regions of
 265 interest, or even a mix of these sub-sampling schemes.

266 The four thresholds are chosen as follows. For each BGS algorithm, we optimize the thresholds
 267 (τ_{BG}, τ_{FG}) of SBS with a grid search to maximize its overall F_1 score. Then, in a second time, we freeze
 268 the optimal thresholds $(\tau_{BG}^*, \tau_{FG}^*)$ found by the first grid search and optimize the thresholds (τ_A, τ_B) of
 269 ASBS by a second grid search for each pair (BGS algorithm, $X:1$), to maximize the overall F_1 score once
 270 again. Such methodology allows a fair comparison between SBS and ASBS as the two techniques use
 271 the same common parameters $(\tau_{BG}^*, \tau_{FG}^*)$ and ASBS is compared to an optimal SBS method. Note that
 272 the α parameter is chosen as in [30].

273 The segmentation maps of the BGS algorithms are either taken directly from the CDNet 2014
 274 website (when no feedback mechanism is applied) or computed using the public implementations
 275 available at [37] for ViBe [5] and [38] for SuBSENSE [6] (when the feedback mechanism of Section 4.3
 276 is applied).

277 4.2. Performances of ASBS

278 A comparison of the performances obtained with SBS and ASBS for four state-of-the-art BGS
 279 algorithms (IUTIS-5 [8], PAWC [7], SuBSENSE [6], and WebSamBe [39]) and for different sub-sampling
 280 factors is provided in Figure 4. For the comparison with SBS, we used two naive heuristics for dealing
 281 with missing semantic frame as, otherwise, the evaluation would be done on a subset of the original
 282 images as illustrated in Figure 1. The first heuristic simply copies B_t in D_t for frames with missing
 283 semantics. The second heuristic uses the last available semantic frame S_t in order to still apply rule 1
 284 and rule 2 even when no up-to-date semantic frames are available. Let us note that this last naive
 285 heuristic corresponds to using ASBS with τ_A and τ_B chosen big enough so that the condition on the
 286 color of each pixel is always satisfied.

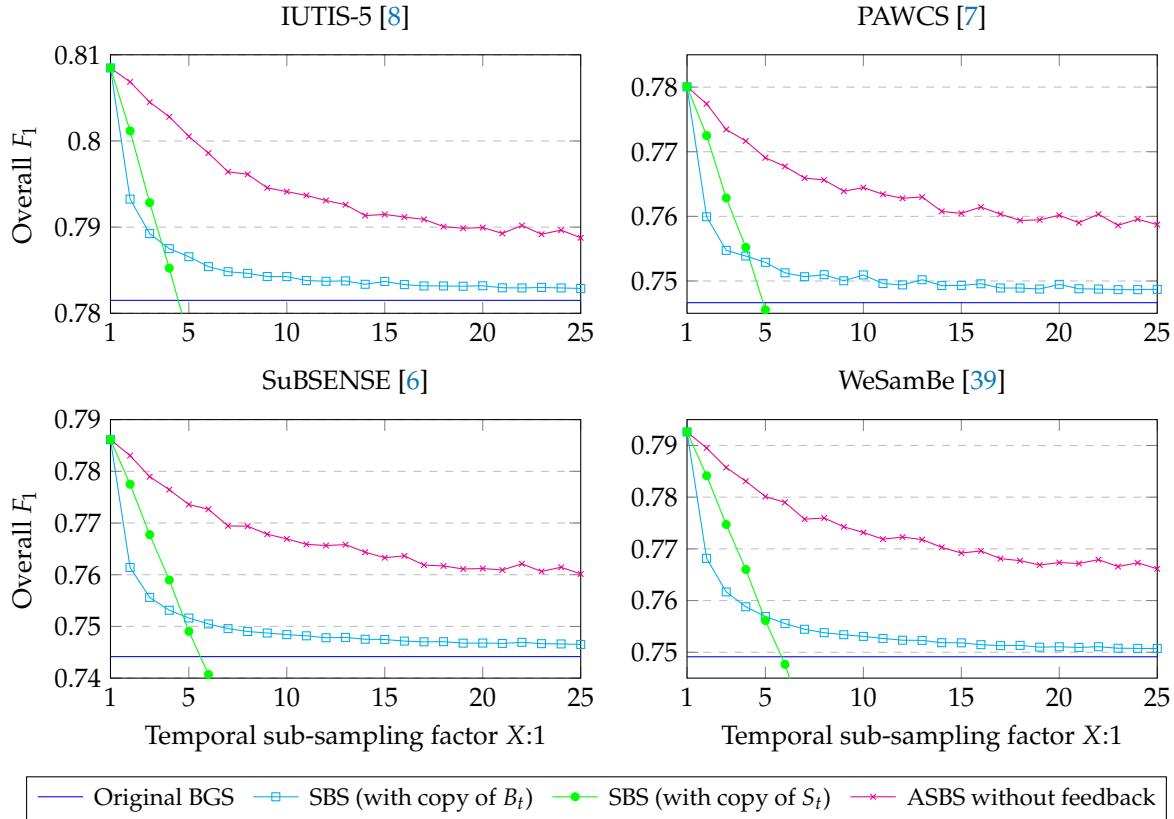


Figure 4. Overall F_1 scores obtained with SBS and ASBS for four state-of-the-art BGS algorithms and different sub-sampling factors. The performances of ASBS decrease much more slowly than those of SBS with the decrease of the semantic frame rate and, therefore, are much closer to those of the ideal case (SBS with all semantic maps computed, that is SBS 1:1), meaning that ASBS provides better decisions for frames without semantics. On average, ASBS with 1 frame of semantics out of 25 frames (ASBS 25:1) performs as well as SBS, with copy of B_t , with 1 frame of semantics out of 2 frames (SBS 2:1).

As can be seen, the performances of ASBS decrease much more slowly than those of SBS with the decrease of the semantic frame rate and, therefore, are much closer to those of the ideal case (SBS with all semantic maps computed, that is SBS 1:1), meaning that ASBS provides better decisions for frames without semantics.

A second observation can be made concerning the heuristic repeating S_t . The performances become worse than the ones of the original BGS for semantic frame rates lower than 1 out of 5 frames, but they are better than SBS when repeating B_t for high semantic frame rates. This observation emphasizes the importance of checking the color feature as done with ASBS instead of blindly repeating the corrections induced by semantics. The performances for lower frame rates are not represented for the sake of figure clarity but still decrease linearly to very low performances. For example, in the case of IUTIS_5, the performance drops to 0.67 at 25:1. In the rest of the paper, when talking about performances on SBS at different frame rates, we only consider the heuristic where we copy B_t as it is the one that behaves the best, given our experimental setup. Finally, it can be seen that, on average, ASBS with 1 frame of semantics out of 25 frames (ASBS 25:1) performs as well as SBS, with copy of B_t , with 1 frame of semantics out of 2 frames (SBS 2:1).

In Figure 5, we also compare the effects of SBS with copied B_t in D_t for frames with missing semantics, and ASBS for different BGS algorithms by looking at their performances in the mean ROC space of CDNet 2014 (ROC space where the false and true foreground rates are computed

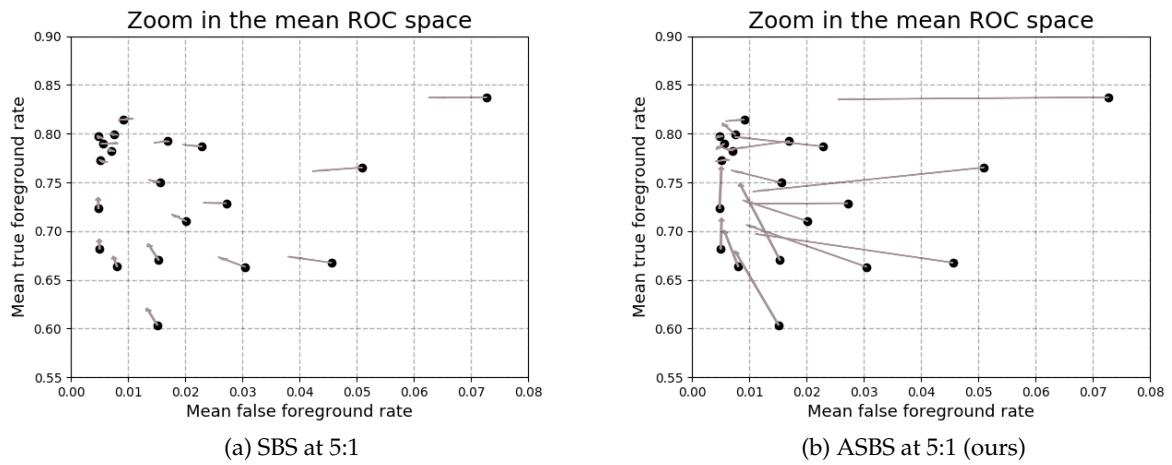


Figure 5. Effects of SBS and ASBS on BGS algorithms in the mean ROC space of CDNet 2014 [12]. Each point represents the performance of a BGS algorithm and the end of the associated arrow indicates the performance after application of the methods for a temporal sub-sampling factor of 5:1. We observe that SBS improves the performances, but only marginally, whereas ASBS moves the performances much closer to the oracle (upper left corner).

according to the rules of [12]). The points represent the performances of different BGS algorithms whose segmentation maps can be downloaded on the dataset website. The arrows represent the effects of SBS and ASBS for a temporal sub-sampling factor of 5:1. This choice of frame rate is motivated by the fact that it is the frame rate at which PSPNet can produce the segmentation maps on a GeForce GTX Titan X GPU. We observe that SBS improves the performances, but only marginally, whereas ASBS moves the performances much closer to the oracle (upper left corner).

To better appreciate the positive impact of our strategy for replacing semantics, we also provide a comparative analysis of the F_1 score by only considering the frames without semantics. We evaluate the relative improvement of the F_1 score of ASBS, SBS and the second heuristic (SBS with copies of S_t) compared to the original BGS algorithm (which is equivalent to the first heuristic, SBS with copies of B_t). In Figure 6, we present our analysis on a per-category basis, in the same fashion as in [30]. As shown, the performances of ASBS are close to the ones of SBS for almost all categories, indicating that our substitute for semantics is adequate. We can also observe that the second heuristic does not perform well, and often degrades the results compared the original BGS algorithm. In this Figure, SBS appears to fail for two categories: “night videos” and “thermal”. This results from the ineffectiveness of PSPNet to process videos of these categories, as this network is not trained with such image types. Interestingly, ASBS is less impacted than SBS because it refrains from copying some wrong decisions enforced by semantics.

Finally, in Figure 7, we provide the evolution of the optimal parameters τ_A and τ_B with the temporal sub-sampling factor (in the case of PAWCS). The optimal value decreases with the sub-sampling factor, implying that the matching condition on colors become tighter or, in other words, that rule A and rule B should be activated less frequently for lower semantic frame rates, as a consequence of the presence of more outdated colors in the color map for further images.

4.3. A feedback mechanism for SBS and ASBS

The methods SBS and ASBS are designed to be combined to a BGS algorithm to improve the quality of the final segmentation, but they do not affect the decisions taken by the BGS algorithm itself. In this section, we explore possibilities to embed semantics inside the BGS algorithm itself, which would remain blind to semantics otherwise. Obviously, this requires to craft modifications specific to a particular algorithm or family of algorithms, which can be effortful as explained hereinafter.

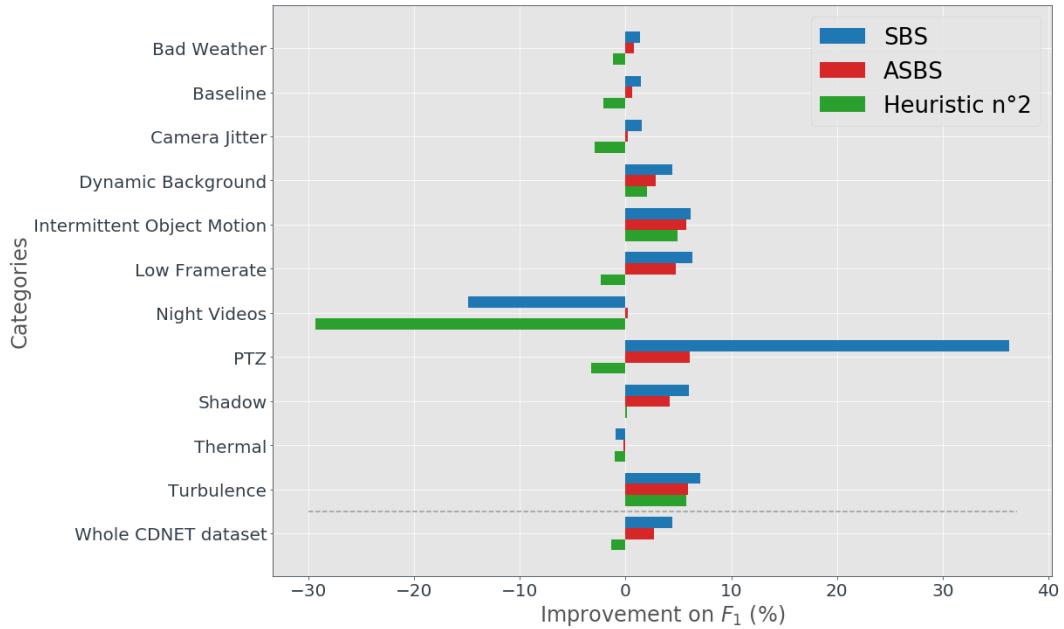


Figure 6. Per-category analysis. We display the relative improvements of the F_1 score of SBS, ASBS, and the second heuristic compared with the original algorithms, by considering only the frames without semantics (at a 5:1 semantic frame rate).

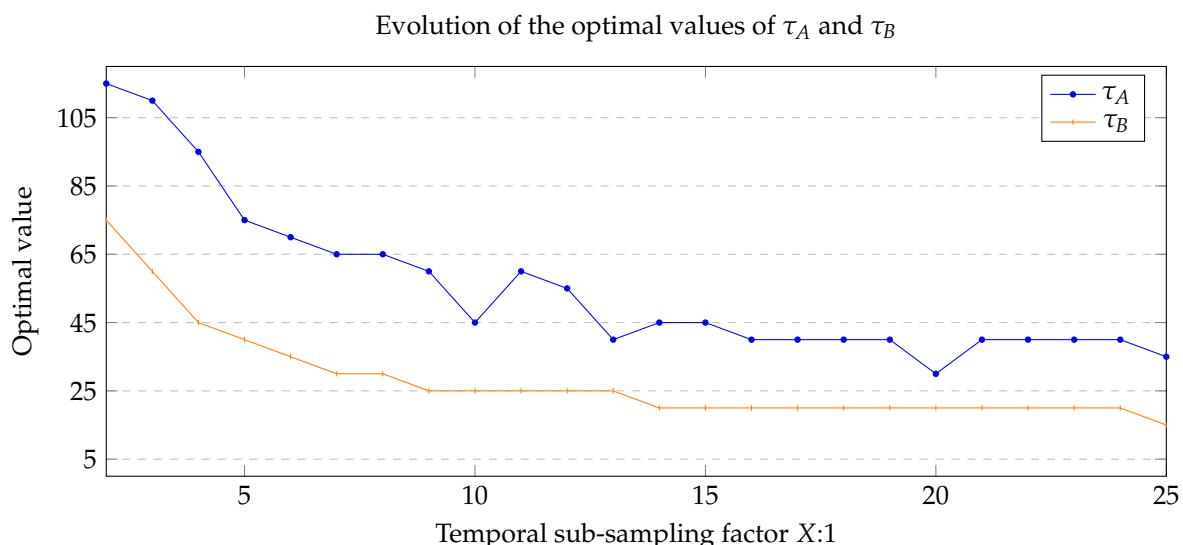


Figure 7. Evolution of the optimal thresholds τ_A and τ_B of the ASBS method when the semantic frame rate is reduced. Note that the Manhattan distance associated to these thresholds is computed on 8-bit color values. The results are shown here for the PAWCS algorithm, and follow the same trend for the other BGS algorithms considered in Figure 4.

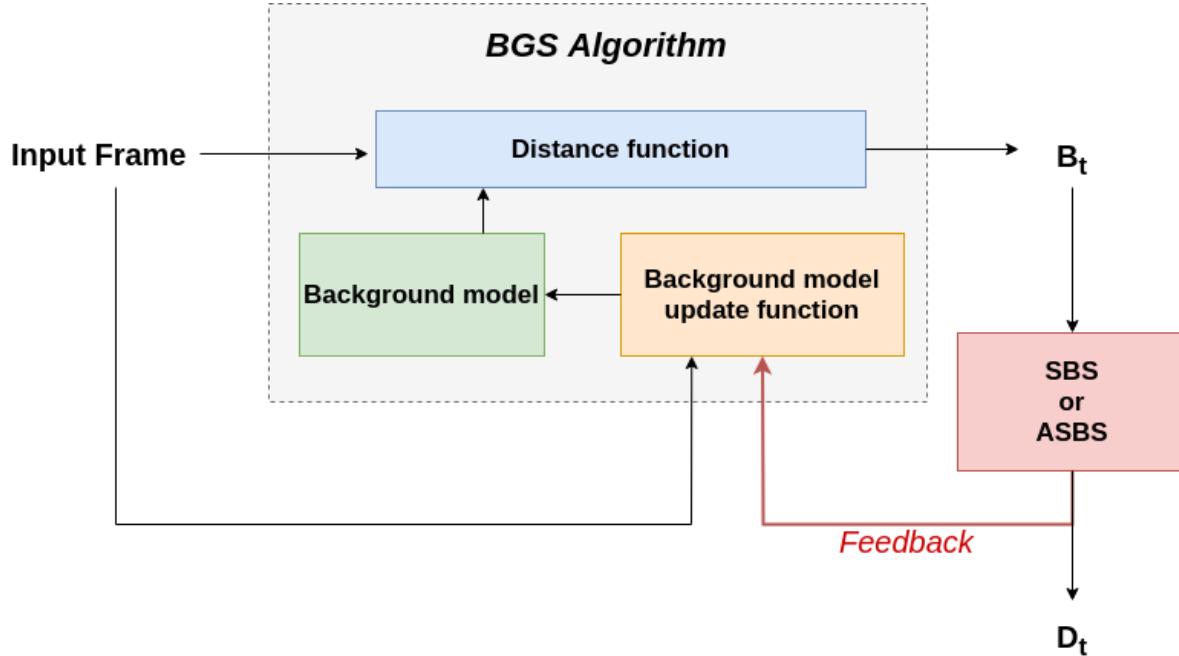


Figure 8. Our feedback mechanism, which impacts the decisions of any BGS algorithm whose model update is conservative, consists to replace the BG/FG segmentation of the BGS algorithm by the final segmentation map improved by semantics (either by SBS or ASBS) to update the internal background model.

334 The backbone of many BGS algorithms is composed of three main parts. First, an internal model
 335 of the background is kept in memory, for instance in the form of color samples or other types of
 336 features. Second, the input frame is compared to this model via a distance function to classify pixels as
 337 background or foreground. Third, the background model is updated to account for changes in the
 338 background over time.

339 A first possibility to embed semantics inside the BGS algorithm is to include semantics directly
 340 in a joint background model integrating color and semantic features. This requires to formulate the
 341 relationships that could exist between them and to design a distance function accounting for these
 342 relationships, which is not trivial. Therefore, we propose a second way of doing so by incorporating
 343 semantics during the update, which is straightforward for algorithms whose model updating policy is
 344 conservative (as introduced in [5]). For those algorithms, the background model in pixel (x, y) may
 345 be updated if $B_t(x, y) = \text{BG}$, but it is always left unchanged if $B_t(x, y) = \text{FG}$, which prevents the
 346 background model from being corrupted with foreground features. In other words, the segmentation
 347 map B_t serves as an updating mask. As D_t produced by SBS or ASBS is an improved version of B_t , we
 348 can advantageously use D_t instead of B_t to update the background model, as illustrated in Figure 8.
 349 This introduces a semantic feedback which improves the internal background model and, consequently,
 350 the next segmentation map B_{t+1} , whether or not semantics is computed.

351 To appreciate the benefit of a semantic feedback, we performed experiments for two well-known
 352 conservative BGS algorithms, ViBe and SuBSENSE, using the code made available by the authors (see
 353 [37] for ViBe and [38] for SuBSENSE). Let us note that the performances for SuBSENSE are slightly
 354 lower than the ones reported in Figure 4 as there are small discrepancies between the performance
 355 reported on the CDNet web site and the ones obtained with the available source code.

356 Figure 9 (left column) reports the results of ASBS with the feedback mechanism on ViBe and
 357 SuBSENSE, and compares them to the original algorithm and the SBS method. Two main observations
 358 can be made. First, as for the results of the previous section, SBS and ASBS both improve the
 359 performances even when the semantic frame rate is low. Also, ASBS always performs better. Second,

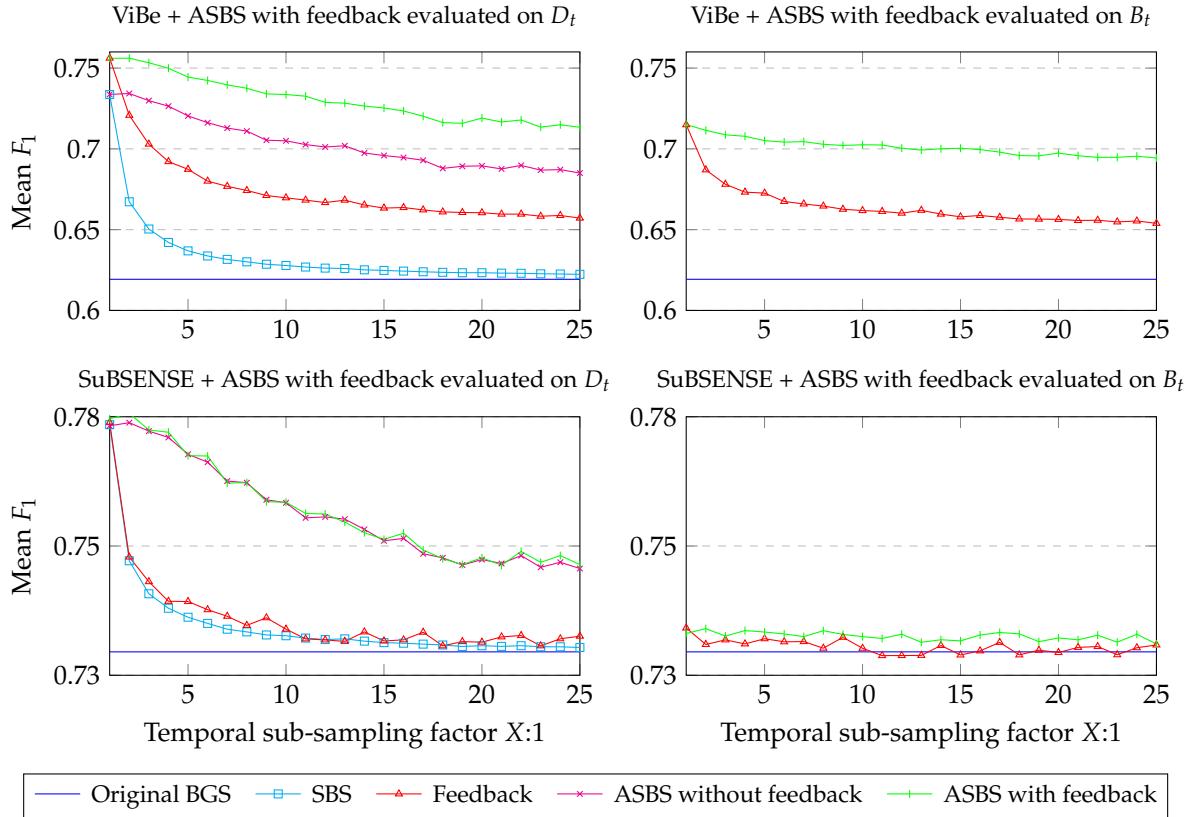


Figure 9. Comparison of the performances, computed with the mean F_1 score on the CDNet 2014, of SBS and ASBS when there is a feedback that uses D_t to update the model of the BGS algorithm. The results are given with respect to a decreasing semantic frame rate. It can be seen that SBS and ASBS always improve the results of the original BGS algorithm and that a feedback is beneficial. Graphs in the right column show that the intrinsic quality of the BGS algorithms is improved, as their output B_t , prior to any combination with semantics, produces higher mean F_1 scores.

360 including the feedback always improves the performances for both SBS and ASBS, and for both BGS
 361 algorithms. In the case of ViBe, the performance is much better when the feedback is included. For
 362 SubSENSE, the performance is also improved, but only marginally. This might be due to the fact
 363 that ViBe has a very straightforward way of computing the update of the background model while
 364 SubSENSE uses varying internal parameters and heuristics, calculated adaptively. It is thus more
 365 difficult to interpret the impact of a better updating map on SubSENSE than it is on ViBe.

366 We also investigated to what extend the feedback provides better updating maps to the BGS
 367 algorithm. For conservative algorithms, this means that, internally, the background model is built with
 368 better features. This measure can be evaluated using the output of the classification map, B_t .

369 For that purpose, we compared the original BGS algorithm and the direct output, that is B_t in
 370 Figure 8, of the feedback method when the updating map is replaced by D_t obtained by either SBS or
 371 ASBS. As can be seen in Figure 9 (right column), using the semantic feedback always improves the
 372 BGS algorithm whether the updating map is obtained from SBS or ASBS. This means that the internal
 373 background model of the BGS algorithm is always enhanced and that, consequently, a feedback helps
 374 the BGS algorithm to take better decisions.

375 Finally, let us note that ViBe, which is a real-time BGS algorithm, combined with semantics
 376 provided at a real-time rate (about 1 out of 5 frames) and with the feedback from ASBS has a mean F_1
 377 performance of 0.746, which is the same performance as the original SubSENSE algorithm (0.746) that
 378 is not real time [33]. This performance corresponds to the performance of RT-SBS presented in [31].

Table 3. Mean computation time Δ_D (ms/frame) of SBS and ASBS.

Δ_D (SBS)	1.56
Δ_D (ASBS : frames with semantics)	2.12
Δ_D (ASBS : frames without semantics)	0.8

379 It can be seen that our method can thus help real-time algorithms to reach performances of the top
 380 unsupervised BGS algorithms while meeting the real-time constraint, which is a huge advantage in
 381 practice. We illustrate our two novel methods, ASBS and the feedback, in Figure 10 on one video of
 382 each category of the CDNet2014 dataset using ViBe as BGS algorithm.

383 One last possible refinement would consist to adapt the updating rate of the background model
 384 according to a rule map similar to that of ASBS. More specifically, if $B_t(x, y) = \text{FG}$ and $D_t(x, y) = \text{BG}$,
 385 we could assume that the internal background model in pixel (x, y) is inadequate and, consequently, we
 386 could increase the updating rate in that pixel. Tests performed on ViBe showed that the performances
 387 are improved with this strategy. However, this updating rate adaptation has to be tailored for each
 388 BGS algorithm specifically; therefore, we did not consider this final refinement in our experiments.
 389 We only evaluated the impact of the feedback mechanism on BGS algorithms with a conservative
 390 updating policy, and avoided any particular refinement that would have biased the evaluation.

391 4.4. Time analysis of ASBS

392 In this section, we show the timing diagram of ASBS and provide typical values for the different
 393 computation durations.

394 The timing diagram of ASBS with feedback is presented in Figure 11. The inclusion of a feedback
 395 has two effects. First, we need to include the feedback time Δ_F in the time needed for the background
 396 subtraction algorithm Δ_B . In our case, as we only substitute the updating map by D_t , it can be
 397 implemented as a simple pointer replacement and therefore Δ_F is negligible (in the following, we take
 398 $\Delta_F \simeq 0$ ms). Second, we have to wait for the ASBS (or SBS) to finish before starting the background
 399 subtraction of the next frame.

400 Concerning the computation time of BGS algorithms, Roy *et al.* [33] have provided a reliable
 401 estimate of the processing speed of leading unsupervised background subtraction algorithms. They
 402 show that the best performing ones are not real time. Only a handful of algorithms are actually real
 403 time, such as ViBe that can operate at about 200 fps on CDNet 2014 dataset, that is $\Delta_B = 5$ ms. With
 404 PSPNet, the semantic frame rate is of about 5 to 7 fps for a NVIDIA GeForce GTX Titan X GPU, which
 405 corresponds to $\Delta_S \simeq 200$ ms. It means that for 25 fps videos, we have access to semantics about once
 406 every 4 to 5 frames. In addition, Table 3 reports our observation about the mean execution time per
 407 frame of Δ_D for SBS and ASBS. These last tests were performed on a single thread running on a single
 408 processor Intel(R) Xeon(X) E5-2698 v4 2.20GHz.

409 Thus, in the case of ViBe, we start from a frame rate of about 200 fps in its original version to
 410 reach about 160 fps when using ASBS, which is still real time. This is important because, as shown
 411 in Section 4.3, the performances of ViBe with ASBS at a semantic frame rate of 1 out of 5 frames and
 412 feedback is the same as SuBSENSE that, alone, runs at a frame rate lower than 25 fps [33]. Hence,
 413 thanks to ASBS, we can replace BGS algorithms that work well but are too complex to run in real time
 414 and are often difficult to interpret by a combination of a much simpler BGS algorithm and a processing
 415 based on semantics, regardless of the frame rate of the last. Furthermore, ASBS is much easier to
 416 optimize as the parameters that we introduce are few in number and easy to interpret. In addition,
 417 we could also fine-tune the semantics, by selecting a dedicated set of objects to be considered, for a
 418 scene-specific setup. It is our belief that there are still some margins for further improvements.

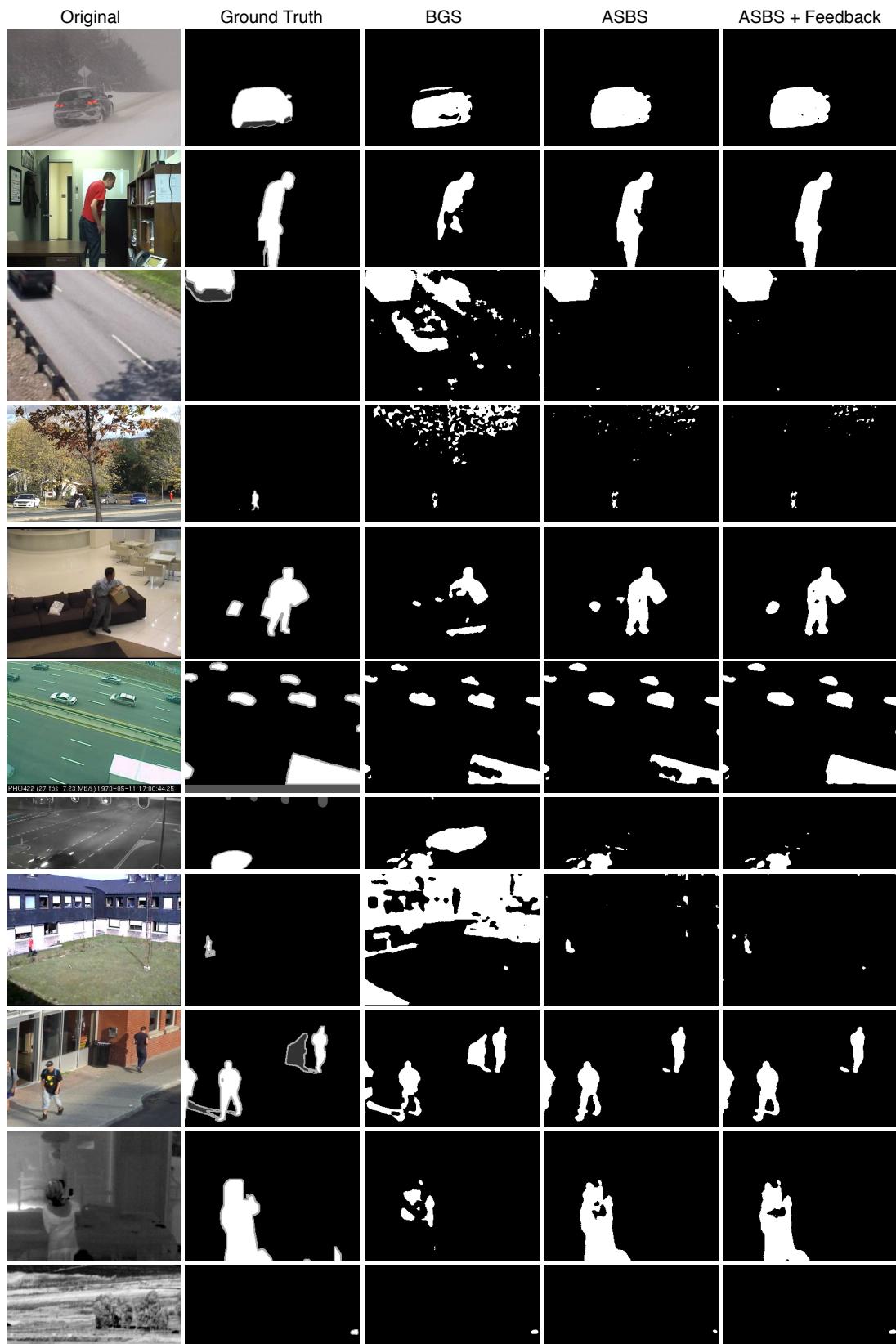


Figure 10. Illustration of the results of ASBS using ViBe as BGS algorithm. From left to right, we provide the original color image, the ground truth, the BGS as provided by the original ViBe algorithm, using our ASBS method without any feedback, and using ASBS and a feedback. Each line corresponds to a representative frame of a video in each category of CDNet2014.

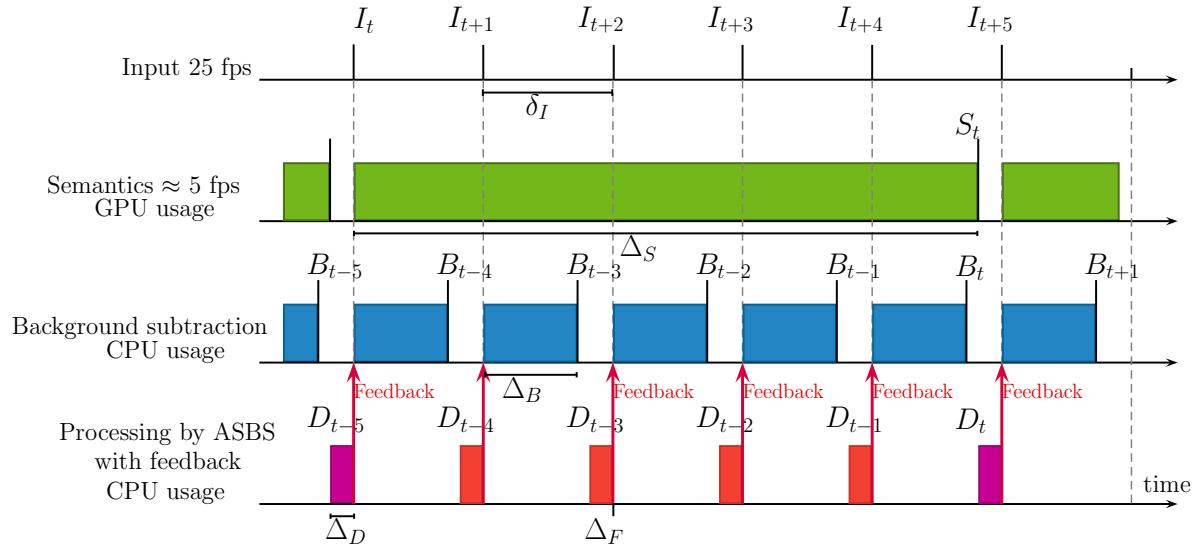


Figure 11. Timing diagram of ASBS with a feedback mechanism in the case of a real-time BGS algorithm ($\Delta_B < \delta_I$) satisfying the condition $\Delta_B + \Delta_D < \delta_I$ and the computation of semantics being not real-time ($\Delta_S > \delta_I$). Note that the feedback time Δ_F is negligible.

419 5. Conclusion

420 In this paper, we presented a novel method, named ASBS, based on semantics for improving the
 421 quality of segmentation masks produced by background subtraction algorithms when semantics is not
 422 computed for all video frames. ASBS, which is derived from the semantic background subtraction
 423 method, is applicable to any off-the-shelf background subtraction algorithm and introduces two new
 424 rules in order to repeat semantic decisions, even when semantics and the background are computed
 425 asynchronously. We also presented a feedback mechanism to update the background model with
 426 better samples and thus take better decisions. We showed that ASBS improves the quality of the
 427 segmentation masks compared to the original semantic background subtraction method applied only
 428 to frames with semantics. Furthermore, ASBS is straightforward to implement and cheap in terms of
 429 computation time and memory consumption. We also showed that applying ASBS with the feedback
 430 mechanism allows to elevate an unsupervised real-time background subtraction algorithm to the
 431 performance of non real-time state-of-the-art algorithms.

432 A more general conclusion is that, when semantics is missing for some frames but needed to
 433 perform a task (in our case, the task of background subtraction), our method provides a convenient
 434 and effective mechanism to interpolate the missing semantics. The mechanism of ASBS might thus
 435 enable real-time computer vision tasks requiring semantic information.

436 Implementations of ASBS in the Python language for CPU and GPU are available at the following
 437 address <https://github.com/cioppaanthony/rt-sbs>.

438 Acknowledgment

439 A. Cioppa has a grant funded by the FRIA, Belgium. This work is part of a patent application (US
 440 2019/0197696 A1).

441

- 442 1. Bouwmans, T. Traditional and recent approaches in background modeling for foreground detection: An
 443 overview. *Computer Science Review* **2014**, *11*–*12*, 31–66.
- 444 2. Stauffer, C.; Grimson, E. Adaptive background mixture models for real-time tracking. IEEE International
 445 Conference on Computer Vision and Pattern Recognition (CVPR); , 1999; Vol. 2, pp. 246–252.

- 446 3. Elgammal, A.; Harwood, D.; Davis, L. Non-parametric Model for Background Subtraction. European
447 Conference on Computer Vision (ECCV). Springer, 2000, Vol. 1843, *Lecture Notes in Computer Science*, pp.
448 751–767.
- 449 4. Maddalena, L.; Petrosino, A. A Self-Organizing Approach to Background Subtraction for Visual
450 Surveillance Applications. *IEEE Transactions on Image Processing* **2008**, *17*, 1168–1177.
- 451 5. Barnich, O.; Van Droogenbroeck, M. ViBe: A universal background subtraction algorithm for video
452 sequences. *IEEE Transactions on Image Processing* **2011**, *20*, 1709–1724.
- 453 6. St-Charles, P.L.; Bilodeau, G.A.; Bergevin, R. SuBSENSE: A Universal Change Detection Method with
454 Local Adaptive Sensitivity. *IEEE Transactions on Image Processing* **2015**, *24*, 359–373.
- 455 7. St-Charles, P.L.; Bilodeau, G.A.; Bergevin, R. Universal Background Subtraction Using Word Consensus
456 Models. *IEEE Transactions on Image Processing* **2016**, *25*, 4768–4781.
- 457 8. Bianco, S.; Ciocca, G.; Schettini, R. Combination of Video Change Detection Algorithms by Genetic
458 Programming. *IEEE Transactions on Evolutionary Computation* **2017**, *21*, 914–928.
- 459 9. Javed, S.; Mahmood, A.; Bouwmans, T.; Jung, S.K. Background-Foreground Modeling Based on
460 Spatiotemporal Sparse Subspace Clustering. *IEEE Transactions on Image Processing* **2017**, *26*, 5840–5854.
- 461 10. Ebadi, S.; Izquierdo, E. Foreground Segmentation with Tree-Structured Sparse RPCA. *IEEE Transactions on
462 Pattern Analysis and Machine Intelligence* **2018**, *40*, 2273–2280.
- 463 11. Vacavant, A.; Chateau, T.; Wilhelm, A.; Lequievre, L. A Benchmark Dataset for Outdoor
464 Foreground/Background Extraction. Asian Conference on Computer Vision (ACCV). Springer, 2012, Vol.
465 7728, *Lecture Notes in Computer Science*, pp. 291–300.
- 466 12. Wang, Y.; Jodoin, P.M.; Porikli, F.; Konrad, J.; Benezeth, Y.; Ishwar, P. CDnet 2014: An Expanded Change
467 Detection Benchmark Dataset. IEEE International Conference on Computer Vision and Pattern Recognition
468 Workshops (CVPRW); , 2014; pp. 393–400.
- 469 13. Cuevas, C.; Yanez, E.; Garcia, N. Labeled dataset for integral evaluation of moving object detection
470 algorithms: LASIESTA. *Computer Vision and Image Understanding* **2016**, *152*, 103–117.
- 471 14. Braham, M.; Van Droogenbroeck, M. Deep Background Subtraction with Scene-Specific Convolutional
472 Neural Networks. IEEE International Conference on Systems, Signals and Image Processing (IWSSIP),
473 2016, pp. 1–4.
- 474 15. Bouwmans, T.; Garcia-Garcia, B. Background Subtraction in Real Applications: Challenges, Current
475 Models and Future Directions. *CoRR* **2019**, *abs/1901.03577*.
- 476 16. Lim, L.; Keles, H. Foreground Segmentation Using Convolutional Neural Networks for Multiscale Feature
477 Encoding. *Pattern Recognition Letters* **2018**, *112*, 256–262.
- 478 17. Wang, Y.; Luo, Z.; Jodoin, P.M. Interactive Deep Learning Method for Segmenting Moving Objects. *Pattern
479 Recognition Letters* **2017**, *96*, 66–75.
- 480 18. Zheng, W.B.; Wang, K.F.; Wang, F.Y. Background Subtraction Algorithm With Bayesian Generative
481 Adversarial Networks. *Acta Automatica Sinica* **2018**, *44*, 878–890.
- 482 19. Babaee, M.; Dinh, D.; Rigoll, G. A Deep Convolutional Neural Network for Background Subtraction.
483 *Pattern Recognition* **2018**, *76*, 635–649.
- 484 20. Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene Parsing through ADE20K Dataset.
485 IEEE International Conference on Computer Vision and Pattern Recognition (CVPR); , 2017; pp. 5122–5130.
- 486 21. Everingham, M.; Van Gool, L.; Williams, C.; Winn, J.; Zisserman, A. The PASCAL Visual Object
487 Classes Challenge 2012 (VOC2012) Results. <http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html>.
- 488 22. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele,
489 B. The Cityscapes Dataset for Semantic Urban Scene Understanding. IEEE International Conference on
490 Computer Vision and Pattern Recognition (CVPR); , 2016; pp. 3213–3223.
- 491 23. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C. Microsoft COCO:
492 Common Objects in Context. European Conference on Computer Vision (ECCV). Springer, 2014, Vol. 8693,
493 *Lecture Notes in Computer Science*, pp. 740–755.
- 494 24. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
495 semantic segmentation. IEEE International Conference on Computer Vision and Pattern Recognition
496 (CVPR); , 2014; pp. 580–587.

- 498 25. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. IEEE International Conference
499 on Computer Vision and Pattern Recognition (CVPR); , 2017; pp. 6230–6239.
- 500 26. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. *CoRR* **2018**, *abs/1703.06870*.
- 501 27. Sevilla-Lara, L.; Sun, D.; Jampani, V.; Black, M.J. Optical Flow with Semantic Segmentation and Localized
502 Layers. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp.
503 3889–3898.
- 504 28. Vertens, J.; Valada, A.; Burgard, W. SMSnet: Semantic motion segmentation using deep convolutional
505 neural networks. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); , 2017; pp.
506 582–589.
- 507 29. Reddy, N.; Singhal, P.; Krishna, K. Semantic Motion Segmentation Using Dense CRF Formulation. Indian
508 Conference on Computer Vision Graphics and Image Processing; , 2014; pp. 1–8.
- 509 30. Braham, M.; Piérard, S.; Van Droogenbroeck, M. Semantic Background Subtraction. IEEE International
510 Conference on Image Processing (ICIP); , 2017; pp. 4552–4556.
- 511 31. Cioppa, A.; Van Droogenbroeck, M.; Braham, M. Real-Time Semantic Background Subtraction. IEEE
512 International Conference on Image Processing (ICIP); , 2020.
- 513 32. Van Droogenbroeck, M.; Braham, M.; Piérard, S. Foreground and background detection method. European
514 Patent Office, EP 3438929 A1, 2017.
- 515 33. Roy, S.; Ghosh, A. Real-Time Adaptive Histogram Min-Max Bucket (HMMB) Model for Background
516 Subtraction. *IEEE Transactions on Circuits and Systems for Video Technology* **2018**, *28*, 1513–1525.
- 517 34. Piérard, S.; Van Droogenbroeck, M. Summarizing the performances of a background subtraction algorithm
518 measured on several videos. IEEE International Conference on Image Processing (ICIP); , 2020.
- 519 35. Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic understanding of scenes through
520 the ADE20K dataset. *CoRR* **2016**, *abs/1608.05442*.
- 521 36. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Implementation of PSPNet. <https://github.com/hszhao/PSPNet>,
522 2016.
- 523 37. Barnich, O.; Van Droogenbroeck, M. Code for ViBe. <https://orbi.uliege.be/handle/2268/145853>.
- 524 38. St-Charles, P.L. Code for SuBSENSE. https://bitbucket.org/pierre_luc_st_charles/subsense.
- 525 39. Jiang, S.; Lu, X. WeSamBE: A Weight-Sample-Based Method for Background Subtraction. *IEEE Transactions
526 on Circuits and Systems for Video Technology* **2018**, *28*, 2105–2115.

527 © 2020 by the authors. Submitted to *J. Imaging* for possible open access publication
528 under the terms and conditions of the Creative Commons Attribution (CC BY) license
529 (<http://creativecommons.org/licenses/by/4.0/>).