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EDITORIAL COMMENT

Intervention In Severe Aortic Stenosis
It May Be Time When the Left Ventricle Says So*

Mani A. Vannan, MBBS,a Julien Tridetti, MD,b Patrizio Lancellotti, MDb,c,d

T here are 2 important unsettled issues with re-
gard to timing of intervention in severe
aortic stenosis (AS). One has to do with the

reliability of symptoms as the trigger for surgical
aortic valve replacement or transcatheter aortic valve
replacement (TAVR). And the other related issue has
to do with identification of signal(s) for intervention
in asymptomatic severe AS. These signals could be
related to the biology of the stenotic AV or the effects
of the stenotic AV on the structure and function of the
left ventricle (LV) or both. Hence, the concept of stag-
ing the disease rather than merely classifying AS
based on Doppler hemodynamic severity has recently
emerged (1). This means that among severe AS, there
may be compensated stages (0 and 1), subclinical
decompensation stages (1 and 2), and decompensated
stages (3 and 4). In this schema, stages 0 and 1 are
where one is most likely to encounter individuals
with severe AS but who truly do not have symptoms
at rest or exercise. These 2 stages are predominantly
defined by the state of the structure and function of
the LV, other than the hemodynamic severity of the
AS (2). Among the structural changes of the LV in se-
vere AS, left ventricular hypertrophy (LVH) and

increased mass are the most recognizable morpholog-
ical changes.

In this issue of the Journal, Chau et al. (3) have
reported on the effect of TAVR with a balloon-
expandable transcatheter heart valve on regression
of LV mass at 1 year post-TAVR, and its impact on
clinical outcomes at 5 years post-TAVR. Retrospec-
tive analysis of echocardiographic LV mass from
1,434 patients with symptomatic severe AS showed
that for every 10% incremental decrease in LV mass
at 1 year, there was a 5% to 6% adjusted annual risk
reduction of all-cause and cardiovascular deaths and
cardiovascular hospitalization during years 1 to
5 post-TAVR. Also, greater reduction in LV mass at
1 year was associated with a better quality of life at
2 years. A noteworthy finding was that despite relief
of AS, 25% of patients had no regression of LV mass
and about 40% had persistent severe LVH at 1 year
post-TAVR. The latter was associated with 71% and
89% increase in risk of mortality and cardiovascular
hospitalization between 1 and 6 years after TAVR. In
the multivariable analysis, only presence of moder-
ate and severe aortic regurgitation at 30 days
post-TAVR was associated with reduced LV mass
regression. Notably, change in LV mass was inde-
pendent of transcatheter heart valve size, AV mean
gradient and area post-TAVR, and systolic blood
pressure. Despite significant limitations inherent to
retrospective registry-based data analysis, this is the
largest systematic report of the effect of surgical
AVR or TAVR in severe AS on LV mass and LVH, as
well as its impact on subsequent clinical outcomes.
So, should adverse LV remodeling be among the
signals for AVR in severe AS, even in the absence of
symptoms?

To meaningfully answer that question, it would
serve us well to refresh the basics of the
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pathobiology of LV remodeling in AS. The increased
afterload of AS triggers the terminally differentiated
cardiomyocytes to change size and shape through
addition of sarcomeres in parallel throughout the
cell so that the cross-sectional area of each myocyte
is increased. Thus, the myocytes are short and
thicker than normal. This is an adaption to increase
the contractile power of cardiomyocytes and
thereby the myocardium, normalizing the myocar-
dial systolic wall stress (4). However, for this
pathological hypertrophy to be “adaptive,” a num-
ber of events have to occur concurrently, which
ensure optimal cell survival and efficient func-
tioning proportional to the growth of the ventricular
wall. These events antagonize pathological

signaling, so that the structural changes of adaptive
hypertrophy resemble the phenotype of physiologic
hypertrophy. At this stage, the myocardial contrac-
tile function is preserved and LV wall thickness
(WT) may be normal. However, the increased myo-
cytes stress and strain AS, commonly activates an
array of pathological signaling pathways also, which
result in reappearance of fetal gene expression,
impaired calcium handling, mitochondrial dysfunc-
tion, altered sarcomere structure, impaired angio-
genesis to support cell growth, a slew of cellular
metabolic reprogramming, accelerated cell death,
myofibroblast activation, expansion of extracellular
matrix (ECM), and increased deposition of type I
collagen. This is “maladaptive” hypertrophy, which

FIGURE 1 Approach to Staging and Management in Severe AS Based on LV Remodeling and Function
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This scheme is a proposal to show the management options in the 3 phases of the disease in severe aortic stenosis (AS) and the likely impact of aortic valve replacement
(AVR) on left ventricular (LV) mass and clinical outcomes. Absence of symptoms is most likely in the compensated and subclinical phases, and within the latter phase,
symptoms are likely in the late period. The decompensated phase is very likely to be symptomatic. The LV and myocardial remodeling features, functional indices, and
levels of circulating biomarkers that may characterize the stages are shown. Also shown are the hemodynamic and non-LV damages that may accompany these stages.
The features in each category are derived from accumulating rather than proven evidence. Similarly, the management options in an asymptomatic phase and the
effect of AVR on adverse changes in the LV and clinical outcomes are a hypothesis based on current knowledge. These need to be confirmed in ongoing prospective
randomized trials. 4 ¼ normal/no change; [ to [[[ ¼ mildly to markedly increased; Y, YY ¼ mildly or markedly decreased; * ¼ echocardiography; ** ¼ cardiac
magnetic resonance imaging; *** ¼ increased versus normal circumferential and radial strain may potentially distinguish normal geometry from concentric remodeling.
Adapted from and modified with permission from Lancellotti and Vannan (2). BNP ¼ B-type natriuretic peptide; ECM ¼ extracellular matrix; ECV ¼ extracellular
volume; EF ¼ ejection fraction; GLS ¼ global longitudinal strain; LA ¼ left atrial; LGE ¼ late gadolinium enhancement; LVFP ¼ left ventricular filling pressure;
LVH ¼ left ventricular hypertrophy; MR ¼ mitral regurgitation; PSAP ¼ pulmonary-artery systolic pressure; RV ¼ right ventricular, RWT ¼ relative wall thickness;
ST2 ¼ soluble tumor factor 2; SVI ¼ stroke volume index; TR ¼ tricuspid regurgitation; V/M ¼ volume to mass.
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will eventually lead to contractile dysfunction if AS
is not relieved. The progression from normal
myocardium to adaptive and maladaptive hyper-
trophy is not necessarily sequential and is influ-
enced by extensive cross-talk between the various
adaptive (“physiological”) and maladaptive
signaling pathways. Also, age, sex, and other non-
valve factors such as diabetes, obesity, hyperten-
sion, and ischemia, which are not uncommon in
the AS population, influence the transition from
adaptive to maladaptive hypertrophy phenotype (5).

At the gross morphological level, concentric hy-
pertrophy (CH) is the predominant form, upward of
50%, of LV remodeling seen in severe AS with
normal ejection fraction (EF). This is followed by
concentric remodeling (CR) pattern (about 25%),
normal geometry (up to 10%), and eccentric hyper-
trophy (<10%) (6,7). Because the interplay between
myocytes and ECM dictates the contractile and
relaxation function of the myocardium, CR poten-
tially represents the adaptive hypertrophic pheno-
type in which myocardial WT and relative WT are
increased, but LV mass is still normal. This seems to
be seen more often in women, and T1 mapping by
cardiac magnetic resonance shows expansion of
extracellular volume fraction and ECM volume
(diffuse fibrosis) together with increased myocyte
cell volume (8). Even “normal” LV geometry (normal
WT, relative WT, and mass) in severe AS, may be an
adaptive phenotype characterized predominantly by
thick myocytes and increased myocyte volume
without a significant increase in extracellular vol-
ume fraction and ECM. Hypothetically, normal
global longitudinal strain, LVEF >60%, but increased
circumferential and radial strain may distinguish
normal geometry from CR, with circumferential and
radial strain being within normal limits in the latter.
These adaptive phenotypes are most likely to be
found in compensated stages 0 and 1 of the disease
when circulating biomarkers are normal or only
mildly elevated. AVR at these compensated disease
stages may yield the maximum benefits of reverse
remodeling and long-term survival and decreased
morbidity. CH perhaps represents the maladaptive
phase of hypertrophic response, characterized by
increased LV mass and extensive focal and non-
infarct pattern of replacement fibrosis (cardiac
magnetic resonance late gadolinium enhancement)
in addition to all of the findings seen in CR (9,10).
The subclinical decompensated stages 1 and 2 of the

disease is likely where the CH phenotype is repre-
sented. Within this stage, normal global longitudi-
nal strain, LVEF >60%, and elevated biomarkers
may indicate early subclinical decompensation,
whereas reduced global longitudinal strain, LVEF of
50% to 60%, and markedly elevated biomarkers
may represent late subclinical decompensated
stages. In the absence of symptoms, whether AVR
done at the compensated versus subclinical
decompensation stages yields differential impact on
regression of LV mass, reversal of adverse myocar-
dial remodeling, survival benefits and quality of life
remains to be seen (11). Also, the incremental
beneficial effects of inhibition of the renin-
angiotensin-aldosterone system and other newer
drug therapies on the reversal of adverse remodel-
ing needs to be explored (12).

In the study by Chau et al. (3), symptoms
notwithstanding, relative WT and LV mass were
increased at baseline in all the patients with severe
AS, so maybe this population exclusively or mostly
had CH. It is possible then that the population in
quartiles 3 and 4 of LV mass regression post-TAVR
were early stage 2 (closer to stage 1), whereas those
in quartiles 1 and 2 were late stage 2. This is specu-
lation, but there is evidence that surgical AVR does
reverse the CR phenotype of LV and myocardial
remodeling, and this is less so in the CH phenotype
(13). Eccentric hypertrophy remodeling may be the
dominant LV phenotype in the decompensated stages
3 and 4, and AVR may not significantly reverse the
adverse remodeling even if there were short-term
survival and quality-of-life benefits.

Figure 1 summarizes the concepts outlined herein
and provides a potential staging approach in severe
AS with regard to timing of intervention based on
markers of LV and myocardial remodeling. The
ongoing randomized studies using the LV structure
and function indices to randomize patients with
asymptomatic severe AS to TAVR versus follow-up
will provide us with answers (2). The growth of
TAVR as a therapeutic option for severe AS has
prompted a fresh look at the timing of intervention
in severe AS. In the case of severe AS, maybe it is
time when the muscle says so.
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