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How to represent 3D Data? 

A visual guide to help choose data representations among 3D 

point clouds, meshes, parametric models, depth-maps, RGB-D, 

multi-view images, voxels… 
 

 

Different data representation of a 3D point cloud dataset 

The 3D datasets in our computerized ecosystem — of which an 

increasing number comes directly from reality capture devices — 

are found in different forms that vary in both the structure and 

the properties. Interestingly, they can be somehow mapped with 

success to point clouds thanks to its canonical nature. This 

article gives you the main 3D data representations modes to 

choose from when bindings point clouds to your application. 

 

3D Point Clouds 
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A 3D Point Cloud of an Abbey acquired in 2014 using photogrammetry (Gerpho), next to my 

hometown in the South of France     . The Resolution is 1 cm, expressed as the Ground 

Sampling Distance. 

A point cloud is a set of data points in a three-dimensional 

coordinate system. These points are spatially defined by X, Y, 

Z coordinates and often represent the envelope of an object. 

Reality capture devices obtain the external surface in its three 

dimensions to generate the point cloud. These are commonly 

obtained through Photogrammetry (example above), LiDAR 

(Terrestrial Laser Scanning, Mobile Mapping, Aerial LiDAR as 

simulated below), depth sensing, and more recently deep 

learning through Generative Adversarial Networks. 
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An aerial LiDAR simulated point cloud. See how this is mostly 2.5D from top-down sensing. 

Each technique holds several specificities influencing the quality 

and completeness of the data, and you can already see the 

difference between a full 360° capture vs a classical aerial 

LiDAR acquisition. This extends the scope of this specific article 

and will be covered in another issue. 

Point clouds provide simple yet efficient 3D data 

representations, and I summarize below the main operations, 

benefits, and disadvantages that come with them. 

Main Operations 

• Transformations: You can multiply the points in the 

point list with linear transformation matrices. 
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• Combinations: “Objects” can be combined by merging 

points list together. 

• Rendering: Projects and draws the points onto an 

image plane 

Main Benefits 

• Fast rendering 

• Exact representation 

• Fast transformations 

Main Disadvantages 

• Numerous points (obj. curve, exact representation) 

• High memory consumption 

• Limited combination operations 

While fast rendering and transformations make a direct 

inspection of a point cloud handy, they often are not directly 

integrated into commonly used three-dimensional applications. 

However, recent developments show a trend for better support 

even within pure mesh-based rendering platforms with a recent 

example within the Unreal 4 game engine. 

A common process is to derive a mesh using a suitable surface 

reconstruction technique. There are several techniques for 
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transforming point cloud into a three-dimensional explicit 

surface, some of which are covered in the article below. 
 

5-Step Guide to generate 3D meshes from point clouds with Python 

Tutorial to generate 3D meshes (.obj, .ply, .stl, .gltf) automatically from 3D 

point clouds using python. (Bonus)… 
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Let us further dive into 3D models as a representation to better 

grasp the range of possibilities. 

3D Models 

Almost all 3D models can be divided into two categories. 

• Solid: These models define the volume of the object 

they represent. Solid models are mostly used for 

engineering and medical simulations and are usually 

built with Constructive Solid Geometry or voxels 

assemblies. 

https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba
https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba
https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba
https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba
https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba
https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba
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Example of a solid 3D model through voxelization. 

• Shell or boundary (B-Reps): These models 

represent the surface, i.e. the boundary of the object, 

not its volume. Almost all visual models used in reality 

capture workflows, games and film are boundary 

representations. 
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Example of a shell representation of the Abbey. 

Solid and shell modeling can create functionally identical 

objects. Differences between them are mostly variations in the 

way they are created and edited and conventions of use in 

various fields and differences in types of approximations 

between the model and reality. 

Three main strategies permit to describe a point cloud through a 

3D models. Constructive Solid Geometry, Implicit surfaces 

(+Parametric modeling), and Boundary representations (B-

Reps). While Constructive Solid Geometry is very interesting 

and will be shortly discussed, the most common 3D models are 

B-Reps as 3D meshes. Let us first extend on theses. 

3D Mesh 
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A mesh is a geometric data structure that allows the 

representation of surface subdivisions by a set of polygons. 

Meshes are particularly used in computer graphics, to represent 

surfaces, or in modeling, to discretize a continuous or implicit 

surface. A mesh is made up of vertices (or vertex), connected by 

edges making faces (or facets) of a polygonal shape. When all 

faces are triangles, we speak of triangular meshing. These are 

the most common in Reality Capture workflows. 
 

 

From top to bottom: The vertices of the mesh; the edges linking vertices together; the faces 

filling formed by vertices and edges, mostly triangular. 

Quadrilateral meshes are also very interesting but often 

obtained through mesh optimizations techniques to get more 

compact representations. It is also possible to use volumetric 

meshes, which connect the vertices by tetrahedrons, 

hexahedrons (cuboids), and prisms. These so-called meshes are 

based on the boundary representation, which depends on the 

wire-frame model (The object is simplified by 3D lines, each 

edge of the object is represented by a line in the model). Let us 

extend the theory. 
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Boundary Representation 

The Boundary representation of 3D models is mainly composed 

of two parts: the topology (organization of elements) and the 

geometry (surfaces, curves, and points). The main topological 

items are faces, edges, and vertices and I schematized below a 

simple B-Rep for a cube. 
 

 

The schematization of the boundary representation underlying structure 

Operations 

• Transformations: All points are transformed as with 

the wire-frame model (Multiply the points in the point 

list with linear matrices), besides, the surface 

equations or normal vectors can be transformed. 

• Combinations: Objects can be combined by grouping 

point lists and edges to each other; Operations on 

polygons (Divide based on intersections, Remove the 

redundant polygons, Combine them … 

• Rendering: Hidden surface or line algorithms can be 

used because the surfaces of the objects are known so 

that visibility can be calculated. 
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Benefits 

• Well-adopted representation 

• Model generation via “new-gen scanning” 

• Transformations are quick and easy 

Disadvantages 

• High memory requirements 

• Expensive combinations 

• Curved objects are approximated 

Meshes are a great way to explicit the geometry of a point cloud, 

and often permits to widely reduce the number of needed points 

as vertices. On top, it permits to get a sense of the relationship 

between objects through the faces connectivities. However, 

meshing is an interpolation of the base point cloud geometry, 

and can only represent the data to a certain degree, linked to the 

complexity of the mesh. There exist a multitude of strategies to 

best mesh a point cloud, but this often demands to have some 

theoretical background and to know which parameter’s to adjust 

for an optimal result. 
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Example of a 2.5D Delaunay triangulation of the point cloud. 

Voxel-based models 

A voxel can be seen as a 3D base cubical unit that can be used to 

represent 3D models. Its 2D analogy is the pixel, the smallest 

raster unit. As such, a voxel-based model is a discretized 

assembly of “3D pixels”, and is most often associated with solid 

modeling. 
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In the case of point cloud data, one can represent each point as a 

voxel of size x, to get a “filled” view of empty spaces between 

points. It is mostly associated with data structures such as 

octrees, and permit to average a certain amount of points per 

voxel unit depending on the level of refinement needed (see 

example in the image below). This is very interesting, and I will 

cover the theory as well as the implementation in another 

dedicated article. 
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Example of voxel generalization based on an octree subdivision of the space occupied by the 

point cloud data. 

While this is practical for rendering and smooth visualization, it 

comes to approximating the initial geometry coupled with 

aliasing artifacts and can give false information if the volume 

information is used unproperly. However, due to the very 

structured grid layout of voxel models, it can be very handy for 

processing tasks such as classification through 3D convolutional 

neural networks. 

Parametric Model (CAD) 

“Parametric” is used to describe a shape’s ability to change by 

setting a parameter to a targeted value that modifies the 

underlying geometry. This is e.g. very handy if you want to 

model “walls” by just setting up their orientation, length, width, 

and height. 
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Example of modeling a wall by setting the parameter’s interactively to create a BIM model 

(Building Information Modelling) 

Parametric modeling is then suited to using computing 

capabilities that can model component attributes with an aim of 

real-world behavior. Parametric models use a composition of 

feature-based (parametric, as describe in a later section), solid 

and surface modeling to allow the manipulation of the model’s 

attributes. 
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This is an automatically generated CAD model without a topology fix. 

One of the most important features of parametric modeling is 

that interlinked attributes can automatically change values. In 

other words, parametric modeling allows defining entire “classes 

of shapes”, not just specific instances. This however often 

demands a very “smart” structuration of the underlying point 

cloud geometry, to decompose the model entity into sub-entities 

(E.g. segments) that are aggregated in classes. 
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Example of automatic segmentation as described in this award-winning Open Access 

Article [0] 

This process immensely benefits from object detection scenarios 

and the Smart Point Cloud Infrastructure as defined in the 

following article. 
 

The Future of 3D Point Clouds: a new perspective 

Discrete spatial datasets known as point clouds often lay the groundwork for 

decision-making applications. But can they… 
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Often, these parametric models can also be combined or 

extracted by combining 2D CAD drawings that interpolate the 

point cloud shape, and layers it depending on the class of 

elements. 

https://www.mdpi.com/2220-9964/8/5/213
https://www.mdpi.com/2220-9964/8/5/213
https://towardsdatascience.com/the-future-of-3d-point-clouds-a-new-perspective-125b35b558b9
https://towardsdatascience.com/the-future-of-3d-point-clouds-a-new-perspective-125b35b558b9
https://towardsdatascience.com/the-future-of-3d-point-clouds-a-new-perspective-125b35b558b9
https://towardsdatascience.com/the-future-of-3d-point-clouds-a-new-perspective-125b35b558b9
https://towardsdatascience.com/the-future-of-3d-point-clouds-a-new-perspective-125b35b558b9
https://towardsdatascience.com/the-future-of-3d-point-clouds-a-new-perspective-125b35b558b9


Published in Towards Data Science 

 

Example of several raw CAD sections from the initial point cloud before layering. 

These parametric models are oftentimes consuming to create 

but are the ones that give the most value to the 3D point cloud 

data. These come through massive semantic enrichment and 

additional triggers on the relations between objects constituting 

the scene. 

Depth map 

Now, we jump to raster-based point cloud representation. The 

first one is the depth-map. 
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Depth-map of the point cloud based on a top-bottom view 

A depth map is an image or an “image channel” that contains 

information relating to the distance of the points constituting 

the scene from a single viewpoint. While we are used to working 

with RGB images, the simplest form of expressing the depth is to 

color-code on one channel, with intensity values. Bright pixels 

then have the highest value and dark pixels have the lowest 

values. And that is it. A depth image just presents values 

according to how far are objects, where pixels color gives the 

distance from the camera. 
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💡 Hint: The depth map is related to the Z-buffer, where the 

“Z” relates to the direction of the central axis of view of a 

camera and not to the absolute Z scene coordinate. 

This form of point cloud representation is fine if you just need 

surface information linked to a known point of view. This is the 

case for autonomous driving scenarios where you can very 

quickly map the environment at each position through a 360 

projected depth map. However, the big counterpart is that you 

are not working with 3D data, rather 2.5D as you cannot 

represent 2 different values for on line sight. Here are 

operations, benefits, and disadvantages depth-map come with: 

Operations 

• Transformations: Multiply the pixels in the image with 

linear transformation matrices 

• Combinations: Objects can be combined by merging 

the points lists. 

• Rendering: Draws pixels on the image plane 

Benefits 

• Low memory requirements 

• Very well know Raster format 

• Transformations are quick and easy 
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Disadvantages 

• Essentially a 2.5-D representation 

• Cannot describe a full 3D scene on its own 

• Weak topology 

Special case: RGB-D 

Third, representing 3D data as RGB-D images have become 

popular in recent years thanks to the popularity of RGB-D 

sensors. RGB-D data provides a 2,5D information about the 

captured 3D object by attaching the depth map along with 2D 

color information (RGB).

 
This is the RGB raster imagery 
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This is the depth channel associated 

Besides being inexpensive, RGB-D data are simple yet effective 

representations for 3D objects to be used for different tasks such 

as identity recognition [1], pose regression [2], and 

correspondence [1]. The number of available RGB-D datasets is 

huge compared to other 3D datasets such as point clouds or 3D 

meshes and as such is the preferred way of training deep 

learning models through extensive training datasets. 

Special case: Projections 

Secondly, projecting 3D data into another 2D space is another 

representation of raw 3D data where the projected data 

encapsulates some of the key properties of the original 3D shape 

[3]. 

 

Example of widely deformed cylindrical projection of the point cloud 
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Multiple projections exist where each of them converts the 3D 

object into a 2D grid with specific information. Projecting 3D 

data into the spherical and cylindrical domains (e.g. [4]) has 

been a common practice for representing the 3D data in such 

format. Such projections help the projected data to be invariant 

to rotations around the principal axis of the projection and ease 

the processing of 3D data due to the Euclidean grid structure of 

the resulting projections. However, such representations are not 

optimal for complicated 3D computer vision tasks such as dense 

correspondence due to the information loss in projection [5]. 

Implicit representation 

Now, we move to what is the lesser visual component of point 

clouds: implicit representation. It just is a way to represent point 

clouds by a set of shape descriptors as described in the articles 

provided in [6,7]. 
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Color-based visualization of the verticality feature extracted to characterize the point cloud 

These can be seen as a signature of the 3D shape to provide a 

compact representation of 3D objects by capturing some key 

properties to ease processing and computations (E.g. expressed 

as a.csv file) 
x      y      z   surface   volume   omn.  ver.        

9.9   30.5   265.3   334.5   103.3   4.6   0.0        

-27.0   71.6   274.2   18.2   12.5   1.3   0.4        

-11.8   48.9   273.8   113.2   620.4   3.7   0.7        

26.9   43.8   266.1   297.1   283.6   3.9   0.0        

42.9   61.7   273.7   0.1   0.0   0.3   0.8        

-23.1   36.5   263.3   26.3   14.8   1.6   0.0        

-9.5   73.1   268.2   24.0   11.4   2.2   0.0        

32.2   70.9   284.0   36.0   139.1   1.7   0.8        

-20.5   20.7   263.2   34.0   3.4   1.8   0.8        

-2.3   73.6   262.2   28.2   15.6   2.6   1.0 

The nature and the meaning of this signature depend on the 

characteristic of the shape descriptor used and its definition. For 

example, global descriptors provide a concise yet informative 

description for the whole 3D shape while local descriptors 

provide a more localized representation for smaller patches in 

the shape. The work of Kazmi et al. [6], Zhang et al. [7] and 

more recently Rostami et al. [8] provide comprehensive surveys 

about such 3D shape descriptors. 

Implicit representation is very handy as part of a processing 

pipeline, and to ease data transfer among different 

infrastructures. It is also very useful for advanced processes that 

benefit from informative features hard to visually represent. 

Multi-View 
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Fifth, we can access 3D information from a multi-view image, 

which is a 2D-based 3D representation where one accesses the 

information by matching several 2D images for the same object 

from different points of view. Representing 3D data in this 

manner can lead to learning multiple feature sets to reduce the 

effect of noise, incompleteness, occlusion, and illumination 

problems on the captured data. However, the question of how 

many views are enough to model the 3D shape is still open, and 

linked to the acquisition methodology for photogrammetric 

reconstructions: a 3D object with an insufficiently small number 

of views might not capture the properties of the whole 3D shape 

(especially for 3D scenes) and might cause an over-fitting 

problem. Both volumetric and multi-view data are more suitable 

for analyzing rigid data where the deformations are minimal. 

 

What about Machine Learning and 

Deep Learning? 

3D Data has a tremendous potential for building Machine 

Learning systems, especially Deep Learning. However, 

currently, true 3D data representations such as 3D meshes need 

to be considered regarding another Deep Learning paradigm. 
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Indeed, the vast majority of deep learning is performed 

on Euclidean data. This includes datatypes in the 1-

dimensional and 2-dimensional domain. Images, text, audio, 

and many others are all euclidean data. Of this, particularly the 

RGB-D datasets are then nowadays able to build on to of 

massive labeled libraries if one seeks to automatically detect 

objects in the scene. But meshes or structured point clouds 

could benefit from exploiting their rich underlying relationships. 

This is achieved for example by embedding them in a graph 

structure (a data structure that consists of nodes (entities) that 

are connected with edges (relationships)), but this makes them 

Non-Euclidean (which meshes are by nature), thus non-usable 

by classical Machine Learning architectures. 

For this, an emerging field called Geometric Deep Learning 

(GDL) aims to build neural networks that can learn from non-

euclidean data. 

As nicely put by a fellow scientist Flawnson Tong in this 

recommend article (here): 

The notion of relationships, connections, and shared properties 

is a concept that is naturally occurring in humans and nature. 

Understanding and learning from these connections is 

something we take for granted. Geometric Deep Learning is 

significant because it allows us to take advantage of data 

with inherent relationships, connections, and shared 

properties. 

https://medium.com/@flawnsontong1?source=post_page-----b2adb662d91d----------------------
https://medium.com/@flawnsontong1/what-is-geometric-deep-learning-b2adb662d91d
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Thus, every 3D Data Representation can be used within a 

Machine Learning project, but some will be for more 

experimental projects (non-euclidean representations), whereas 

euclidean data can directly be ingested in your application 

 

Conclusion 

If you read up until now, kudos to you ! To summarize, the 3D 

data representation world is super flexible, and you now have 

the knowledge to make an informed decision for choosing your 

data representation: 

• 3D Point clouds are simple and efficient but lack 

connectivity; 

• 3D models found as 3D meshes, Parametric models, 

voxel assemblies propose dedicated levels of 

additional information but approximate the base data; 

• Depth maps are well known and compact but 

essentially deal with 2.5D data; 

• Implicit representation encompasses all of the above 

but is hardly visual; 

• Multi-view is complimentary and leverage Raster 

imagery but is prone to failure case for optimal 

viewpoint selection. 



Published in Towards Data Science 

And as always, if you want to go beyond, you will find several 

references below. 
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