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a b s t r a c t

Background: Direct electrical stimulation of the human brain has been used to successfully treat several
neurological disorders, but the precise effects of stimulation on neural activity are poorly understood.
Characterizing the neural response to stimulation, however, could allow clinicians and researchers to
more accurately predict neural responses, which could in turn lead to more effective stimulation for
treatment and to fundamental knowledge regarding neural function.
Objective: Here we use a linear systems approach in order to characterize the response to electrical
stimulation across cortical locations and then to predict the responses to novel inputs.
Methods: We use intracranial electrodes to directly stimulate the human brain with single pulses of
stimulation using amplitudes drawn from a random distribution. Based on the evoked responses, we
generate a simple model capturing the characteristic response to stimulation at each cortical site.
Results: We find that the variable dynamics of the evoked response across cortical locations can be
captured using the same simple architecture, a linear time-invariant system that operates separately on
positive and negative input pulses of stimulation. We demonstrate that characterizing the response to
stimulation using this simple and tractable model of evoked responses enables us to predict the re-
sponses to subsequent stimulation with single pulses with novel amplitudes, and the compound
response to stimulation with multiple pulses.
Conclusion: Our data suggest that characterizing the response to stimulation in an approximately linear
manner can provide a powerful and principled approach for predicting the response to direct electrical
stimulation.
© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Clinicians and researchers have been directly stimulating the
human brain with electrical current for decades in order to address
a variety of neurological disorders and to gain insight into the
neural circuits that govern function and behavior [1,2]. Yet despite
this vast experience, precisely how electrical stimulation affects
neural circuitry and neuronal activity in the human brain remains
unclear [2,3]. Direct electrical stimulation depolarizes membrane
potentials, leading to neural responses both locally and in distant
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neural structures through activation of axons underlying the
stimulation site [4e6]. The distal effects of stimulation are complex
and involve direct activation of orthodromic, and to a lesser extent
antidromic, propagation pathways to the target site as well as in-
direct activation of local circuits within those target regions [7,8].

These complex local and distal effects have therefore made it
difficult to anticipate and predict the neural responses to stimula-
tion. This has consequently presented a challenge for accurately
interpreting the behavioral effects of electrical stimulation when
used routinely for clinical purposes or for research. Stimulation can
result in positive responses, such as evoked phosphenes or motor
movements [9,10], but stimulation can also induce negative re-
sponses such as in speech arrest [11]. Similarly, stimulation can
have variable effects on higher order cognitive functions such as
memory [12e14]. Stimulation at a single site can even promote
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both positive and negative responses, likely depending on the
broader regions that are connected to and therefore targeted by
activation of the stimulation site [2,11,15]. These effects of stimu-
lation suggest that there is a need to well characterize the re-
sponses to stimulation across broader brain regions.

There are clear benefits to well characterizing the effects of stim-
ulation onneural activity. First, bettter understandingof the effects of
stimulation could allowclinicians and researchers tomore accurately
predict neural responses. This in turn could lead to developing more
effective stimulation algorithms for treating neurological disorders
that are more adaptive to the individual patient, that require less
power, and thatproduce fewer sideeffects. Second, characterizing the
effects of stimulationmayprovide fundamental knowledge regarding
neural function. By directly manipulating neural responses in a
controlled manner, stimulation may be used to provide insight into
neural structureandconnectivitybetweendifferentbrain regionsand
to investigate the causal role of neural activity on behavior. Direct
stimulation with individual current pulses that result in cortical
evoked potentials has been successfully used, for example, to map
connections between brain regions [16e18].

Here, we demonstrate that by directly delivering single pulses of
electrical stimulation to the human brain with amplitudes drawn
from a random distribution, we can characterize and subsequently
predict the responses in other brain regions to stimulation at a
given site. Although the dynamics of the evoked response to
stimulation are governed by the variable interconnections between
each brain region and the stimulation site, we find that the re-
sponses in each brain region can be characterized using the same
simple architecture - a linear time-invariant system that operates
separately on positive and negative input pulses of stimulation.
Characterizing the responses to stimulation using this simple and
tractable model enables us to accurately predict the response to
subsequent stimulation using individual pulses with novel ampli-
tudes, and the compound response to stimulation using combina-
tions of multiple pulses. Our results therefore suggest that the
complexmechanisms that underlie the effects of stimulation of one
site on another can be captured in an approximately linear manner.
Moreover, our results suggest an approach for building more
complex electrical stimuli and anticipating the responses to stim-
ulation in other brain regions.

Material and Methods

Ten individuals (8 male; 32:5±0:9 years) with drug resistant
epilepsy underwent a surgical procedure in which subdural plat-
inum recording contacts (3 mm exposed diameter; PMT Corpora-
tion, Chanhassan MN) were implanted on the cortical surface. In all
cases, placement of the contacts was determined by the clinical
team in order to best localize epileptogenic regions for resection.
Data were collected at the Clinical Center at the National Institutes
of Health (NIH; Bethesda, MD). The research protocol was approved
by the Institutional Review Board, and informed consent was ob-
tained from all participants in the study. All data are reported as
mean ± SEM unless otherwise noted.

In order to characterize the responses to electrical stimulation,
we applied individual biphasic pulses to a pair of neighboring
electrodes while recording the intracranial EEG (iEEG; Nihon
Kohden Inc., Irvine CA) responses in the remaining electrodes in
each participant. For each individual pulse, we used a stimulation
amplitude that was randomly drawn from a uniform distribution of
amplitudes between approximately 8 and -8 mA (Fig. 1C). We
presented trials of single pulses of electrical stimulation in two
experimental sessions while capturing iEEG recordings in each
participant (Fig. 1F). In each session, trials were separated by
approximately 1 s, resulting in a stimulation frequency of
approximately 1 Hz. We used the first session, which we refer to as
training, in order to generate a tractable model that characterizes
how each recording site responds to stimulation at each stimula-
tion site. During the second session, whichwe refer to as testing, we
used trials of individual pulses, consisting of novel stimulation
amplitudes also drawn randomly from the same distribution, and
trials containing multiple pulses to test how well the identified
model can predict the evoked response to novel stimulation.

We identified every electrode that was responsive to stimula-
tion (Supplementary Fig. S1). For each responsive electrode, we
constructed a model that characterizes the evoked response to
stimulation at the stimulation site by examining the evoked re-
sponses to the input sequence of pulses presented during the 5-min
training session (see Supplementary Material and Methods). Each
model had an identical architecture, comprised of a linear system
with impulse responses, hþ½t� and h�½t�, that separately operate on
positive and negative input pulses, respectively. Hence, given an
input, x½t�, our model estimates a predicted output, by½t� ¼ H fx½t�g
by separately convolving the positive and negative input pulses
with the impulse responses, hþ½t� and h�½t�, respectively:

by½t� ¼H fx½t�g¼
XL
t¼0

hþ½t�fþðx½t� t�Þ þ
XL
t¼0

h�½t�f�ðx½t� t�Þ;

where fþðxÞ and f�ðxÞ are rectifiers that select positive and nega-
tive pulses, respectively, and where each impulse response is of
finite duration, L. The model H is therefore fully parametrized by
the two finite impulse responses, hþ½t� and h�½t�.

Using the derived impulses responses, hþ½t� and h�½t�, we then
estimated a predicted output, dy½t�, to the pulses presented during
the testing experimental session. We computed the prediction er-
ror between by½t� and the observed output y½t� by calculating the
mean squared error (MSE) directly on the differences between their
time series (see Supplementary Material and Methods).

Data availability

Processed data and MATLAB code used for analysis is available
upon request.

Results

We collected intracranial EEG (iEEG) data from ten participants
with drug resistant epilepsy who were being monitored for sei-
zures with surgically implanted subdural electrodes. We recorded
iEEG signals at every electrode while delivering biphasic current
pulses to one site in the brain (Fig. 1A; Material and Methods). At
each stimulation site, we used bipolar stimulation across two
adjacent electrode contacts (Fig. 1B). We delivered one pulse
approximately once per second, with the amplitude of each pulse
drawn randomly from a uniform distribution of amplitudes be-
tween 8mA and�8mA (Fig.1C).We considered the presentation of
each individual stimulation pulse, followed by its inter-stimulus
interval, a single stimulation trial. The stimulation amplitude of
each pulse in each trial defines both phases of the biphasic pulse
such that stimulation using a positive (negative) current amplitude
resulted in an initial positive (negative) deflection followed by an
equally sized negative (positive) deflection. The series of stimula-
tion amplitudes has the characteristics of a white noise input since
the amplitudes are uncorrelated and have zero mean.

At each unique stimulation site (n ¼ 12 across participants), we
delivered a 5 min training session consisting of trials in which one
pulse was delivered at the beginning of each trial, and with each
trial and therefore each pulse delivered approximately once every



Fig. 1. Evoked Responses to Single Pulse Stimulation.A) Example stimulation pulse and evoked response recorded in a single electrode. B) In an example participant, stimulation
was delivered at one bipolar cortical site (white). Only a subset of electrode (green) are responsive. C) Stimulation consisted of stimulation pulses with amplitudes drawn from a
white noise distribution. A single electrode exhibits evoked responses to the pulses that appear modulated by stimulation amplitude. D) For a single responsive electrode, responses
to all stimulation amplitudes over time showed consistently timed, symmetric response to high amplitude current stimulation. E) For this same electrode, the energy of the evoked
response was also symmetric with stimulation amplitude and increases with greater magnitude of stimulation. F) Stimulation pulses were delivered to each participant for 5 min of
training at a single cortical location. During testing, a series of pulses with novel amplitudes was delivered for 2 min at the same location. The test series of pulses was repeated 3e5
times in each participant. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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second, resulting in a stimulation frequency of approximately 1 Hz.
We examined the evoked responses captured on the iEEG traces at
every other electrode to every trial of single pulse stimulation
during training (Fig. 1D). In many example electrodes, stimulation
resulted in an evoked response that appeared to increase in
magnitudewith stimulation amplitude (Fig. 1E). We often observed
this increase in the evoked response to both positive and negative
stimulation. Based on the average evoked response to all stimula-
tion trials, we determined whether each electrode in each partici-
pant was responsive to stimulation (Material and Methods; Fig. 1B;
Supplementary Figs. S1 and S2). We examined only the electrodes
that exhibited an average evoked response to stimulation that met
our criteria for responsiveness in subsequent analyses (52 total
responsive electrodes, 4:3±1:42 electrodes, corresponding to 5:02±
1:7%, per participant; for analyses of remaining electrodes, see
Supplementary Figures).

At each stimulation site, we subsequently presented a 2-min test
series containing trials of individual pulses, with each trial and
therefore each pulse also delivered with a stimulation frequency of
approximately 1 Hz. The trials used in the test series were
comprised of individual pulses with novel stimulation amplitudes
also drawn from a uniform distribution of amplitudes between
8 mA and �8 mA (Fig. 1F). Our initial goal was to determine
whether we could use the evoked responses captured during
training to generate a simple linear model capable of predicting the
responses to novel individual pulses of stimuli during testing. We
reasoned that if we could generate such a model, we could then use
the same linear model to predict the compound response to mul-
tiple pulses delivered in quick succession.

Consistent responses across time

One requirement for being able to successfully predict re-
sponses to direct cortical stimulation is that the response to the
same stimulus should be consistent across time, or time-invariant.
We examined this by repeating the 2-min test series of trials of
single pulses between three and five times in each participant
(Material and Methods). We observed that the evoked responses to
the same pulses were indeed consistent (Fig. 2A). To quantify this
consistency, we computed the average response across all but the
first repetition of the same 2-min test series of trials of pulses and
examined how well that average response trace could be used to
predict the responses observed during the first presentation of the
test series of trials (Fig. 2A). We used the residual difference be-
tween that average response trace and the response observed
during the first presentation of the same trials of pulses to compute
the mean squared error (MSE; Material and Methods). This mea-
sure, the MSE between the predicted and observed trace, reflects
the extent towhich the brain’s response to stimulation is consistent
across time. Across responsive electrodes, we found that the
averageMSEwas 0:024±0:003mV2 (Fig. 2B). We also computed the
average response across all but the final repetition, and similarly
found that the MSE between the predicted and observed trace in
that final repetition was 0:027±0:003 mV2.

We compared this MSE to the mean of the squares of each
electrode’s evoked response observed during the first presentation
of the 2-min test series of trials, which is proportional to the energy
of the evoked trace. This is equivalent to the MSE that would arise
had we predicted a response that was the mean value of the
recorded trace, which was zero, for all time points, and is the upper
limit of anymeasure of MSE since this would represent the error we
would observe had we made no prediction. We refer to this upper
bound as MSsignal. Any meaningful predictions would necessarily
have to result in a residual error that is lower than this upper
bound. TheMSE between the prediction using the average response
and the observed response during that first repetition was signifi-
cantly less than MSsignal across all responsive electrodes
(0:024±0:003 mV2 versus 0:057±0:014 mV2, tð51Þ ¼ � 2:65, p ¼
:011, paired t-test; Fig. 2B; Supplementary Fig. S3). Similarly, the
MSE between the prediction using the average response and the
observed response during the final repetition was significantly less
than MSsignal across all responsive electrodes (0:027±0:003 mV2



Fig. 2. Responses to Repeated Stimulation.A) We repeated the 2-min series of testing pulses three to five times in each participant. The responses at a typical recording electrode
were consistent. Using all repetitions excluding the first one, we averaged the responses to create a predicted response based on the average. We compared this average response to
the actual response observed during the first repetition. B) The MSE between the average response and the first repetition (Average Response Residual) was significantly smaller
than the mean of squares of the signal, which is equivalent to the error if our predicted response were the mean value of zero (MSsignal , Signal), but was higher than the variance of
the baseline noise activity (MSnoise, Noise). **, p< :01; *, p< :05; paired t-test.
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versus 0:060±0:014 mV2, tð51Þ ¼ � 2:70, p ¼ :009, paired t-test).
Hence, the average response across multiple repetitions of the
same series of trials of test pulses can be used to predict a signifi-
cant portion of the response observed in a repeated presentation of
that same series of trials of pulses.

We also compared theMSE between the predicted and observed
response to the mean of the squares of each electrode’s baseline
activity at rest, which is proportional to that electrode’s baseline
energy. This is the lower limit of any measure of MSE, given a
baseline level of noise on each electrode, and is the best level of
error one can achieve with any prediction. We refer to this value as
the MSnoise. The MSE of the prediction was significantly larger than
this lower limit, MSnoise (0:024±0:003 mV2 versus 0:018± 0:003
mV2, tð51Þ ¼ 4:95, p< :001). Together, these data suggest that the
evoked responses to stimulation are relatively, but not strictly,
consistent across time.
Prediction of single pulse responses

We were interested in characterizing the response to stimula-
tion across all recording sites in a simple and tractable model that
can be used to predict future responses. For each responsive elec-
trode, we therefore constructed a model with an identical archi-
tecture. Each model characterized the response to stimulation
using a linear impulse response that separately operates upon
positive and negative stimulation pulses based on the observation
that both positive and negative stimulation amplitudes often
evoked similar responses (Material and Methods). The input to
each model is therefore a static nonlinear rectification that selects
for positive or negative stimulation pulses, respectively (Fig. 3A).
Although we observed in some electrodes that the magnitude of
the evoked responses could be different depending on whether
stimulation was applied with a positive or negative pulse
(Supplementary Fig. S2C), we set the gain for this nonlinear recti-
fication to be the same for both positive and negative inputs.
Because the evoked responses to stimulation appeared to scale
with stimulation amplitude for each polarity of stimulation and
were relatively consistent across time, the rectification is then
followed by a linear time-invariant (LTI) operator.

A feature of the LTI operator is that we can derive the charac-
teristic response to stimulation, or the impulse response, simply by
minimizing the mean square error between the prediction any
model would make and the observed evoked responses captured
during the 5 min training session (Fig. 3A and B). We therefore used
the evoked responses to the 5 min training session to derive the
impulse response, h½t�, which fully characterizes the relation be-
tween an idealized input pulse at every cortical stimulation site and
the anticipated response at every recording electrode site. Because
we characterize the response to stimulation by separately pro-
cessing positive and negative stimulation inputs, we derived a
separate impulse response for positive and negative stimulation,
hþ½t� and h�½t� respectively, at every recording site (Fig. 3A).

We tested if we could use the simple models we generated that
characterize the response to stimulation during training in order to
predict the evoked response to the novel trials of single pulses
presented during testing (Fig. 1F). One of the key assumptions in
constructing a model using an LTI system is that the response
amplitudes scale linearly with stimulation input. Examining the
responses predicted by an impulse response function that operates
upon single pulse inputs with different stimulation amplitudes, and
comparing the predicted responses to the responses observed
during testing allows us to directly investigate this assumption.
Using the derived impulse responses for each responsive electrode,
we generated a predicted response, by½t�, to the pulses presented
during testing and that were comprised of novel stimulation am-
plitudes (Fig. 3C). As with the predictions based on the average
response, we computed the MSE between the predicted output,
by½t�, and the observed output, y½t�. We compared this measure of
error to the upper and lower bounds of error, MSsignal and MSnoise
respectively. Across all responsive electrodes, the MSE using the
predicted response, by½t�, was significantly less than MSsignal of the
recorded response, y½t� (0:03±0:006 mV2 versus 0:057±0:014 mV2,
tð51Þ ¼ � 3:28, p ¼ :0019, paired t-test; Fig. 3D), but significantly
greater than the lower bound, MSnoise (0:03±0:006 mV2 versus
0:018±0:003 mV2, tð51Þ ¼ 3:28, p ¼ :0019, paired t-test;
Supplementary Fig. S4A). We found that this level of MSE of the
predicted response was consistent when we examined all trials of
different stimulation amplitudes, although the trials with the most
negative stimulation amplitude exhibited slightly larger MSE
(Supplementary Fig. S4B). In addition, we found that only approx-
imately ten training trials were required in order to generate a
linear model that was capable of predicting the evoked responses
with a similar level of MSE as the model generated using all of the
training trials (Supplementary Fig. S4C).

For every electrode, we quantified the percentage by which any
prediction, by½t� reduced the error from the upper to lower bounds
(Material and Methods). Given the baseline noise, the best pre-
diction would reduce the error from the upper limit, MSsignal,
proportional to the energy of the evoked response, to the minimum
level, MSnoise, proportional to the energy of the noise, by 100%.
Across responsive electrodes, we found that our predictions
reduced the MSE by an average of 69:7±12:1%. Our model that
separately rectifies positive and negative inputs before processing



Fig. 3. Linear System Model Predicts the Responses to Single Pulses.A) When constructing the simple model characterizing the response to stimulation, we divided each training
series of pulses, x½t�, into positive and negative pulses because the responses to stimulation appeared symmetric. We therefore modeled the system as a nonlinear rectification
followed by a separate impulse response, hþ½t� and h�½t� for positive and negative pulses, that together produce the output y½t�. B) Cross-correlating the input x½t� of stimulation
pulses with the recorded output, y½t�, generates the first order kernel, or impulse response h½t�, of the system for each recorded electrode. C) For each recorded electrode, we can
convolve any new input x½t� with the derived model to generate a prediction, by½t� of the evoked response. The model prediction appears to match the actual evoked response, y½t�, to
the novel series of pulses. D) Across responsive electrodes, the MSE between the predicted and recorded response (Model Error) was significantly lower than the mean of squares of
the signal, which is equivalent to the MSE if the predicted response were the mean value of zero, (MSsignal , Signal). The residual error was higher than the mean of squares of the
baseline activity, which is the lowest possible level of MSE that is attainable (MSnoise, Noise). The model prediction reduced the error from its maximum value to its minimum
possible value by 69:7±12:1% across responsive electrodes. **, p< :01; paired t-test. E) The MSE for each responsive electrode using the model prediction was similar to the MSE
derived using the prediction based on the average response. Each point represents a single responsive electrode.
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them with a linear time-invariant operator can therefore predict a
significant component of the evoked response to a novel input.

We then compared how well the prediction based on the
derived impulse responses for each brain region compared to the
prediction based on the average responses. The MSE computed
using the predicted response, by½t�, approximately matched the MSE
computed using the average of the repetitions for every responsive
electrode (Fig. 3E; tð51Þ ¼ 1:38, p ¼ 0:173, paired t-test;
Supplementary Fig. S4A). The similar levels of residual error sug-
gest that our constructed model can predict responses to single
pulses with novel input amplitudes with errors that are likely
related to the consistency of the responses over time.

One concern with a predictive model that generates evoked
responses that scale linearly with stimulation amplitude is that the
observed evoked responses are not strictly linear (Fig. 1E). To
confirm the predictive ability of our simple linear model, we
therefore constructed a second model in which the initial rectifi-
cation is replaced by a quadratic fit to the observed increases in
signal energy that occur with increasing stimulation amplitude
(Supplementary Fig. S4D) [35]. The input to this model is therefore
a static nonlinear quadratic that operates on the input stimulation
pulse amplitude, which is then followed by the linear time-
invariant operator. We again calculated the MSE of the predicted
output of this model when compared to the observed response
during the testing session. Across all responsive electrodes, theMSE
using the predicted response, by½t�, was significantly less than the
upper bound of error, MSsignal, of the recorded response, y½t�
(0:029±0:006 mV2 versus 0:057±0:014 mV2, tð51Þ ¼ � 3:36, p ¼
:0015, paired t-test), but significantly greater than the lower
bound, MSnoise (0:029±0:006 mV2 versus 0:018±0:003 mV2,
tð51Þ ¼ 3:06, p ¼ :0036, paired t-test; Supplementary Fig. S4D).
The MSE of the predicted output using the quadratic input was not
significantly different from the MSE using the linear model, sug-
gesting that a linear model can account for much of the predicted
response despite the apparent non-linear nature of the evoked
response.
Prediction of responses to multiple pulses

We were interested in whether characterizing the response to
individual pulses of stimulation can also enable us to predict the
compound response to combinations of multiple pulses. In this
case, if multiple pulses are delivered before the response to any one
pulse has time to return to rest, then the predicted response to
these multiple pulses should simply be the superposition of the
predicted responses to the individual pulses. This would suggest
that this simple linear model operating separately on positive and
negative stimulation pulses could be used to predict the responses
to more complex patterns of electrical stimulation. To test this, in
five participants who had a total of 22 responsive electrodes



Fig. 4. Predicting Responses to Multiple Pulses.A) In a subset of participants, each
trial during testing contained between two to seven pulses in quick succession (grey;
three example trials shown). Using the derived model, we predicted the evoked
response in a single electrode to the multiple pulses in different trials. The corre-
spondence between the predicted response (blue) and the recorded response (black)
suggests that predicting the response to multiple pulses can be attained through su-
perposition. B) Across responsive electrodes, the MSE between the model prediction
and the recorded responses to multiple pulses (Model Error) was significantly lower
than the mean of squares of the signal, which is equivalent to the MSE if the predicted
responses were the mean value of zero, (MSsignal, Signal). The model prediction
reduced the error for predicting multiple pulses from its maximum value to its min-
imum possible value (MSnoise, Noise) by 88:6±22:9% across responsive electrodes. **,
p< :01; *, p< :05; paired t-test. C) The MSE for each responsive electrode using the
model prediction of the response to multiple pulses was similar to the MSE using the
prediction based on the average response. Each point represents a single responsive
electrode. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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(4:4±2:2 electrodes per participant), we delivered a series of trials
during the experimental testing session in which some trials con-
tained two to seven consecutive pulses. During these trials with
multiple pulses, we presented each pulse within 20e50 ms of the
previous pulse (Material and Methods). Hence, although each trial
of stimulation was delivered approximately once every second,
resulting in an overall stimulation frequency of approximately 1 Hz,
within the trials with multiple pulses the stimulation frequency
was not fixed. Within each trial with multiple pulses, any response
evoked by the first pulse of this train of pulses would still
contribute to the observed response when the second pulse was
presented. In a typical example, the evoked responses to multiple
consecutive stimulation pulses can be predicted by the model
derived for this recording electrode (Fig. 4A).

We tested howwell the predictions using the impulse responses
derived for each electrode during training were able to predict the
responses to multiple pulses presented during the 2 min testing
session. Across all responsive electrodes, the MSE using the pre-
dicted by½t� was significantly less than the upper bound of error,
MSsignal, of the recorded output, y½t� (0:048±0:010 mV2 versus
0:128±0:041 mV2, tð21Þ ¼ � 2:31, p ¼ :031, paired t-test; Fig. 4B;
Supplementary Fig. S5). We also compared the MSE of the predic-
tion to the mean of squares of the baseline activity, MSnoise, which
represents the lower limit of error that can be achieved with any
prediction (0:048±0:010 mV2 versus 0:029±0:005 mV2, tð21Þ ¼
2:86, p ¼ :0093). When predicting the response to multiple pulses,
the predictions reduced the error by an average of 88:6± 22:9%.

As above, we also repeated the series of trials containing mul-
tiple pulses several times in order to compare the prediction of
evoked responses using the model to the prediction we would
obtain based on the average of several repetitions (Fig. 4C). In most
cases, the model prediction matched the prediction using the
average response. Across all responsive electrodes, the model pre-
diction did not have a MSE that was significantly different than the
MSE we found when using the average responses to predict the
evoked response (0:048±0:010 mV2 versus 0:037±0:006 mV2,
tð21Þ ¼ 1:65, p ¼ 0:11; Supplementary Fig. S5). Together, these
data suggest that characterizing the response to stimulation using a
linear impulse response that separately operates upon positive and
negative inputs can predict the responses to multiple pulses, and
suggest that the responses to more complex patterns of direct
cortical stimulation can be estimated in an approximately linear
manner.

Discussion

Our results demonstrate that by examining the responses to
individual pulses with amplitudes drawn from a random distribu-
tion, we can characterize and subsequently predict the response to
electrical stimulation across different brain regions. The evoked
response in each electrode can be characterized using the same
architecture, comprised of a linear system that separately operates
on positive and negative input pulses. The information captured in
these simple and tractable models has two important implications.
First, characterizing neural responses to stimulation in this manner
presents a powerful tool for predicting the future response to novel
patterns of stimulation. Second, the features of each response may
provide insight into underlying neural function and the structures
and pathways connecting one region with another.

Direct stimulation of the brain has been utilized for several
decades, but stimulation parameters generally have not been well
explored even when applied to new disorders or patient pop-
ulations [2]. In some of the most widely used and successful clinical
applications, such as deep brain stimulation for movement disor-
ders [19,23] and other psychiatric disorders [20], or direct cortical
stimulation mapping [11] for example, widely adopted stimulation
parameters have largely been passed down based on previous
studies or historical data. Stimulation often involves continuous or
intermittent bursts of identical square wave pulses, and the main
parameters that are manipulated relate to the location, frequency,
amplitude, and width of the stimulating pulses.

Deviations from such standard stimulation algorithms, whether
to improve treatment or to expand stimulation to new disorders or
patient populations [24], rarely occur, largely because modeling
and understanding all of the factors that underlie the various ef-
fects of stimulation has proven to be challenging [2,3]. There are
several reasons for this. Brain structures are interconnected in
complex ways, and how information is propagated across this
distributed network of neural circuits is still an active area of
research [25,26]. The fundamental units responsible for processing
information within these networks, the neurons, are also complex,
with electrophysiological dynamics that depend on neuron type,
neuron location, interconnections with other neurons, and extra-
and intracellular environments [21,22]. Stimulation can affect these
dynamics by changing the extracellular environment, which in turn
can impact the activity of each neuron, ultimately leading to a
network effect [27]. The underlying mechanisms for how this oc-
curs are not fully understood. Finally, developing mechanistic and
detailed models that can reliably take into account all of these
complexities and predict neural responses to stimulation requires
substantial data captured during stimulation from in vivo re-
cordings of an entire neural circuit within an individual. These
experiments are difficult to perform and must be done with care.
Researchers have attempted to create realistic biophysical models
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that explicitly capture these dynamics, but these models are often
high dimensional and nonlinear [28], and thus not tractable nor
amenable, for example, to the design of closed-loop stimulation
strategies that must operate in real time.

By characterizing the responses to stimulation using a simple
and tractable model, however, and by demonstrating that these
responses approximately add linearly, our data raise the possibility
of addressing this challenge. Importantly, this approach solely re-
lies upon the responses to stimulation itself and makes no as-
sumptions about the underlying neurons or fibers of passage.
Instead, we treat the brain as we would any other system whose
inner mechanisms are relatively unknown but for which the inputs
and outputs can be well controlled and described. We derive the
relationship between stimulation and response based on the
evoked responses to pulses of electrical stimulation. This approach
builds upon previous work using single pulse electrical stimulation
to investigate the evoked cortical responses [16e18,29]. In this case,
however, we use a random series of stimulation inputs with am-
plitudes that are temporally uncorrelated, an approach that has
been successful in the study of mammalian vision inwhich random
input pulses of light have been used to characterize how the retina
and other higher order circuits process visual information [30,31],
as well as to characterize the effects of electrical stimulation on
neural activity in the retina [32]. We use direct cortical stimulation
with implanted electrodes to derive these responses here, but this
approach is generalizable to any neuromodulation technology,
including non-invasive stimulationmodalities such as TMS or tDCS.

A relatively less explored, but equally important, use of direct
stimulation is in providing fundamental knowledge regarding the
function, structure, and connections of the human brain. A common
criticism of many studies investigating the neural mechanisms of
behavior is that any inferences that are drawn between neural
activity and cognitive function are only correlative [33]. Predicting
the effects of stimulation can offer the possibility of controlling its
effects, and therefore an opportunity to answer this criticism by
evoking neural activity in a precise manner and demonstrating the
causal role played by such activity on behavior. This approach could
complement existing studies of single pulse stimulation and the
resulting cortical evoked potentials that have already been used to
infer the presence of causal connections between brain regions
[17,18]. Interestingly, how these evoked potentials differ between
brain regions has also not been well explored. Future studies could
investigate how the features of the response models described
here, such as the size, shape, and latency of the linear component,
may distinguish the neural architecture and connections between
one region and another [25,26].

Our goal here was to determine whether, by capturing evoked
responses to individual stimulation pulses with different ampli-
tudes, we could build a simple model to predict future responses to
novel inputs. This approach was premised on a starting assumption
that the brain and the response to stimulation can be reasonably
approximated as a linear systemwith responses that are consistent,
reproducible, scalable, and that can be combined. The responses
that we observe to repeated series of individual pulses suggest that
the effects of stimulation are relatively time invariant. Because the
dynamics of brain activity are variable and therefore hard to pre-
dict, observing consistent responses to stimulation across time is a
necessary requirement in order to predict any future response to
direct cortical stimulation. Moreover, the evoked activity that our
simple model could predict in response to single pulses suggest
that the response amplitudes scale linearly with stimulation. If the
effects of stimulation are scalable and can be linearly combined,
then the responses to multiple individual pulses should reflect the
superposition of the responses to individual pulses. We found that
using the impulse response to predict the response to multiple
pulses can significantly reduce the error in predicting the observed
data, providing additional evidence that the assumption of linearity
is a reasonable first approximation.

It is clear, however, from the observed evoked responses that
the responses to stimulation have a component that is nonlinear. At
the very minimum, the response to positive and negative stimu-
lation have similar directions, suggesting an initial rectification of
the stimulation input. Such a rectification suggests that perhaps
only one phase of the stimulation pulse has modulatory effects on
the underlying neural structures. In addition, we find that the
derived predictions do not perfectly capture all of the deflections
observed in the actual responses to novel inputs. This may be
related to nonlinear effects of stimulation that are not captured in
our analyses, or that may result from more temporally overlapping
responses to higher frequency stimulation. Moreover, we specif-
ically focused on the large evoked response observed during the
first 300 ms following stimulation. These responses are dominated
by a low frequency component that largely returns to baseline by
that time. Although our data suggest that these responses can be
reasonably captured using a linear approach, they do not address
the extent to which higher frequency smaller amplitude signals
that may also be present in the evoked response can be charac-
terized and predicted.

Our data also do not take into account the nonlinearities that
may arise when stimulating at multiple locations simultaneously.
More sophisticated approaches have been invoked to explore such
nonlinearities when characterizing the neural responses to visual
inputs [34]. Examining the responses to multielectrode stimulation
would be a natural extension of this work, and similar approaches
as those use here could help elucidate higher order spatial in-
teractions related to electrical stimulation. In addition, because of
stimulation artifacts, we are unable to characterize the response at
the actual site of stimulation. This may be addressed through better
recording amplifiers that are capable of capturing evoked re-
sponses even in the same electrode used for stimulation.

In our analysis, we used the average evoked response at each
electrode to identify whether that electrode is responsive to stim-
ulation. Our criteria for determining responsiveness was that the
average evoked response should have the characteristic biphasic
morphology observed in previous studies of cortico-cortical evoked
potentials [16e18], and that the energy of the average evoked
response exceeds a given threshold. As expected, predictions were
better for those electrodes that were identified as responsive.
However, the distinction between responsive and non-responsive
electrodes is somewhat arbitrary, and the threshold we choose
could fall at any point along a spectrum. The choice of threshold
reflects the tolerance for including or excluding electrodes based on
a different signal to noise ratio in their response to stimulation. In
practice, stimulation at one site likely results in effects at many
more electrodes than those we have identified as responsive.
Hence, a more general approach for predicting responses that is
agnostic to whether an individual electrode is responsive would
likely exhibit variable performance in predicting the evoked re-
sponses. Reducing the threshold for inclusion may identify a larger
set of responsive electrodes, but the reduced signal to noise ratio of
their responses may compromise the predictive ability of the
response models associated with those newly included electrodes.

Finally, our results suggest that the predictions derived using a
simple linearmodel match the predictions one couldmake by using
the average response to a repeated series of stimuli. An important
distinction, however, between using the average response to
repeated stimulation to predict future responses and using the
linear model is that the latter does not require multiple stimulation
sessions to accurately predict future responses. From a practical
standpoint, our data therefore suggest that a single and relatively
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short training session is sufficient for generating a linear model that
is capable of predicting the future response to novel stimulation
inputs, therefore providing a principled approach for designing and
anticipating the responses to different stimulation paradigms.
Conclusion

Our analyses here focus on capturing the responses to stimu-
lation in multiple brain regions when stimulating at an individual
site. Our results suggest that the neural responses to direct elec-
trical stimulation are approximately linear and consistent across
time, and can therefore be predictable. Characterizing the re-
sponses to stimulation in this manner may therefore may provide
an important tool for advancing our ability to directly stimulate the
human brain in a principled manner.
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