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Abstract: African swine fever (ASF) is a contagious haemorrhagic fever that affects both domesticated
and wild pigs. Since ASF reached Europe wild boar populations have been a reservoir for the virus.
Collecting reliable data on infected individuals in wild populations is challenging, and this makes it
difficult to deploy an effective eradication strategy. However, for diseases with high lethality rate,
infected carcasses can be used as a proxy for the number of infected individuals at a certain time.
Then R0 parameter can be used to estimate the time distribution of the number of newly infected
individuals for the outbreak. We estimated R0 for two ASF outbreaks in wild boar, in Czech Republic
and Belgium, using the exponential growth method. This allowed us to estimate both R0 and the
doubling time (Td) for those infections. The results are R0 = 1.95, Td = 4.39 for Czech Republic and
R0 = 1.65, Td = 6.43 for Belgium. We suggest that, if estimated as early as possible, R0 and Td can
provide an expected course for the infection against which to compare the actual data collected in the
field. This would help to assess if passive surveillance is properly implemented and hence to verify
the efficacy of the applied control measures.
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1. Introduction

African swine fever (ASF) is a contagious haemorrhagic fever that affects both domesticated and
wild pigs. ASF was introduced in Georgia in 2007 [1] and from there, in about a decade, it spread to
other Caucasian and Eastern European countries [2] and to a large part of Eurasia including Southeast
Asia [3]. Since no vaccine exists, the only strategy to limit the spread of the disease is to isolate the
infected area. Stamping out of infected domestic pigs is planned and, in some cases, a preventive
depopulation has been implemented in the whole infected area. Moreover, movements of domestic pigs
and their products are forbidden. Therefore, not only the disease itself but also the control measures
cause large economic losses to the pig industry of any infected country [4]. The control/eradication
of ASF becomes even more difficult when wild boar is involved, as occurred in several European
Union countries. In Europe the virus shows two main epidemiological reservoirs: wild boar (i.e., Baltic
countries) and backyard pigs (i.e., Danube Delta), with several mixed situations [5]. The presence
of the virus in wild boar populations represents a risk for the infection in domestic pigs, therefore
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eradicating the virus from the wild boar population became a priority for the pig sector of any infected
country. When the ASF virus (ASFV) is introduced in a wild boar population, an epidemic wave is
observed; while the wave spreads in space and time it leaves behind an endemic situation that can last
for years. As a matter of fact, at the time of writing only Czech Republic has been able to eradicate ASF
in the wild, whereas the other EU countries are still facing the presence of the virus in their wild boar
populations (Belgium, Bulgaria, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, and Slovakia).
Since the appearance of the infection in wild boar, the eradication of the virus was attempted through
the culling of the wild host. The goal was to reach a wild boar density at which the reduced contact
between infected and susceptible animals would have prevented virus transmission, thus leading
the infection to extinction. Although the depopulation strategy is intuitive and direct, the results of
its application early in the infected area are invariably negative. The needed hunting effort is hardly,
if ever, reached, whereas disturbance causes animals to flee the area, spreading the infection into
neighbouring free areas [6,7].

In the recently infected areas of Czech Republic and Belgium, a different eradication approach
was applied, which included an immediate hunting ban for the wild boar infected area. Moreover, the
eradication strategy consisted of specific actions [8] implemented accordingly to the different phases of
the infection [7], and such phases can be identified only through an efficient and continuous passive
surveillance based on carcass detection. In the applied strategy it is of paramount importance to
define the infected area, defined as the area where carcasses positive to the ASF virus were found,
following a planned active search. As finding carcasses in the wild is a demanding task, a model
has been developed to optimize the research effort; it describes the habitat characteristics where it
is more likely to find wild boar carcasses [9]. However, the model does not address the expected
number of carcasses to be detected nor their distribution in time. This information is a function of
the R0 parameter. R0 is the average number of secondary cases caused by one infectious individual
during its entire infectious period in a fully susceptible population [10]. It consists of three components:
the rate of contact between the number of susceptible and infectious individuals, the probability of
transmission, and the duration of the infectiousness. As R0 is dependent on several variables both
disease- and host population-specific, there is not a unique R0 value for an infection, but it is specific
for each population. R0 is often used to quantify the spread of a disease and as an indicator of the
potential magnitude of an epidemic. To calculate R0 the number of infected animals for each time step
(i.e., day) is needed, but these data are virtually impossible to obtain for a wild population. However,
for diseases with a high case–lethality ratio, mortality cases can be used as a proxy for the number
of newly infected individuals (e.g., [11]). Once appropriate data on carcasses are collected, several
mathematical methods can be used to estimate R0 value [12–14]. When the value of R0 is obtained
it can be used to estimate the expected number of carcasses to find within each cycle of infection;
the latter is summarised by the doubling time (time needed by the disease to duplicate the number of
infected individuals).

Coupling R0 and doubling time will allow us to precisely plan the active search of carcasses
defining numerical and temporal goals, i.e., how many carcasses should be detected in a certain
time window.

The aim of the present paper is to estimate both doubling time and R0 from the data obtained
during the epidemics observed in Czech Republic and in Belgium. Both the areas are characterised by
the typical central European wild boar habitat (managed broadleaf forests producing mast at irregular
time intervals) and wild boar hunting practices (sustaining feeding, limited harvesting of adult females,
driven hunts during winter months), hence they represent a reference case for countries sharing similar
management of both forests and wild boar populations [15,16].
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2. Materials and Methods

2.1. Data Sets

Data about PCR (Polymerase Chain Reaction) positive wild boar carcasses have been collected
for two infected areas, one in Czech Republic (Zlin area, n = 191), and one in Belgium (Virton Forest,
n = 280). Belgium data set contains both fresh and non-fresh carcasses, but for the purpose of this study
only fresh carcasses have been considered (n = 225, for the definition of fresh see [7]). Fresh carcasses
better represent the pattern of the disease through time, avoiding the bias in the shape of our cumulated
data that would have been introduced by including old carcasses. Czech Republic wild boar cases
have been recorded during summer and autumn (from 21 June 2017 to 27 December 2017; with a
monthly mean temperature ranging from 1.7 ◦C to 21.8 ◦C). Belgium cases have been recorded during
autumn, winter, and early spring (from 27 September 2018 to 12 April 2019; monthly mean temperature
ranging from 0.5 ◦C to 14.0 ◦C). Each record of the data sets represents the discovery of a wild boar
carcass which resulted positive to real-time PCR (Rt PCR); antibodies detection was not carried out
in any of the two areas. Following the finding of the first ASFV positive carcass, usually by chance,
carcass search was actively programmed and implemented in both infected areas. For our analysis we
grouped data by day of discovery, obtaining a mean of 1.0 ± 2.0 carcasses a day for Czech Republic
(range 0–12; Figure 1) and a mean of 1.2 ± 2.8 carcasses a day for Belgium (range 0–21; Figure 1).
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Figure 1. Data sets: (A) number of carcasses found in Czech Republic, Zlin area; (B) cumulated number
of carcasses found in Czech Republic, Zlin area; (C) number of carcasses found in Belgium, Virton
Forest; (D) cumulated number of carcasses found in Belgium, Virton Forest.

2.2. R0 Estimation Method

Computation of R0 was derived from the growth rate of cases [17], an approach already applied to
ASF for both wild boar (e.g., in Russia [18]) and domestic pigs (e.g., in Uganda [19] and in Ukraine [20]).
The assumption of this approach is that at the beginning of the epidemic, the cumulative distribution
of the cases grows at an exponential rate, during which each case produces R0 new cases during the
infectious period. During the exponential phase of the epidemic, R0 can be computed as a function
of the doubling time and the duration of the infectious period. This approach requires the following
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steps: identify the subset of data that follows an exponential growth, estimate the doubling time of
the infection event, and then estimate R0. For R0 estimation, the infectious period was assumed to be
6 days [18–22].

2.3. Data Processing

Visual exploration of Belgium data suggested that the first part of the data set does not represent
the beginning of the epidemic event, i.e., the shape of the cumulative data distribution does not appear
to be exponential (see Figure 1D). However, the data set seems to show the presence of a second
epidemic event, starting around day 130, therefore we decided to focus our analysis on this data
subset. We used Gaussian mixed models (GMM) to test data distribution and verify the presence of
two events underlying data distribution (Figure 2). We visually selected the most promising subset for
our analysis to be from day 130 onwards.
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2.4. Identify the Most Suitable Subset of Data

To identify the subset of our data that best fits the exponential distribution we log-transformed
our data and fit a linear model. This has been done based on the fact that a logarithmic transformation
of an exponential distribution returns a straight line. Therefore, we iteratively fit the linear model
to different data subsets, to identify the subset that represents the best fit and use it for our analysis.
At each iteration, our procedure subtracted a single record from the end of our data set. Adjusted
R-squared and residual sum of squares (RSS) values have been used to evaluate the model fit for
each subset.

2.5. Doubling Time Calculation

Once the most suitable data subsets have been identified, we used the equation describing the
exponential phase of each epidemic to estimate the doubling time for Czech Republic and Belgium.
First we used the model formula to calculate the expected number of carcasses (y) at day 1 (i.e., x = 1),
then we doubled that value and solved the model formula for the result (i.e., 2y), obtaining the day (xt)
when we expected to find twice the number of carcasses expected at day 1. Then, we calculated the
difference between the two x values to obtain the doubling time. Since we are using an exponential
model, the doubling time value remains constant for any value of x.

2.6. R0 Calculation

R0 values have been calculated using the formula from Anderson and May [17]:
Equation (1)

1 +
ln2
Td
∗D (1)

where Td is the doubling time of the epidemic and D is the duration of the infectious period (i.e., 6 days).
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3. Results

3.1. Identify the Most Suitable Subset of Data

3.1.1. Czech Republic

The iterative procedure of model fitting for Czech Republic data identified the subset of days
1–29 (Figure 3) as the one whose cumulative distribution is closest to an exponential distribution,
as it returned the highest adjusted R-squared value (Adj-R2 = 0.98). The RSS value for this subset
(RSS = 4.00) supported its selection as the most suitable subset. The adjusted R-squared values and
RSS values returned by the models can be seen in Figure 4 and the model fit to the original data can be
seen in Figure 5.
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3.1.2. Belgium

The iterative procedure for Belgium selected the subset of days 1–11 (Figure 6), as it returned the
highest adjusted R-squared value (Adj-R2 = 0.9). Again, the RSS value for this subset (RSS = 0.13)
supported its selection as the most suitable subset. The adjusted R-squared values and RSS values
returned by the models can be seen in Figure 7 and the model fit to the original data can be seen in
Figure 8.
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3.2. Doubling Time and R0 Estimation

The doubling time for the selected subset resulted to be 4.39 days for Czech Republic and 6.43
days for Belgium (Table 1). When we resolve Equation (1) for D = 6, the resulting R0 is 1.95 for Czech
Republic and 1.65 days for Belgium (Table 1).

Table 1. Exponential equations, doubling time values, and R0 values for Czech Republic and
Belgium epidemics.

Equation Doubling Time R0

Czech Rep. y = ex*0.158 4.39 1.95

Belgium y = e3.206 + x*0.108 6.43 1.65

4. Discussion

In the two analysed epidemics the infection did not spread to the domestic pig population and
thus ASF data refer to the infection in wild boar only. Nonetheless, we consider our results to slightly
underestimate actual R0 values, since it is unlikely that all carcasses were detected in the field and a
few infected animals could have recovered from the disease.

R0 values reported in the literature for ASF vary widely, ranging from 0.5 to 18, depending on the
type of study conducted: direct or indirect transmission, inter-species or intra-species transmission,
within herds or between herds transmission, and field or experimental studies [23]. Our results
are comparable to those obtained for between herd transmission (mean value 1.7) or for indirect
transmission (mean value 1.5). We consider our estimated R0 to result mainly from direct transmission
between individuals: at the onset of the infection the wild boar density was high and carcasses were
immediately removed and disposed. Wild boar are known to visit carcasses to feed on invertebrates,
but only after carcasses have spent some time in the field (e.g., Bassi et al. [24] reported two weeks),
so early removal of fresh carcasses strongly reduced the probability of ASF indirect transmission
through contact with carcasses, assuming high detectability of carcasses.

Although our R0 estimates for the two countries are comparable, the returned value for Belgium
is lower than the value for Czech Republic; the difference could be due to the lower wild boar density
in Belgium, with respect to Czech Republic. In the two infected areas the disease showed the usually
high case–lethality ratio and the culling goal was to depopulate the area, hence the total number of
dead animals reported is a good proxy for the real density in the area. After the epidemic, the densities
resulted to be 8.5 boars/km2 in Czech Republic (Jarosil T., personal communication) and 5.6 boars/km2

in Belgium (unpublished Forest Service data). As R0 intrinsically contains a contact rate parameter,
it is obvious that a change in host density will influence R0 value.
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As a side note, at the beginning of the epidemic, the hunters of the infected area in Czech Republic
reported a wild boar density of about of 3.5 boar/km2 (Jarosil T., personal communication).

This underlines the usefulness of R0 parameter, as it can describe the expected temporal distribution
of cases in a population, while being calculated without the need of information about population size
or density [25].

If data collection on carcasses is properly done and starts as soon as the first case is reported,
the presented methodology can be easily applied to calculate the specific R0, to properly address
carcass search, and to better evaluate the infection phase. As an example, the pattern of carcass findings
during the first days of the Belgium data set (i.e., first 60 ca. days of the original unfiltered data set)
can lead to two interpretations: as the pattern of cumulative cases (i.e., carcasses) does not fit an
exponential distribution, it means that either the research area is not properly defined (e.g., too small)
or that the infection already passed the very initial epidemic phase. Moreover, comparing the expected
and observed temporal distribution of carcass findings it is possible to evaluate the efficiency of the
passive surveillance.
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