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A B S T R A C T

Recent advances in tumor immunology, fostered by dramatic outcomes with cancer immunotherapy, have
opened new scenarios in cancer metastasis. The cancer stemness/mesenchymal phenotype and an excess of
immune suppressive signals are emerging as Intertwined aspects of human tumors. This review examines recent
studies that explored the mechanistic links between cancer cell stemness and immunoevasion, and the evidence
points to these key events in cancer metastasis as two sides of the same coin. This review also covers the
mechanisms involved in tumor expression of programmed cell death ligand 1 (PD-L1), a major factor exploited
by human neoplasias to suppress immune control. We highlight the convergence of mesenchymal traits and PD-
L1 expression and examine the functions of this immune inhibitory molecule, which confers cancer cell re-
sistance and aggressiveness.
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1. Introduction

In the last few decades, cancer research has put a lot of effort into
understanding the mechanisms of metastasization. This research had
led to the concept that disseminated metastasis arises from a small,
heterogeneous fraction of cancer cells within the tumor, defined as
CSCs [1]. When cancer cells undergo the EMT, they partially and
transiently dedifferentiate. This transition provides an opportunity to
adjust cellular gene expression and acquire a stem cell phenotype for
self perpetuation and propagation [2]. Recent investigations on CSCs
have revealed that these cells have a special immunoediting capacity, a
process that leads the immune system to play supportive roles in tu-
morigenesis and metastasis. Many studies have investigated CSCs,
which can be identified on the basis stemness markers. Those studies
showed that CSCs could exploit multiple mechanisms to evade immune
surveillance. In particular, the EMT state supports the tumor in ac-
quiring immunoediting capacity and creating a permissive TME that
promotes tumor growth and invasion. Due to its peculiar abilities to
promote invasion and progression, but at the same time, to attract
immune cells, EMT represents an important window for manipulating
the immune system and reactivating it against cancer cells. Tumor
immunoevasion is also supported by tumor expression of PD-L1. PD-L1
is among the best known and studied immune checkpoint co-inhibitory
molecules. Antibody therapies directed against PD-L1 and its receptor,
PD1, has dramatically changed the outcomes of many cancers that were
considered incurable. This therapy has provided unprecedented results
compared to chemotherapy.

Increasing evidence has supported the notion that PD-L1 has both
immune regulatory effects and intrinsic supportive effects in tumor
cells. Although PD-L1 expression in tumor cells is often acquired in an
EMT context, genetic and epigenetic defects in tumor cells can lead to
constitutive PD-L1 expression. In addition, PD-L1 expression in CSCs is
directly supported by genes active in the embryo, like Sox2, Oct4, and
members of the stemness-associated Wnt-signaling pathway. These
studies have opened the door to new potential therapeutic agents that
aim to counteract the function or expression of PD-L1, which would
completely disarm CSCs. In this review, we examined studies that have
addressed the immunoprivileged character of CSCs, either alone or in
the context of EMT, which favors a permissive TME and supports the
CSC phenotype. Moreover, we highlighted the reciprocal relationship
between EMT and PD-L1, and at the same time, we investigated tumor-
specific mechanisms that regulate the expression of PD-L1, independent
of the TME.

2. Cancer stem cells have intrinsic immunoprivileged properties

CSCs comprise a small population of cells within the tumor, iden-
tifiable with a molecular marker or a marker combination. CSCs are
characterized by the activation of genes related to early embryonic
development that confer tumorigenic abilities, like self-renewal capa-
city, differentiation potential, and resistance to death. Studies from
transplantation medicine have shown that physiologic stem cells have
immunoprivileged properties [3–5]. The notion that CSCs might also
have immunoevasive capabilities was inspired by the observation that
host antitumor immunity could spare these cells. CSCs are indeed able
to evade immune-mediated rejection in an immunocompetent host,
even in the context of melanoma, which is highly immunogenic [6].
Schatton et al. studied MMICs, identified by the expression of the drug
efflux transporter, ABC subfamily B, member 5 ABCB5. They demon-
strated that MMICs could evade tumor immune surveillance more ef-
fectively than differentiated melanoma cells [7]. Several mechanisms in
MMICs contribute to effector T cell tolerization, including: absent/low
expression of tumor-associated antigens and of MHC class I molecules
that preclude CD8 T cell activation, which prevents CD8 T cell-medi-
ated killing; the expression of co-inhibitory signals upon T cell re-
cognition; the secretion of immunosuppressive cytokines, like TGF-β or

IL-10; the recruitment of Tregs; and the induction of Fas-mediated
apoptotic T cell death [6,7]. In addition, Schatton and Frank proposed
that MMICs, like physiologic stem cells [8,9], might serve as functional
APCs. Indeed, MMICs present tumoral antigens in the context of MHC
class II molecules, either in the absence of positive co-stimulation or in
the presence of a co-inhibitory immune ligand, like PD-L1 [6]. Con-
sistently, Becker et al. showed that melanoma cells that expressed MHC
class II molecules could induce clonal anergy in T cell clones, ex vivo
[10].

The first immunobiological characterization of CSCs isolated from
patients with GBM indicated that GBM-CSCs had lower immunogenicity
and higher suppressive activity than non-CSC GBM cells [11]. Wei et al.
isolated and generated single, CD133 cancer-initiating colonies from
patients with GBM. They confirmed that glioma-cancer-initiating cells
induced T cell suppression [12]. They also showed that STAT3 was
constitutively active in GBM-CSCs. In turn, STAT3-induced tumor-se-
creted factors could activate STAT3 in immune cells of both the innate
and acquired immune systems. This activation created a positive feed-
back loop between the tumor cells and the TME, which led to im-
munoevasion (for a comprehensive review of the role of STAT3 in im-
munosuppression, see Huynh et al. [13]).

Constitutive STAT3 activation was also found in CD44+ cells iso-
lated from patients with SCCHN. CD44 is a well-characterized marker
of a subpopulation of tumor cells associated with enhanced tumor-
igenesis, radioresistance, and chemoresistance [14]. In primary human
SCCHN, constitutive STAT3 phosphorylation led to the selective ex-
pression of PD-L1 in CD44+ cells. In addition, CD44+ cells expressed
higher levels of IFNγ receptor 1 IFNγR1, than CD44− cells. Incubation
of CD44+ cells with IFNγ led to IFNγR1 internalization and the phos-
phorylation of STAT1, a transcription factor that acts downstream of
the IFNγR signaling. In turn, phosphorylated STAT1 upregulated PD-L1
expression. The increased sensitivity of CD44+ cells to IFNγ suggested
that SCCHN-CSCs could counteract lymphocyte attacks by enhancing
their constitutive co-inhibitory immune receptor signaling more effi-
ciently than their counterpart differentiated cells [14]. In lung carci-
noma, CSCs that expressed the splicing variant of CD44 (CD44v) ex-
hibited particularly high PD-L1 expression [15]. Also, TNBC cell lines,
which exhibited stemness markers, like ALDH and CD44, showed in-
creased PD-L1 levels, compared to their ALDH-negative and CD44low

counterparts [16].
Treating TNBC cells with selective Wnt inhibitors or activators

downregulated or upregulated PD-L1 expression, respectively, which
implied that stemness-associated Wnt activity could engage in func-
tional cross-talk with proteins involved in PD-L1 expression [16]. In-
deed, TNBC-PD-L1high cells generated more mammospheres and
showed increased in vivo tumor growth compared to TNBC-PD-L1low

cells. Moreover, TNBC-PD-L1high cells established close contacts with
PD1+ T cells in murine and human tumor samples; that finding sup-
ported the notion that CSCs were related to immune evasion [16]. In
lung adenocarcinoma, Kerdidani et al. found that Wnt1 had paracrine
effects on intratumoral DCs, including silencing the expression of che-
mokine genes. This mechanism tolerized intratumoral DCs to Wnt1
[17].

Immune evasion is a complex process that involves many signaling
molecules. In double-negative prostate cancer, Su et al. found that PRC-
1 induced CD44 expression in cancer cells. In addition, PRC-1 induced
the expression of the chemokine CCL2, which orchestrates the devel-
opment of an immunosuppressive TME by recruiting M2-like tumor-
associated macrophages and Tregs [18]. The TAZ and YAP kinases,
which are downstream of the Hippo pathway, were found to act as
oncogenes and transcriptional co-activators of stemness genes; in ad-
dition, they enhanced PD-L1 levels in breast and lung cancers [19]. A
study on HCC showed that the stemness-related protein, Sox2, could
directly bind to the PD-L1 promoter and transactivate its expression
[20]. In cervical cancer, Dong et al. found that Oct4 transcriptionally
regulated miR18a, which in turn, targeted PTEN, WNK2, and SOX6
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genes. This mechanism inhibited p53 expression and activated PI3k/
Akt, MEK/Erk, and the Wnt/β-catenin pathway, which ultimately led to
PD-L1 upregulation [21]. CSCs purified from primary CRC showed
weak immunogenicity, due to IL-4 production. Indeed, CRC-CSCs ex-
pressed both IL4 and its receptor. Blocking IL-4 activity stimulated T
helper 1-mediated tumor-specific reactivity [22]. Fig. 1 illustrates the
mechanisms exploited by CSCs to evade immune surveillance.

3. The tumor microenvironment sustains immunoprivilege in
CSCs

Several lines of evidence support the notion that tumor cells inter-
convert from non-CSC to CSC phenotypes in the context of epigenetic
changes associated with EMT (reviewed in [23]). CSC-enriched sub-
populations in primary tumors have shown particularly prominent as-
pects of EMT-program activation [24]. A relatively small group of
transcription factors orchestrate the genetic program that leads to EMT
[25,26]. These gene expression changes are coordinated by three main
families of transcription factors, namely, Snail (encoded by SNAI1 and
SNAI2), ZEB proteins (ZEB1 and ZEB2), and basic helix–loop–helix
proteins, TWIST1, TWIST2, and TCF3 [25–27]. Although a variety of
stimuli have been implicated in the induction of EMT, multiple EMT
models have shown that TGF-β/Smad signaling plays a central role
[28]. The role of TGF-β in EMT was extensively reviewed previously
[27,28], and thus, we will not discuss it further in this review.

The TME is formed when cancer cells with a mesenchymal pheno-
type attract cells from the adaptive immune system and components of
the innate immune system [29]. Indeed, EMT induces an adaptive im-
mune response, characterized by a significant increase in CD3 Tils,
Tregs, and several activation markers, including CD80, CD86, OX40 L,
4-1BB, ICOS, CD127, IFNγ, IFNγ-induced protein CXCL10, and an IFNγ-
inducible enzyme IDO [29]. Moreover, in NSCLC, cells of the me-
senchymal phenotype showed significantly higher levels of multiple
immune checkpoint molecules, including PD-L1, PD-L2, PD1, TIM-3,
B7-H3, BTLA, and CTLA-4, compared to cells of the epithelial

phenotype [29].
The innate immune system includes MDSCs [30], TAMs [31], and

CAFs [32]. These cells are particularly involved in the creation of a
“niche”, defined as an immunoprivileged, anatomically distinct TME
that is devoted to supporting CSCs [33]. MDSCs are a heterogeneous
subset of cells, from monocytic or granulocytic origin, which abun-
dantly secrete IL-6 and TGF-β; moreover, they recruit T helper 17 cells
[34]. IL-6 supports cancer initiation and neoplastic progression through
STAT3 signaling [35,36]. Moreover, IL-6 redirects the differentiation of
myeloid progenitor cells to become MDSCs [35]. Through this me-
chanism, IL-6 interferes with the development of APCs that are neces-
sary for priming cytotoxic T cells; this interference prevents T cell ac-
tivation and induces T cell anergy or death. In addition to MDSCs, the
primary sources of IL-6 include the tumor cells, TAMs, CD4+ T cells,
and CAFs. In non-CSCs, IL-6 regulates CSC-associated OCT4 gene ex-
pression through the IL-6-JAK1-STAT3 signal transduction pathway, as
shown in breast cancer [36] and prostate cancer [32] settings. Giannoni
et al. showed that, in a paracrine capacity, IL-6 mediated the interplay
between CAFs and prostate cancer cells, which led to an EMT-driven
gain of CSC properties associated with aggressiveness and metastasis
[32].

In ovarian cancer, a direct interaction between MDSCs and cancer
cells triggered miR101 expression in the cancer cells. In turn, miR101
inhibited the co-repressor gene CtBP2, which increased the transcrip-
tion of core cancer-stemness genes. A Kaplan Meier statistical analysis
of overall survival confirmed that high MDSC density, high miR101
expression, and reduced CtBP2 expression were associated with a poor
prognosis in patients with ovarian cancer [30].

TAMs derive from alternative macrophage polarization (M2)
[37,38]. M2 macrophages cannot perform efficient antigen presentation
or co-stimulation, and they attract Tregs, which participate in im-
munosuppression [39]. At the same time, TAMs sustain tumor-intrinsic
cell signaling. In HCC, TAMs secreted IL-8, which promoted the EMT
program through the JAK/STAT3/SNAIL signaling pathway [40]. Su
et al. demonstrated a positive feedback loop between EMT and TAMs,

Fig. 1. Mechanisms involved in CSC evasion from immune surveillance. Reduced MHC-class I expression avoids CD8 T cell killing; increased MHC-class II transforms CSC
in antigen presenting cell that interacts with T cells and suppress them through PD-L1; Sox2, Oct4 and Wnt upregulate PD-L1 expression, Wnt is also able to disarm
dendritic cells; constitutive activation of STAT3 transduces survival signals and stimulates production of cytokines that sustain STAT3 activation and negatively affect
the capability of immune cells from TME to attack the tumor; Polycomb repressor complex I promotes chemokine-mediated alternative polarization of macrophages
from TME; IFNγR renders CSC sensitive to signals from TME (i.e. IFNγ) to inducing PD-L1 expression; CSC-direct killing of immune cells through FasL.
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fostered by the GM-CSF secreted by breast cancer cells [41]. GM-CSF
activated TAMs, which in turn, secreted CCL8, also known as MCP2.
CCL8 ultimately activated EMT through NF-κB-mediated stimulation of
the axis formed by PI3k/Akt/GSK3β/Snail [42,43]. TAMs also secrete
TNF-α, which plays an EMT-promoting role in breast cancer, mediated
by SNAIL upregulation [44]. In pancreatic cancer, TAM-secreted IL-10
is a central promoter of EMT [45]. When pancreatic cancer cells were
cocultured with immune suppressive M2-polarized macrophages, the
presence of IL-10 induced aggressive behavior. In particular, IL-10 in-
duced EMT by activating TLR4, MMP2 and MMP9 [46], which worked
in concert with the transcription factor, Snail [45].

CAFs play an important pathogenic role in HCC. In more than 80%
of cases, HCC develops within the context of cirrhosis. Due to chronic
inflammation, HCC is accompanied by an enrichment of activated fi-
broblasts. Compared to normal tissue fibroblasts, these CAFs proliferate
at a higher rate and show enhanced extracellular matrix production.
Moreover, it has been shown that CAFs secrete HGF, which activates
the tyrosine kinase receptor, c-MET, in HCC cells [47]. After ligand
binding, c-MET is phosphorylated at two tyrosine residues [47]. Then,
HGF/MET activates oncogenic signaling pathways, namely Ras, PI3k,
MAPK/STAT, and β-catenin/Wnt, which lead to cancer stemness [47].
CAFs also secrete a number of other growth factors, including VEGF,
HGF, and PDGF [48]. However, CAFs mostly contribute to im-
munoevasion by producing SDF1 (also known as CXCL12), which is
involved in M2-macrophage polarization [49].

4. EMT serves as a window for NK cells to control tumor
progression

The EMT process is tightly connected to inflammation [50]. Ric-
ciardi et al. investigated an inflammatory-induced EMT model with
different cancer cell types. They proposed that, during EMT, cancer
cells acquired some immune-modulatory mechanisms shared by me-
senchymal stromal cells, but they also emphasized that cancer cells
could perform some peculiar tumor-specific immunomodulatory prop-
erties. That study found a number of immune-modulatory mechanisms,
mostly dependent on the cancer cell type, that could account for EMT-
induced immune suppression. Specifically, an impairment in NK or T
cell function and an expansion of both Tregs and B cells could hamper
the host immune attack against the tumor. The suppression mechanism
of immune cells was partly mediated by activating the IDO pathway
[51]. Alternatively, NK cells can positively influence EMT, as shown by
Huergo-Zapigo et al [52]. Those authors found that NK cells produced
proteomic changes in melanoma cells that largely overlapped with
those of cytokine-induced EMT. This NK-mediated tumor-cell editing
depended on the activation of NKG2D and the natural killer cytotoxicity
receptor, NKp30, in addition to the release of TNFα and IFNγ. In turn,
IFNγ upregulated IDO and increased HLA-I surface expression, which
conferred resistance to NK-mediated killing. Furthermore, NK-induced
IFNγ secretion might induce autophagy, which protects tumor cells
against both NK- and T cell attacks [51].

As suggested by studies from Lopez-Soto et al. and Chockley et al.,
EMT is an important window for the immune system to control tumor
progression. In this view, manipulating NK cells during this window
could effectively redirect the immune cell subset against the tumor
[53,54]. Indeed, Lopez-Soto et al. found that, in CRC, the acquisition of
mesenchymal characteristics induced the expression of ligands for some
NK receptors, particularly the NKG2D receptor, which rendered tumor
cells in the EMT state more susceptible to elimination by NK cells [53]
Similarly, a study by Chockley et al. demonstrated that, during EMT,
the induction of CADM1 regulated a metastasis-specific im-
munosurveillance, mediated by NK cells. More specifically, when
CADM1 bound to the CRTAM receptor on NK cells, NK cytotoxicity was
activated [54]. NK activity was also enhanced when, during EMT, E-
cadherin downmodulation prevented the adhesion molecule engage-
ment and inhibition of KLRG1 [54]. Overall, these studies supported the

concept that the modality of integrating NK receptor signaling could
determine whether NK cells became activated. Manipulating these
signaling receptors during EMT could promote the innate ability of NK
cells to detect and kill cancer cells, while sparing normal cells.

5. Mesenchymal tumors have the highest PD-L1 expression levels

PD-L1 (CD274, B7-H1) is a transmembrane protein, mainly ex-
pressed by cells from the adaptive immune system, whose function is to
limit the clonal expansion of antigen-specific CD8+ cytotoxic T cells
and CD4+ T helper cells [55]. PD-L1 binds to the inhibitory checkpoint
receptor, PD1, which is expressed by activated T lymphocytes. This
binding transmits an inhibitory signal, mediated by the de-phosphor-
ylation of ITSM on the TCR. A recent study performed multi-platform
analyses of the transcriptome, methylome, and transcription-factor
binding sites with datasets from TCGA and an innovative, one-class
logistic regression, machine-learning algorithm [56]. Their findings
emphasized the notion that, among various tumor types, mesenchymal
tumors had the highest PD-L1 expression levels and the largest leuko-
cyte fractions among the different cancer types [57]. As previously
discussed, the tumoral EMT-phenotype attracts immune cells, which
could explain the acquired nature of tumor-PD-L1 expression that
characterizes the tumor EMT state [29]. A thorough study of melanoma
[58] showed that PD-L1 was mainly induced and regulated by IFNγ and
the type II IFN receptor signaling pathway. This signaling pathway
included JAK1 and JAK2, several STATs, and other modulators, and it
ultimately led to the binding of IRF1 to the PD-L1 promoter. IFNγ
treatment resulted in a clear, reliable pattern, where the induction of
the JAK2/STAT1/IRF1 axis led to PD-L1 upregulation [58], which is
typical of the type II IFN canonical pathway. IL-6 also played a role in
the stimulation of PD-L1 expression by upregulating STAT3 via an au-
tocrine/paracrine pathway [59]. Xu et al. highlighted the control of PD-
L1 translation in HCC, which was mediated by oncogene expression
concomitant with EMT [60]. The authors found that MYC, in co-
operation with RTK/RAS signaling, markedly increased PD-L1 expres-
sion and promoted tumor formation, EMT, and metastasis [60]. In the
context of both MYC and KRAS activation (but not KRAS activation
alone), the ribosome footprints changed for a subset of transcripts.
More precisely, MYC upregulated the translation of several proteins,
including cytokines involved in immune cell attraction and inflamma-
tion, factors necessary for cell cycle progression and cell motility, and
PD-L1 [60]. When the phosphorylation of eIF4E was inhibited by the
eFT508 compound, PD-L1 and several other translational targets were
significantly and selectively downregulated [60]. Cerezo et al. found
that eIF4F regulated the translation of mRNA that encoded the tran-
scription factor, STAT1 [61]. Through this mechanism, eIF4F could
control IFN-γ-induced PD-L1 expression in cancer cells [61]. Chen et al.
found that, in cancer cells, the EMT-related gene, ZEB1, acted in concert
with the stemness-related gene, Oct4, in increasing PD-L1 expression
[20]. Deng et al. proposed that FOXO transcription factors, which
played contrasting roles in Myc and Wnt/β-catenin oncogenic path-
ways, could downregulate tumor PD-L1 expression, and thus, promote
antitumor immunity [62].

6. Other mechanisms of aberrant PD-L1 expression in human
tumors

In cold (non-inflamed) tumors, aberrant PD-L1 expression can occur
with genomic alterations. For example, elevated copy numbers of
chromosome 9p24 (where the CD274 gene is located) have been found
in many human cancers, including small-cell lung cancer [63], squa-
mous cell carcinoma of the oral cavity [64], cervical cancer [65],
ovarian cancer [66], breast cancer [67], melanoma, bladder cancer,
sarcomas, and prostate cancer [68]. In lymphoid tumors, recurrent re-
arrangements involving MHC2TA, induced the overexpression of
CD274 (PD-L1 gene) and CD273 (PD-L2 gene) and the downregulation
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of surface HLA II expression [69]. The oncogenic, fusion protein, NPM/
ALK, was shown to upregulate PD-L1 expression in neoplastic T lym-
phoma cells via STAT3 activation [70].

PD-L1 expression can also be regulated epigenetically. In melanoma
cells, the class I histone deacetylase, HDAC8, acts on a complex formed
by HOXA5 and STAT3 to inhibit PD-L1 expression [71]. In pancreatic
tumor cells, Lu et al. highlighted another form of epigenetic PD-L1
regulation [72]. They showed that increasing expression and activity of
the histone lysine methyltransferase MLL1 generated a cluster of
H3K4me3, which attached to the CD274 promoter region that flanks
the PD-L1 transcription start site. Inhibiting MLL1 reduced the level of
H3K4me3 clusters on the CD274 promoter region and downregulated
PD-L1 expression. That result suggested that MLL1 played a relevant
role in PD-L1 expression in pancreatic cancer [72]. In addition, several
miRs have been implicated in regulating PD-L1 expression [73–76].
MiR binding to the 3′UTR of PD-L1 mRNAs hampered translation and
reduced PD-L1 production [73–76]. During anti-PD1 therapy for pa-
tients with NSCLC, the PD-L1 promoter was methylated, which reduced
PD-L1 expression [77]. Aberrant PD-L1 expression might also occur
when PD-L1 mRNAs are stabilized by the disruption of its 3′-UTR re-
gion, which occurs in various tumors [78].

Disruptions in cellular signaling can also cause aberrant PD-L1 ex-
pression. For example, the loss of PTEN, which occurs in many human
cancers, promotes PD-L1 translation by activating the PI3k/Akt/
mTOR/S6K1 pathway [79,80]. This pathway facilitates the entrance of
PD-L1 transcripts into polysomes, which increases PD-L1 translation, as
shown in human gliomas [77,78]. In NSCLC, the ubiquitin ligases, Cbl-b
and c-Cbl, were also involved in regulating PD-L1 expression [81]. By
inactivating STAT3/Akt/Erk signaling, Cbl-b and c-Cbl inhibited PD-L1
expression. Accordingly, the levels of Cbl-b and c-Cbl expression were
negatively correlated with the level of PD-L1 expression in wild-type
NSCLC tissues that overexpressed EGFR [81]. In NSCLC, Okita et al. also
highlighted a role for EGF in PD-L1 expression, via the PI3K/Akt and
JAK/STAT pathways [82]. Hsu et al. showed that the two isoforms of
the N-glycosyltransferase, STT3 (isoforms A and B), played a pivotal

role in PD-L1 glycosylation [83]. The STT3 N-glycosyltransferases are
located in the endoplasmic-reticulum of mammalian cells. Both STT3
isoforms are particularly expressed during EMT [83]. The STT3 proteins
mediate Nglycosylation of PD-L1, which stabilizes PD-L1 by protecting
the protein from ubiquitination and proteasomal degradation. Specifi-
cally, glycosylation antagonizes the binding of GSK3β, which interacts
with PD-L1 to induce its proteasomal degradation. PD-L1 degradation
also depends on phosphorylation, which is mediated by the beta-
transducin repeat containing E3 ubiquitin protein ligase β-TrCP [84].
GSK3β can be inactivated by EGF, which stabilizes PD-L1. Inhibition of
EGF by gefitinib affected PD-L1 levels by increasing its degradation
[84]. Similarly, in colon cancer, Chen and coworkers found that EGF
facilitated PD-L1 transport to the surface of cancer cells, which stabi-
lized the protein [85]. They also found that insulin had a stimulatory
effect on PD-L1 synthesis, which was mediated by activating the PI3k/
Akt pathway. The synergy between EGF and insulin effects induced a
remarkable increase in PD-L1 expression on the surfaces of CSCs. This
elevated expression enhanced the ability of CSCs to form spheres [85].
The importance of proper glycosylation for maintaining PD-L1 stability
was also emphasized by Cha et al [86]. They showed that AMPK-in-
duced phosphorylation of PD-L1 at serine 195 could alter PD-L1 gly-
cosylation. This specific phosphorylation could critically determine PD-
L1 accumulation in the ER, and its subsequent degradation by the ERAD
pathway [86]. Zhang et al. found that the cullin 3-SPOP was an E3
ligase that mediated proteasomal degradation of PD-L1. Cyclin D–CDK4
could phosphorylate SPOP, which then promoted PD-L1 degradation
[87]. Consequently, loss-of-function SPOP mutations prevented ubi-
quitination-mediated PD-L1 degradation and accounted for increased
PD-L1 levels in primary human prostate cancer specimens [87].

A recent study found that the short isoform of the isomerase, im-
munophilin FKBP51 (FKBP51 s), could assist in PD-L1 maturation [88].
Alternative FKBP5 splicing removes the TPR domain of FKBP5, which
confers an important function, namely it is capable of accessing the ER
to promote PD-L1 maturation [88]. Biochemical analyses of glioma cell
lines showed that naïve PD-L1 was complexed with FKBP51 s in the ER,

Table 1
Mechanisms that regulate tumor PD-L1 expression. All the mechanisms, but one, increase protein level.

Causal factor Mechanism Regulation Ref

Genomic alterations Increased copy number of 9p24 Transcription [63,64,65,66,67,68]
MHC2TA rearrangements Transcription [69]
Structural variations at chromosome 9p24.1

induce
PD-L1 3’-UTR disruption

and CD274
mRNA stabilization

Post-transcription [78]

Epigenetic alterations ↓ HDAC8 activity
↓Promoter-methylation

Transcription [71,77]

Promoter H3K4-3methylation
by MLL1

Transcription [72]

↓miR-200
/activation of
ZEB/EMT

Post-transcription [104,108]

defect in miR-34a,
miR-424,
miR-138-5p,
miR-142-5p

Post-transcription [73,76]

IFNγ JAK2/STAT1/IRF1 Transcription [58,61]
Mutated Ras

MYC
Mutated PTEN

RAS/Erk
PI3k/Akt

Post-transcription
Translation

[60,79,80,105]

NPM/ALK STAT3 Transcription [70]
EGF

IL6
JAK/STAT3
PI3k/Akt

Transcription
Translation

[58,59,82]

EGF GSK3β inactivation Post-translational, membrane transport and stabilization [84,85,87]
CDK4/CDK6 SPOP phosporylation Post-translational

PD-L1 degradation
[87]

STT3
FKBP51s

PD-L1 glycosylation Post-translational
protein maturation

[83,88]
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but the glycosylated PD-L1 was found in the Golgi apparatus [88]. A
knockdown of FKBP51 s severely reduced the level of glycosylated PD-
L1, whether it was constitutively expressed or ionizing radiation-in-
duced [88]. The essential role of isomerase activity in PD-L1 protein
maturation was confirmed by selectively inhibiting the catalytic func-
tion of FKBP51 with SAFit2 [89]; this inhibition produced results si-
milar to those observed with FKBP51 s silencing [88]. Table 1 sum-
marizes the mechanisms regulating tumor PD-L1 expression.

7. PD-L1 sustains resistance to cell death and feeds the CSC/EMT
activation loop

The concept that PD-L1 could exert intrinsic oncogenic functions,
independent of immune suppression [90], dates back to 2007, when
Azuma et al. demonstrated that PD-L1 transduced an anti-apoptotic
signal in cancer cells that led to a resistance to killing by cytotoxic T
lymphocytes and apoptosis induced by Fas or drugs. The integrity of the
intracellular PD-L1 domain was essential for regulating the resistance
signal [91]. In detail, the conserved RMLDVEKC motif is responsible for
counteracting cell death, and the DTSSK motif acts as a negative reg-
ulator of this PD-L1 function [92]. Interestingly, a variety of human
carcinomas carry somatic mutations that affect residues within the in-
hibitory DTSSK motif.

The engagement of PD-L1 with its cognate receptor, PD1, on T cells
reinforced the pro-survival function of PD-L1 [92]. In breast cancer
[93] and pancreatic carcinoma [94], tumor-immune cell interactions,
through PD-L1/PD1, stimulated Akt and Erk phosphorylation in cancer
cells. Conversely, PD-L1 targeting negatively regulated the PI3k/Akt/
mTOR signaling pathway, upregulated PTEN expression, and reduced
MMP2 and MMP9 levels, in pancreatic cancer [94]. In tyrosine kinase-
resistant NSCLC models, targeting or disrupting mTORC2 abrogated the
morphological and functional traits of EMT and, at the same time,
impaired PDL1 expression [95]. In melanoma and ovarian cancer, PD-
L1 downmodulation resulted in reduced phosphorylation of the
mTORC1 substrate, P70S6K, which drove the cells into a slowly pro-
liferating cancer cell phenotype. In addition, as a consequence of PD-L1
downmodulation, the anti-proliferative effect of rapamycin was en-
hanced [95]. When PD-L1 was knocked out, glioma growth was coun-
teracted, both in vitro and in vivo [96].

Qiu et al. identified a physical interaction between PD-L1 and H-
Ras, which led to Ras/Erk activation. In glioma cells, this activation
promoted EMT, migration, and invasion [96]. Xue et al. studied glioma
specimens and found a correlation between PD-L1 expression and ma-
lignancy features, like the expression of proangiogenic VEGF and the
proliferative marker Ki-67 [97]. When PD-L1 was silenced in melanoma
cells, Clark et al. showed reduced metastasis in an in vivo mouse model
[98]. In DM, a rare subtype of melanoma with frequent local re-
currences, PD-L1 played a role in promoting cell proliferation [99]. DM
is a unique form of melanoma, characterized by a prominent host re-
sponse and high PD-L1 expression. Those authors found a positive
correlation between PD-L1 and p53 expression, the Ki-67 proliferation
index, tumoral and stromal CD8 T cell infiltration, and stromal Treg
infiltration. They also found that PD-L1 expression in cancer was cor-
related with tumor thickness, mitosis, recurrence, and metastasis [99].

In CRPC, ATM is an apical activator of the DNA damage response
[100]. This kinase showed significantly enhanced expression in prostate
cancer tissues from patients with CRPC, and high ATM levels were as-
sociated with EMT features and high PD-L1 levels [100]. An ATM
knockout in CRPC cells resulted in reduced PD-L1 levels. The same
effect on PD-L1 was obtained when cells were treated with a JAK in-
hibitor; this treatment resulted in a significant reduction in the ex-
pression of EMT-associated genes [100]. These findings suggested that
the ATM/JAK/PD-L1 axis played a role in the transition from hormone
dependence to hormone independence in prostate cancer, and also in
the progression of CRPC cells to metastasis [100]. The relevance of the
ATM/JAK/PD-L1 axis in the induction of EMT was further assessed in

esophageal squamous cell carcinoma. The ATM/JAK pathway was ac-
tivated by a small nucleolar RNA, termed SNHG20, which was widely
upregulated in cancer tissues and cell lines. Accordingly, SNHG20 levels
were positively correlated with tumor size, lymph node metastasis,
TNM stage, and tumor grade [101].

In lung adenocarcinoma, PD-L1 expression was significantly ele-
vated in patient tissues that had a prevailing EMT phenotype, which
was characterized by increases in SNAI1 and VIM expression [102]. The
role that the EMT inducer, ZEB1, played in PD-L1 regulation was as-
sessed in esophageal carcinoma [103]. When small, interfering RNAs
were used to mediate a ZEB1 knockdown, PD-L1 expression and EMT
features were suppressed [103]. In squamous cell lung cancer, Chen
et al. found that ZEB1 upregulated PD-L1 expression through the sup-
pression of miR200 [104]. In breast cancer, Alsuliman et al. clearly
showed a bi-directional interplay between EMT status and PD-L1 ex-
pression [105]. Most PD-L1-positive cell lines had mesenchymal fea-
tures, in contrast to PD-L1-negative cell lines, which demonstrated lu-
minal differentiation characteristics. When PD-L1 was upregulated in
breast cancer cells, a typical mesenchymal phenotype was induced,
characterized by the upregulation of CD44/vimentin and the down-
regulation of CD24/E-cadherin. In PTEN-mutated breast cancer cells,
EMT features and PD-L1 expression appeared to depend on constitutive
activation of the PI3k/Akt pathway. In breast cancer cell lines with a
functional PTEN, significant correlations were found between ZEB2,
SNAI1, ZEB1, and PD-L1. In TNBC, the claudin-low phenotype showed
a high EMT score, which was associated with a high degree of immune
cell infiltrate, high PD-L1 expression, and a poor prognosis. Targeting
PD-L1 resulted in the attenuation of EMT features in this aggressive
breast cancer subtype [105].

Maeda et al. found that MUC1, a heterodimeric protein that is
overexpressed in approximately 90% of TNBCs, functioned as an on-
coprotein [106]. MUC1 acts as a node for integrating multiple signaling
pathways at the cell membrane and in the nucleus. MUC1 activates
multiple cell signaling pathways, including PI3k/Akt, MEK/Erk, β-ca-
tenin/TCF4/Myc, and NF-κB pathways. These autoinductive circuits
increased PD-L1 transcription. An increase in PD-L1 transcription was
also mediated by downmodulating miR-34a and miR-200c, two direct
suppressors of PD-L1 [106].

PD-L1 could positively regulate the expression of stemness genes,
like OCT-4, NANOG, and SOX2 [107–109]. PD-L1 also promoted tumor-
initiating cell generation in several cancers, including melanoma,
ovarian cancer [107], breast cancer [108] and cervical carcinoma
[109]. The strict interplay between PD-L1 and the hallmarks of tumor
malignancy is schematized in Fig. 2.

Although few in number, some findings conflicted with the role of
PD-L1 in tumor progression. For example, in one study, PD-L1-silencing
in cholangiocarcinoma cells enhanced their tumorigenicity [110]. In
that study, patients with low tumor PD-L1 expression had a worse
prognosis than those with high PD-L1 expression [110]. Those findings
suggested that the PD-L1 immune checkpoint could inhibit cancer
stemness in some specific tumoral contexts. In another study, CDK4 and
CDK6 kinases destabilized PD-L1, which led to PD-L1 downregulation
in cancer cells [87]. In particular, cyclin D-CDK4-mediated phosphor-
ylation of SPOP induced PD-L1 degradation via ubiquitination [87].
Conversely, CDK4/6 inhibition increased PD-L1 levels and reduced the
number of Tils in mouse tumors and in primary human prostate cancer
[87]. Curiously, in bladder cancer, Jinesh et al. found that epithelial
cells that expressed PD-L1 in the membrane also co-expressed E-cad-
herin and CD24, a glycoprotein expressed in differentiating neuroblasts.
These epithelial cells rapidly formed tumors outside the primary TME in
nude mice, which indicated that these cells possessed features of im-
mune evasion, increased stemness, and malignancy. Conversely, me-
senchymal cells exhibited constitutive TGF-β signaling and were less
tumorigenic than these epithelial cells [111].
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8. Intrinsic expression of PD1 in many tumor types

Recent studies have evaluated cancer transcriptomic and proteomic
data. Murine and human melanomas were shown to include cancer
subpopulations that expressed PD1, even in mice that lacked adaptive
immunity [112]. Indeed, targeting the PD1 pathway exerted anti-mel-
anoma tumor growth effects in mice with fully intact immunity, in mice
that were severely immunocompromised, and in hosts that were defi-
cient in T cells, B cells, and innate immune cells [112]. Interestingly,
PD1 was not found in all the melanoma cells present in heterogeneous
tumor samples. Rather, PD1 expression was restricted to small mela-
noma subpopulations that were, nonetheless, critically important for
tumor growth.

PD1 can be activated via paracrine interactions with the PD-L1 li-
gand or via autocrine signaling that interacts with PD1 in tumor cells.
In turn, PD1 activation in melanoma cells increased the phosphoryla-
tion of RPS6, an effector of mTOR signaling [112]. Melanoma PD1-
dependent RPS6 phosphorylation could be reversed with specific mTOR
inhibition, but not with PI3k inhibition. This result demonstrated that
PD1 receptors that resided on the surface of melanoma cells could ac-
tivate downstream mTOR signaling, independent of PI3k activation, to
promote tumor proliferation [112].

In HCC cell lines and clinical HCC tissues, PD1 was expressed in
subpopulations. In those cells, PD1 intrinsically promoted tumor pro-
gression, in the absence of an immunological environment [113].
Specifically, the cytosolic domains of PD1 were found to interact with
both eiF4E and RPS6. This interaction promoted the phosphorylation of
mTOR effector proteins [113]. Interestingly, PD1 activation augmented
p-70S6k levels in melanoma cells and enhanced tumor growth; in
contrast, PD1 dampened mTOR signaling in T cells, which led to di-
minished T cell proliferation [114]. Conversely, PD1 appeared to play a
distinct role in lung cancer, where a blockade of PD1 promoted tumor
cell proliferation [115].

The triggers of PD1 expression in tumor cells are currently un-
known, but it has been speculated that multiple factors may be in-
volved, such as gene copy number alterations, epigenetic factors, mi-
croenvironmental signals, etc [115]. The existence of tumor cell-
intrinsic PD1 expression and its tumor-regulatory effects might explain
why a PD1 blockade displayed efficacy in patients with less im-
munogenic features; why no response was detected to immunotherapies
that targeted other immune checkpoints; and/or why the clinical ac-
tivity and safety profile of anti-PD1 therapy were superior to those of
anti-CTLA-4 therapy [115].

9. Conclusion

Two major aspects of CSC plasticity are responsiveness to micro-
environmental cues and in vivo quiescence. CSCs mediate tumor me-
tastasis by maintaining the plasticity necessary to transition between
epithelial and mesenchymal states. The stroma surrounding tumors and
the immune system modulate cancer plasticity and release signals, like
IFNγ and IL6, that induce tumor PD-L1 expression. These signals, in
addition to other suppressive signals, either tumor-intrinsic or gener-
ated by TME-EMT cross-talk, confer an inherent immunoprivileged
condition. A plethora of studies have supported the concept that tumor
PD-L1 expression is particularly high during activation of the EMT
genetic program. Moreover, many studies have shown that mesench-
ymal tumors have a high potential susceptibility to checkpoint in-
hibitors. In turn, signals generated through PD-L1 can sustain the EMT
genetic program. The activation of the immune system has proven to be
an important resource in combating human neoplasias, in addition to
the classic pillars of surgery, chemotherapy, and radiotherapy.
Interventions that rely on immune checkpoint inhibitors, such as anti-
PD1/PD-L1 immunotherapies, have indeed provided impressive out-
comes for many tumors that are considered incurable. However, a ca-
veat has emerged with the finding that PD-L1 expression in a tumor
does not necessarily mean that anti-PD1/PD-L1 immunotherapy will be
successful [90]. The complex, dynamic interactions between tumors
and the TME foster immunoevasion circuits that support intrinsic or
acquired resistance to anti-PD1/PD-L1 treatments. However, according
to the recent advances on PD-L1, even in cases of resistance, where
reactivating the immune system would require targeting immune-
checkpoints different from PD-L1/PD1, a combined treatment approach
that includes disarming PD-L1-mediated tumor resistance could aid
immune cells in killing cancer cells. PD-L1 transduces pro-tumoral
signals that are reasonably self-maintained by the tumor; for example,
tumors can express more than one type of receptor for PD-L1, apart
from PD1 [112, https://www.proteinatlas.org/ENSG00000121594-
CD80/pathology]. Disarming PD-L1 can also be a successful strategy
in cold tumors, where a number of genetic and epigenetic mechanisms
support PD-L1 expression. In these cases, immunotherapy is often
preceded by treatment with oncolytic viruses, to favor tumor-in-
filtrating lymphocytes. In the future, the creation of innovative tools
that hamper PD-L1 expression/function, can enrich the therapeutic
armamentarium for fighting cancer. CSCs represent the leading cause of
cancer therapy failure. The increasing evidence that a CSC/EMT/PD-L1
axis exists suggests that developing innovative tools for disarming PD-
L1 might open up new possibilities for eradicating cancer.

Fig. 2. Reciprocal regulation between PD-L1 and
hallmarks of tumor-malignancy. PD-L1 expres-
sion increases by activation of proliferation-
related signaling pathways. In turn, PD-L1
sustains activation of such tumor growth-pro-
moting signaling pathways. A similar bidir-
ectionality is registered between EMT/CSC-re-
lated genes and pathways that induce PD-L1
expression; pathways related to cancer renewal
and invasion are, indeed, positively affected by
PD-L1. Finally, PD-L1 supports resistance to
cell death induced by both lymphocyte killing
and chemotherapy.
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