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Abstract: The hippocampus is a plastic brain structure that has been associated with a range of
behavioral aspects but also shows vulnerability to the most frequent neurocognitive
diseases. Different aspects of its organization have been revealed by studies probing
its different neurobiological properties. In particular, histological work has shown a
pattern of differentiation along the proximal-distal dimension, while studies examining
functional properties and large-scale functional integration have primarily highlighted a
pattern of differentiation along the anterior-posterior dimension. To better understand
how these organizational dimensions underlie the pattern of structural covariance (SC)
in the human hippocampus, we here applied a non-linear decomposition approach,
disentangling the major modes of variation, to the pattern of grey matter volume
correlation of hippocampus voxels with the rest of the brain in a sample of 377 healthy
young adults. We additionally investigated the consistency of the derived gradients in
an independent sample of life-span adults and also examined the relationships
between these major modes of variations and the patterns derived from microstructure
and functional connectivity mapping. Our results showed that similar major modes of
SC-variability are identified across the two independent datasets. The major dimension
of variation found in SC runs along the hippocampal anterior-posterior axis and
followed closely the principal dimension of functional differentiation, suggesting an
influence of network level interaction in this major mode of morphological variability.
The second main mode of variability in the SC showed a gradient along the dorsal-
ventral axis, and was moderately related to variability in hippocampal microstructural
properties. Thus our results depicting relatively reliable patterns of SC-variability within
the hippocampus show an interplay between the already known organizational
principles on the pattern of variability in hippocampus' macrostructural properties. This
study hence provides a first insight on the underlying organizational forces generating
different co-plastic modes within the human hippocampus that may, in turn, help to
better understand different vulnerability patterns of this crucial structure in different
neurological and psychiatric diseases.
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Abstract: 19 

 20 

The hippocampus is a plastic brain structure that has been associated with a range of behavioral 21 

aspects but also shows vulnerability to the most frequent neurocognitive diseases. Different 22 

aspects of its organization have been revealed by studies probing its different neurobiological 23 

properties. In particular, histological work has shown a pattern of differentiation along the 24 

proximal-distal dimension, while studies examining functional properties and large-scale 25 

functional integration have primarily highlighted a pattern of differentiation along the anterior-26 

posterior dimension.  27 

To better understand how these organizational dimensions underlie the pattern of structural 28 

covariance (SC) in the human hippocampus, we here applied a non-linear decomposition 29 

approach, disentangling the major modes of variation, to the pattern of grey matter volume 30 

correlation of hippocampus voxels with the rest of the brain in a sample of 377 healthy young 31 

adults. We additionally investigated the consistency of the derived gradients in an independent 32 

sample of life-span adults and also examined the relationships between these major modes of 33 

variations and the patterns derived from microstructure and functional connectivity mapping.  34 

Our results showed that similar major modes of SC-variability are identified across the two 35 

independent datasets. The major dimension of variation found in SC runs along the 36 

hippocampal anterior-posterior axis and followed closely the principal dimension of functional 37 

differentiation, suggesting an influence of network level interaction in this major mode of 38 

morphological variability. The second main mode of variability in the SC showed a gradient 39 

along the dorsal-ventral axis, and was moderately related to variability in hippocampal 40 

microstructural properties. Thus our results depicting relatively reliable patterns of SC-41 

variability within the hippocampus show an interplay between the already known 42 

organizational principles on the pattern of variability in hippocampus’ macrostructural 43 

properties. This study hence provides a first insight on the underlying organizational forces 44 



generating different co-plastic modes within the human hippocampus that may, in turn, help to 45 

better understand different vulnerability patterns of this crucial structure in different 46 

neurological and psychiatric diseases. 47 

 48 

 49 

  50 



1. Introduction: 51 

The hippocampus is a complex, phylogenetically preserved brain structure, located within the 52 

medial temporal lobe. Characterizing its functional pattern, multiple studies have demonstrated 53 

its involvement in different domains of human behavior including memory functions (Bonnici 54 

et al., 2013; Eichenbaum, 2004; Maren and Holt, 2000; Stella and Treves, 2011), spatial 55 

navigation (Chersi and Burgess, 2015), emotion (Plachti et al., 2018; Strange et al., 2014) and 56 

creative thinking (Chersi and Burgess, 2015). The variety of tasks and behavioral domains that 57 

are associated with this phylogenetically old brain structure hence demonstrates its crucial role 58 

in the whole cognitive system.  59 

Neurobiologically, hippocampus’ direct and indirect connections to cortical and subcortical 60 

structures place it at the cross-road of information transfer between distinct brain regions and 61 

as an important component of the brain’s large scale networks (Clawson et al., 2019; Dalton et 62 

al., 2019; Mitra et al., 2016; Ward et al., 2014). Accordingly, hippocampal alterations are 63 

reported within the most frequent neurodegenerative and psychiatric diseases, such as 64 

Alzheimer’s disease (Allen et al., 2007; Halliday, 2017), schizophrenia (Lieberman et al., 65 

2018), depression (Fateh et al., 2019; Kemmotsu et al., 2013) and anxiety (Cha et al., 2016) 66 

disorders where changes in its functional and morphological properties are linked to symptom 67 

severity and progression of the disease. 68 

Within healthy individuals, the hippocampus structure is known to be very plastic 69 

exhibiting one of the most unique phenomena of the adult mammalian brain, namely, the 70 

development of new neurons throughout the life span (i.e. neurogenesis). Presumably 71 

partially related to this unique property, at the macroscopic level, plastic changes within 72 

the hippocampus are documented based on in-vivo MRI measurements. For example, it 73 

has been shown that taxi drivers with expert navigation abilities have lager posterior 74 

hippocampi than controls and bus drivers (Maguire et al., 2006). In addition to these 75 

experience-based morphological changes, in-vivo dynamics of microstructural integrity of 76 



the hippocampus have been demonstrated in association with sex-hormones, at much 77 

shorter time scales (Barth et al., 2016).  78 

These structural changes in the hippocampus arise from variation at its local 79 

microstructural organizations. Nevertheless, considering the tight integration of 80 

hippocampus within the large scale brain networks and its high degree of structural, as 81 

well as functional, connectivity (Maller et al., 2019) with other brain regions, the observed 82 

morphological plastic changes could also be accounted by system-level interactions of the 83 

hippocampus with distinct brain regions.   84 

As far, two organizational patterns have been proposed in the hippocampus. The first one is 85 

based on the long history of cytoarchitectonic mappings, evidencing reliable boundaries based 86 

on  microscopic features, such as  somatic size, shape and size (Andersen et al., 2007; Duvernoy, 87 

2005), subdividing the hippocampus into different subfields. The hippocampal subfields 88 

spatially span along the proximal-distal axis, which is represented along the medio-lateral and 89 

the ventro-dorsal axes, in the rolled-in, volumetric representations (Figure 1-A).  In parallel, in-90 

vivo examinations using electrophysiological recordings and task activations, as well as studies 91 

assessing connectivity patterns of the hippocampus, have suggested an organization along the 92 

anterior-posterior axis (Colombo et al., 1998; Przeździk et al., 2019; Strange et al., 2014). 93 

In the recent years, many studies of the hippocampus have begun to focus more on this later 94 

organizational dimension. Multiple lines of evidence in animals and humans support the 95 

existence of such organizational pattern and its relevance for behavioral functions. In particular, 96 

it has been shown that the hippocampal projections to cortical and subcortical structures follow 97 

a graded pattern of connections changing gradually along its longitudinal axis (Strange et al., 98 

2014). Also, gene expression studies have demonstrated a molecular gradient along the 99 

longitudinal axis, which is linked to distinct functional networks in the brain, each showing 100 

preferential vulnerability to different neurodegenerative conditions (Vogel et al., 2019). 101 

Interestingly, association with behavioral functions in the hippocampus have also shown a 102 



gradual change along the longitudinal axis (Plachti et al., 2018). According to these 103 

accumulating evidence, unlike the cytoarchitectonic organizational pattern, which is mainly 104 

related to local microscopic tissue properties, the longitudinal organizational pattern is driven 105 

by cortical and sub-cortical interactions of the hippocampus, demonstrating its tight integration 106 

within the large scale functional systems, enabling the hippocampus to sub-serve broad 107 

behavioral functions.   108 

Data-driven approaches to parcellate the hippocampus based on its connectivity profiles with 109 

the rest of the brain have demonstrated a differentiation in the connectivity patterns along the 110 

longitudinal axis, subdividing the head and tail of the hippocampus from more intermediate 111 

sections. In addition, the intermediate clusters are also separated into medial and lateral clusters 112 

(Plachti et al., 2018) (Figure 1-B). Strikingly, the existence of such medial-lateral clusters in 113 

addition to the general pattern along the anterior-posterior axis of the hippocampus might be 114 

indicative of multiple superimposed organizational forces coming from innate microstructural 115 

characteristics (such as cytoarchitectonic and myelin features), as well as interaction with other 116 

brain regions. Such an interplay between long-range connectivity and local microstructural 117 

properties were demonstrated recently by Vos de Wael et al., identifying two main axes of 118 

functional connectivity transition within each of the hippocampal cytoarchitectonically-defined 119 

subfields. In particular, while the first axis demonstrated a gradual anterior to posterior 120 

transition of functional connectivity patterns with the rest of the brain, the second axis followed 121 

closely the distribution of myelin markers in most subfields. These results demonstrate the 122 

existence of overlapping functional organizational patterns, within each hippocampal subfield, 123 

presumably shaped by both, long-range connections as well as, the underlying microstructural 124 

properties.  125 

Research on the dynamic properties of hippocampal structure and its morphological 126 

alterations in association with learning, aging, neurodegenerative diseases and its 127 

vulnerability to factors such as stress and hormonal alterations has a longer history than 128 



MRI-based functional evidence of a longitudinal gradient. However, as far, an integrative 129 

view on the existence and interplay between different organizational forces, shaping 130 

hippocampal structure and its morphological dynamic properties, is crucially lacking. 131 

Characterizing the major dimensions shaping the structural aspects of the hippocampus 132 

can open new perspectives to better understand the multifaceted role of the hippocampus 133 

in the complexity of the human cognitive systems, hippocampus’ plasticity, as well as 134 

population’s patterns of interindividual variability and, vulnerability to 135 

neurodegenerative diseases.  136 

To identify and disentangle the major organizational modes of the hippocampal macrostructure, 137 

in the current study, we leveraged high-resolution multi-modal neuroimaging from the openly 138 

accessible HCP dataset. We examined hippocampal voxels with regards to their structural co-139 

plasticity with the rest of the brain. We hence characterized the main dimensions of variability 140 

across hippocampal voxels with regard to similarity of their whole-brain structural covariance 141 

patterns. The thereby derived estimates of co-plasticity are called structural covariance (SC) 142 

and reflect the degree of co-variability in the structural properties of each hippocampal voxel 143 

with all other gray matter voxels, across a large group of individuals.  144 

 145 

Previous studies have revealed the existence of multiple highly reproducible co-plastic 146 

networks consisting of distinct regions across the brain within cohorts of healthy 147 

individuals. Regions belonging to the same co-plastic network are suggested to 148 

demonstrate similar vulnerability to disease processes. Accordingly, pathologic conditions 149 

such as different types of neurodegenerative diseases, primarily affect regions that belong 150 

to the same co-plastic network (Evans, 2013; Seeley et al., 2009; Zhou et al., 2012). By 151 

definition, structural covariance is based on the similarity of the macrostructural 152 

variations (Mechelli et al. 2005; Alexander-Bloch et al. 2013) and thus is primarily 153 

influenced by factors influencing underlying structure, such as expression of common 154 



genetic cues during early development of the cortex (Raznahan et al., 2011) and direct 155 

structural connectivity through monosynaptic connection (Yee et al., 2018). Nevertheless, 156 

within healthy individuals, the co-plastic patterns also resemble functional networks 157 

derived from resting-state functional connectivity (RSFC) analysis, suggesting that the 158 

structural covariance also arises due to network mediated plasticity – as a result of 159 

plasticity-related changes at the synaptic and cellular levels (Evans, 2013). RSFC reflects 160 

the intrinsic patterns of signal co-fluctuations between two distinct regions and hence 161 

presumably functional interaction between regions. The structural properties of the 162 

regions that demonstrate such functional coupling, co-vary to a high degree together as 163 

well (Alexander-Bloch et al., 2013a), hence conceptually linking RFSC and structural 164 

covariance networks (Kotkowski et al. 2018). In sum, structural covariance is assumed to 165 

reflect common influences of certain factors on microstructure, be it synaptogenesis based 166 

on functional synchronous firing, connectivity as direct monosynaptic connection, gene 167 

expression in synapses development, or similarities in the local micro-architectonic 168 

properties. In the current study, we use the information from this multi-facet covariance 169 

pattern to disentangle major dimensions of variability of the hippocampal co-plasticity. 170 

In the first step, across a group of young participants from the HCP cohort, we identified the 171 

patterns of structural covariance of each voxel within the hippocampus and all none-172 

hippocampal gray matter voxels. The similarity of the structural covariance patterns of every 173 

pairs of hippocampal voxels were then summarized in an affinity matrix. This latter was further 174 

decomposed into its major components using a diffusion map embedding approach (a non-175 

linear manifold learning technique (Margulies et al., 2016)). In brief, the algorithm estimates a 176 

low-dimensional embedding from a high-dimensional similarity matrix. Within each new 177 

dimension, the voxels with more similar pattern of structural covariance are closer together and 178 

the voxels at the opposite ends of the gradient have the most different structural covariance 179 



patterns. Compared to other nonlinear manifold learning techniques, the algorithm is relatively 180 

robust to noise and computationally inexpensive (Tenenbaum et al., 2000). 181 

Importantly, we assessed the replicability of these structural gradient patterns in an independent 182 

dataset. To further interpret these organizational axes, we assessed spatial similarity of major 183 

dimensions of structural covariance with variations in local microstructural properties, 184 

approximating myelin destitution, as well as cytoarchitectonic distinctions across the 185 

hippocampus. Furthermore, to investigate the relationship between structural and functional 186 

organization patterns within the hippocampus, major modes of variations in the functional 187 

connections and co-activation patterns of the hippocampal voxels with the rest of the brain were 188 

derived using the same decomposition approach. 189 

Our analysis revealed a principal gradient of structural covariance that followed the 190 

hippocampal longitudinal axis and corresponded to the main dimension of functional 191 

connectivity variation in the hippocampus. The second gradient, demonstrated a dorsal-medial 192 

organization, and was moderately associated with the spatial distribution of proxy measures of 193 

myelin in hippocampus. It also showed a moderate link with cytoarchitectonic classifications, 194 

suggesting a partial link between this second dimension of structural covariance and the 195 

hippocampal innate microstructural properties. 196 

---------Figure 1--------- 197 

 198 

2. Methods: 199 

2.1. Participants:  200 

The participants of the main analysis were selected from the publicly available data from the 201 

Human Connectome Project (HCP; http://www.humanconnectome.org), consisting of young 202 

healthy adults. HCP comprises data from 1113 individuals (656 females), with mean age of 203 

28.8 years (standard deviation (SD) = 3.7, range = 22–37). The full set of inclusion and 204 

exclusion criteria are described elsewhere (Glasser et al., 2013; Van Essen et al., 2013). Here 205 



we selected a subset of unrelated individuals from this cohort, consisting of 377 individuals 206 

(age: 28 ± 3.6, 192 female), with good quality structural and four available resting-state 207 

functional scans.  208 

For replication sample, healthy adult participants from the enhanced NKI (eNKI) Rockland 209 

cohort (Nooner et al., 2012) were selected. We focused only on participants for which good 210 

quality T1-weighted scans were available. Exclusion criteria consisted of alcohol or substance 211 

dependence or abuse (current or past), psychiatric illnesses (eg. Schizophrenia) and current 212 

depression (major or bipolar). Furthermore, we excluded participants with bad quality of 213 

structural scans after pre-processing, resulting in a total sample of 468 healthy participants (age: 214 

48 ± 19, 315 female). 215 

 216 

2.2. MRI acquisition and preprocessing:  217 

2.2.1. Structural MRI:  218 

MRI data of the main sample (HCP) were acquired on the HCP’s custom 3T Siemens Skyra. 219 

Two T1w images with identical parameters were acquired using a 3D-MPRAGE sequence 220 

(0.7mm isotropic voxels, TR=2400ms, TE=2.14ms, flip angle=8°; iPAT=2). Two T2w images 221 

were acquired with identical geometry (TR=3200ms, TE=565ms, variable flip angle; iPAT=2). 222 

The imaging data of the eNKI cohort were all acquired using a single scanner (Siemens 223 

Magnetom TrioTim, 3.0 T). T1-weighted images were obtained using a MPRAGE sequence (1 224 

mm isotropic voxels, TR = 1900 ms; TE = 2.52 ms).  225 

 226 

2.2.2. Rs-fMRI:  227 

Within the HCP cohort, four rs-fMRI scans were acquired using multi-band accelerated 2D-228 

BOLD echo-planar imaging (2mm isotropic voxels, matrix=104x90, 72 sagittal slices; 229 

TR=720ms, TE=33ms, flip angle=52°; mb factor=8; 1200 volumes/scan). Participants were 230 

instructed to keep their eyes open, look at fixation cross, and not fall asleep.  231 



 232 

2.3. Image Processing:  233 

2.3.1. Structural MRI: 234 

Both datasets were preprocessed using the CAT12 toolbox (Gaser and Dahnke, 2016). Briefly, 235 

each participant’s T1-weighted scan was corrected for bias-field inhomogeneities, then 236 

segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) 237 

(Ashburner and Friston, 2005). The segmentation process was further extended for accounting 238 

for partial volume effects (Tohka et al., 2004) by applying adaptive maximum a posteriori 239 

estimations (Rajapakse et al., 1997). The gray matter segments were then spatially normalized 240 

into standard (MNI) space using Dartel algorithm (Ashburner, 2007) and further modulated. 241 

The modulation was performed by scaling the normalized gray matter segments for the non-242 

linear transformations (only) applied at the normalization step. While this procedure ignores 243 

the volume changes due to affine transformation, it allows preserving information about 244 

individual differences in local gray matter volume. In other words, it re-introduces individual 245 

differences in local gray matter volume removed in the process of inter-subject registration and 246 

normalization. Finally, the modulated gray matter images were resampled to a voxel resolution 247 

of 2mm isotropic. 248 

 249 

2.3.2. T1-weighted over T2-weighted ratio: 250 

For each individual, the bias-corrected T2-weighted images were co-registered to the 251 

individual’s T1-weighted scan using a rigid-body transformation model. The ratio of the two 252 

scans (T1w/T2w) is then generated for each individual and warped to the standard (MNI) space 253 

using deformation fields, calculated from application of Dartel algorithm on the participant’s 254 

T1-weighted data. The warped T1wT2w-ratio maps were also resampled to a voxel resolution 255 

of 2mm isotropic. 256 

 257 



2.3.3. Rs-fMRI:  258 

Pre-processed resting-state timeseries were downloaded from the ConnectomeDB 259 

(https://db.humanconnectome.org). Briefly, for each participant, the timeseries were corrected 260 

for gradient nonlinearity, and head motion was corrected using a rigid body transformation. The 261 

geometric distortions were corrected using the R-L/L-R blipped scan pairs. Distortion corrected 262 

images were warped to T1w space using a combination of rigid body and boundary-based 263 

registrations (Greve and Fischl, 2009). These transformations were concatenated with the 264 

transformation from native T1w to MNI152, to warp functional images to MNI152. After 265 

removing the bias field, brain extraction and normalization of whole brain intensity was done. 266 

A high-pass filter (>2000s full-width-half-maximum) corrected the time series for scanner 267 

drifts. Further noise was removed using the ICA-FIX procedure (Salimi-Khorshidi et al., 2014). 268 

Finally, the preprocessed resting-state scans, with a voxel resolution of 2mm, were smoothed 269 

with an isotropic gaussian kernel of 5 mm (full-width-half-maximum).  270 

 271 

2.4. Hippocampal Volume of Interest (VOI) and gray matter target: 272 

We defined our VOI as a consortium of the cytoarchitectonic maps, available in the SPM 273 

Anatomy Toolbox 2.0 (Eickhoff et al. 2005), and the macro anatomically-defined Harvard-274 

Oxford Structural Probability Atlas (http://neuro.imm.dtu.dk/wiki/Harvard-Oxford_Atlas) 275 

(Desikan et al. 2006). The hippocampal formation included the following subfields: CA1–3, 276 

dentate gyrus, and subiculum. In addition, by thresholding average of the modulated gray matter 277 

images from the HCP cohort to values above 0.2, a whole brain gray matter mask was generated. 278 

The aforementioned hippocampal VOIs are further restricted by this gray matter mask. The 279 

total number of voxels in a 2mm × 2mm× 2mm space in the right hippocampus was 771 and 280 

that of the left hippocampus was 756 voxels. 281 

Furthermore, as target mask for covariance (structural/functional) analyses, the hippocampal 282 

VOIs were dilated by 8mm (isotropic) and the resulting regions (both the left and right dilated-283 



hippocampal VOIs) were excluded from the above-mentioned thresholded whole-brain gray 284 

matter mask. This procedure aims to diminish the possibility of mixing of the signal from the 285 

hippocampal voxels in the target, which my otherwise occur, for example as a result of 286 

smoothing. The remaining gray matter voxels (including cerebral and cerebellar, as well as 287 

subcortical gray matter) were used as target mask.  288 

2.5. Hippocampal Connectivity analysis: 289 

2.5.1. Structural covariance: 290 

Within each cohort, structural covariance (SC) was measured by computing the Pearson’s 291 

correlation coefficient between gray matter volume values of the hippocampus’ VOI voxels 292 

(seed voxels per hemisphere) and all other brain gray matter voxels across the whole sample. 293 

This procedure yielded one seed-by-target structural covariance matrix, at the group level, for 294 

each of the hippocampal VOIs (i.e. one pre hemisphere). 295 

To reduce noise and increase between participant overlap of gray matter structures, in particular 296 

in the highly folded cortical regions, the target voxels were selected from modulated gray matter 297 

images that were additionally smoothed with an isotropic gaussian kernel of 8mm (full-width-298 

half-maximum). The seed voxels (hippocampal VOI) were, however, selected from resampled, 299 

modulated gray matter segments with no further smoothing.  300 

 301 

2.5.2. Resting-state functional connectivity analysis:  302 

For every participant, resting-state functional connectivity (RSFC) was assessed for every 303 

session, by calculating the Pearson’s correlation between time courses of seed voxels and target 304 

voxels, both extracted from the preprocessed, smoothed resting-state scans of each session. 305 

Then the FC matrices were averaged across the four sessions, within each participant and were 306 

standardized using the Fisher’s Z-transformation. By averaging the resulting z-scored, averaged 307 

FC-matrices across all participants, one seed-by-target overall mean FC-matrix was created, for 308 

each of the hippocampal VOIs (i.e. one pre hemisphere). 309 



2.5.3. Task-based co-activation analysis: 310 

As an additional measure of functional interaction, or connectivity, we characterized task-based 311 

co-activation profiles, between hippocampal seed voxels and the rest of the brain (cfs (Plachti 312 

et al., 2018)). These co-activation profiles were investigated using seed-based activation 313 

likelihood estimation meta-analysis of functional neuroimaging data stored in the BrainMap 314 

database (Laird et al. 2011)(http://www.brainmap.org). To account for spatial uncertainty, the 315 

nearest 100 experiments reporting activation within each seed voxel or in its immediate vicinity 316 

were considered. The brain-wide co-activation pattern for each seed voxel was then computed 317 

by a quantitative meta-analysis, using the revised ALE algorithm (Eickhoff et al. 2012), over 318 

the retrieved experiments. This analysis resulted in one seed-by-target co-activation matrix, 319 

for each of the hippocampal VOIs (i.e. one per hemisphere). 320 

 321 

2.6. Gradient mapping: 322 

We utilized diffusion embedding, an unsupervised learning algorithm, to identify principal 323 

modes of spatial variations in covariance pattern across the entire of hippocampal voxels, per 324 

hemisphere. Briefly, for each modality, the overall (per hemisphere) hippocampal 325 

connectivity (covariance) matrix, was proportionally thresholded at 90% per row, 326 

retaining only the top 10% correlations between each hippocampal voxel and the target 327 

gray matter voxels. This sparse thresholded, asymmetric covariance matrix was then 328 

transformed into a normalized angle matrix (based on affinity matrix created based on 329 

cosine similarities, resulting in a non-negative and symmetric similarity matrix. Then 330 

diffusion map embedding, a one-parameter (α) family of graph Laplacians that integrates 331 

local information into a global description, was applied on this normalized angle matrix, 332 

to obtain a low-dimensional representation of the covariance matrix, explaining the 333 

variance in descending order (each of 1 × #VOI voxels). See Figure 2 for schematic 334 

representation of these steps. In line with previous neuroimaging studies, e.g. (Bayrak et 335 



al., 2019; Margulies et al., 2016; Vos de Wael et al., 2018), we used an α of 0.5, resulting in 336 

diffusion maps that retain the global relations between data points in the embedded space 337 

and are more robust to noise in the covariance matrix.  338 

Voxels along each gradient map are assigned unitless embedding values. Along each 339 

gradient (columns of the embedding matrix on the right, in Figure 2), voxels that share 340 

similar covariance pattern have similar embedding values. For further details see 341 

(Margulies et al., 2016; Vos de Wael et al., 2018). 342 

---------Figure 2--------- 343 

 344 

2.7. Statistical analysis:  345 

2.7.1. Major gradients of structural covariance matrix and their between-sample replicability: 346 

In order to assess between-sample replicability of major modes of variation in the structural 347 

covariance across the hippocampal voxels, the structural covariance maps were generated, as 348 

mentioned earlier, for the HCP and eNKI datasets separately, and the diffusion map embedding 349 

algorithm was then applied for each VOI, on each sample’s affinity matrix. The resulting 350 

gradient maps were ordered according to the explained variance, within each dataset. We then 351 

assessed similarity of the distribution of the gradients across the datasets, by calculating spatial 352 

Spearman's rank correlations between pairs of gradients derived from the two datasets. 353 

As the sign of the gradients are arbitrary, for all correlations, we report only the absolute 354 

coefficients.  355 

 356 

2.7.2. Exploring the relation between hippocampal structural gradients and functional 357 

gradients: 358 

To explore the association between the major modes of structural covariance variation and 359 

hippocampal local microstructural properties, the T1wT2w-ratio maps were masked using the 360 

VOI mask of each hippocampus and the distribution of the values within each hemisphere were 361 



correlated with the distribution of the values for each gradient separately, using Spearman’s 362 

rank correlations.  363 

To characterize the influence of cytoarchitectonic differentiations on the patterns of structural 364 

covariance gradients, we used the Jülich cytoarchitectonic atlas (https://jubrain.fz-365 

juelich.de/apps/cytoviewer/cytoviewer-main.php#), released as part of FSL-package and 366 

compared the distribution of the gradient values between its main subdivisions using Wilcoxon-367 

Mann-Whitney-tests (significance was set at p-value < 0.0002, correcting for multiple 368 

comparison for the four gradients and three subdivisions using Bonferroni correction). For this, 369 

we masked the hippocampus, within each hemisphere, using the cornu-ammonis (CA), 370 

dentate gyrus and subiculum masks. Distribution of the gradient values of the voxels 371 

belonging to each of the masked subregions are then compared with each other to 372 

investigate the possible impact of cytoarchitectonic differentiations on the generation of 373 

the observed pattern of structural covariance of the hippocampus.  374 

  375 



3. Results: 376 

3.1. Gradients of hippocampal structural covariance and their between sample replicability: 377 

The spatial distributions of the first four gradients of the structural connectivity within the HCP 378 

cohort are presented in Figure 3 and Supplementary Figure 1. In total, these four principal 379 

gradients explained more than 55% of variance of the data in each hemisphere (left: 55%; right: 380 

58%) and corresponded to the clearest elbow in the scree plot (Figure 3). 381 

The first gradient of structural covariance (G1SC), which explained more than 20% of the 382 

variance (left: 20%; right: 24%) showed an anterior-posterior organization along the 383 

longitudinal axis of the hippocampus. The second gradient (G2SC) depicted a general dorsal-384 

ventral and partly medio-lateral gradient pattern, explaining 16% of variance, in each 385 

hemisphere (Figure 3). Finally, the third and fourth gradients of structural covariance (G3SC and 386 

G4SC), each explaining ~10% of variance (G3SC : left: 12%; right: 10%; G4SC: left: 7%; right: 387 

8%) showed a mixed pattern of differentiation along the longitudinal direction but also in the 388 

orthogonal directions, in the medio-lateral and dorsal-ventral directions, respectively 389 

(Supplementary Figure 1).  390 

---------Figure 3--------- 391 

To confirm that these organizational patterns of the structural covariance were not sample 392 

specific, we ran the same approach on 468 participants of the eNKI sample, which covers a 393 

larger age-range than the HCP participants. Figure 4 demonstrates the spatial correlation of the 394 

first four gradients of the two datasets. Accordingly, in both hemispheres the first gradient of 395 

the eNKI cohort also demonstrated an anterior-posterior organization and had a high spatial 396 

correspondence (rho > 0.7), showing similar organization of the voxels in the first principal 397 

gradient along the longitudinal axis of the hippocampus, as compared to the HCP sample. In 398 

this dataset, the principal gradient explained 16% and 18% of variance in the left and right 399 

hemisphere, respectively. 400 



Further examinations of the similarity of the organization of the voxels in the subsequent 401 

gradients in the eNKI dataset suggested high correlation (rho > 0.63) with the same ordering of 402 

the HCP dataset in the left hemisphere. In the right hemisphere, while the forth gradient of the 403 

eNKI sample correlated mostly with the forth gradient (G4SC) of the HCP sample, the second 404 

and third gradients showed a more mixed spatial patterns, correlating with both G2SC and G3SC 405 

in the HCP cohort (rho > 0.38). In addition, in both, the left and right hemisphere, the first and 406 

second gradients from the eNKI cohort also correlated moderately (rho > 0.3) with G2SC from 407 

the HCP cohort. Similarly to what we observed in the HCP dataset, within the eNKI sample, 408 

the first four gradients, captured more than 50% of the variance (left hemisphere: 15%, 14%, 409 

7%; right hemisphere: 17%, 12%, 7%, demonstrating the variance explained by the second, 410 

third and fourth components, respectively).  411 

 So, in sum, in both datasets, more than 50% of the SC pattern can be summarized into four 412 

gradients whose spatial patterns are replicable across both datasets. In the right hemisphere, the 413 

second and third gradients did not show a clear one to one mapping between cohorts suggesting 414 

that these two gradients could differently vary across different datasets, but in the left 415 

hemisphere, a relative one to one correspondence could be evidenced. 416 

 417 

---------Figure 4--------- 418 

 419 

3.2. Highly similar functional and structural main organizational patterns in the hippocampus: 420 

To investigate the similarity of the organizational patterns of the hippocampal voxels based on 421 

structural covariance with the organizational patterns of the hippocampal voxels based on 422 

functional connectivity, we utilized two independent measures of functional connectivity: 423 

RSFC and meta-analytic task-based co-activation. As Figure 5 shows, the first gradient of the 424 

structural covariance (G1SC) from the HCP cohort correlated strongly with the principal 425 

gradient of both functional modalities (G1RSFC rho = 0.7 and 0.79; Co-activation rho = 0.58 and 426 



0.73, in the left and right hemisphere, respectively). This main functional gradient, just like the 427 

G1SC, exhibited a dominant anterior-posterior organization (see Supplementary Figure 2) and 428 

explained ~30% of variance in either hemisphere in both functional modalities. In general, these 429 

results demonstrate the existence of a general smooth transition along the longitudinal 430 

hippocampal axis, that represent the major mode of variation in hippocampal structural and 431 

functional covariance/connectivity patterns.  432 

The first and third gradients of task-based co-activations further showed moderate association 433 

with the third gradient of structural covariance (G3SC) (rho ~ 0.4), in both hemispheres, 434 

suggesting a partial pattern of medial-lateral gradient in the major modes of variability of task-435 

based co-activations. The other gradients of either of the functional data did not show 436 

consistently strong (i.e. similarly strong in both hemispheres) pattern of spatial association with 437 

the remaining structural gradients.  438 

 439 

---------Figure 5--------- 440 

 441 

3.3. Relationships of hippocampal structural gradients with estimates of microstructure and 442 

cytoarchitectonic organization:  443 

The spatial maps of the distribution patterns of T1wT2w-ratio (used to estimate myelin) in the 444 

bilateral hippocampus showed moderate association (rho > 0.34) with the second gradient of 445 

structural covariance (G2SC), in the HCP cohort (see Supplementary Figure 3 for spatial maps 446 

of the distribution patterns of T1wT2w-ratio) . In addition, within the left hemisphere, 447 

T1wT2w-ratio also spatially correlated with G1SC (rho = 0.36).   448 

Further subdividing the hippocampus into broad cytoarchitectonic territories, using the 449 

subregions cornu-ammonis (CA) and subiculum showed a tendency towards a consistent (i.e. 450 

in both hemispheres) pattern of higher gradient values in the CA field, compared to the 451 

subiculum region, in the second gradient of the structural covariance (G2SC) (p-value of the 452 



Mann-Whitney U tests in both hemispheres < 10-5 (Figure 6). Of note, to avoid biased 453 

conclusions, due to relatively smaller size of the dentate gyrus compared to CA field (~11 times) 454 

and subiculum (~ 6 times), Figure 6 only presents the results of comparison between CA and 455 

subiculum subfields. Comparison across all the three sub-regions are shown in the 456 

supplementary Figure 4. 457 

These results suggest that, unlike the principal anterior-posterior structural covariance gradient 458 

that could be more associated with system-level interactions of the hippocampus with the rest 459 

of the brain, the second major mode of variation in the structural covariance of the hippocampus 460 

is more tightly linked to its local microstructural properties.  461 

 462 

---------Figure 6--------- 463 

 464 

4. Discussion: 465 

In the current work, we investigated hippocampal structural organization, in terms of its co-466 

plasticity patterns with the rest of the brain. We found that the main principal dimension of the 467 

structural covariance in the hippocampus depicts an anterior-posterior gradient hence 468 

suggesting that the predominant pattern of co-plasticity with the rest of the brain follows a 469 

smooth change across the hippocampal longitudinal axis. We demonstrated the high 470 

replicability of this organizational pattern in an independent dataset, consisting of participants 471 

with a broader age range hence confirming the generalizability of this main axis of co-plasticity 472 

variation across datasets. A similar anterior-posterior organization has been very recently 473 

shown as a major dimension of functional connectivity change within the hippocampus 474 

(Przeździk et al., 2019; Vos de Wael et al., 2018). Here we replicated this finding using both, 475 

resting-state and task-based functional connectivity/co-activation information and highlighted 476 

that a large proportion (~50%) of variance in the principal structural gradient of the 477 

hippocampus could be explained by this main pattern of functional configuration.  478 



The examination of the subsequent structural gradients suggested a very limited similarity of 479 

the second dimension of structural variations and functional organization dimensions. Rather, 480 

the second major mode of variation in the structural covariance of the hippocampus 481 

demonstrated a predominantly dorsal-ventral organization and was bilaterally moderately 482 

associated with the spatial distribution of myelin markers in the hippocampus, suggesting a 483 

partial link between this organizational pattern and hippocampal innate microstructural 484 

properties. Below we discuss the integration of these findings with very recent literature and 485 

emerging views in brain mapping, as well as the potential limitations of our study.  486 

 487 

4.1. Disentangling overlapping modes of structural covariance change for a unifying model of 488 

hippocampal organization:  489 

Understanding the organizational patterns of the brain that subserve information processing in 490 

health and explain behavioral phenotypes in pathology are crucial open questions in systems 491 

and clinical neuroscience. The study of brain organization is often complicated by evidence of 492 

multiple axes of organization that are found with respect to different neurobiological properties 493 

(Eickhoff et al., 2018). For example, traditional mapping of the brain organization used local 494 

properties such as myelo- and cytoarchitectonic information to characterize brain regions and 495 

their relative organization (Hopf and Vitzthum, 1957; von Economo and Koskinas, 1925). 496 

Recent advances in in-vivo neuroimaging has expanded the scope of mapping brain 497 

organizational principles to the study of network-level interactions and characterizing 498 

overlapping axes of information processing and have hence revealed multiple organization 499 

dimensions (see (Haak et al., 2018)  and (Genon et al., 2018, 2017) for recent examples, 500 

depicting such multiple dimensions of organization in the visual and premotor cortices, 501 

respectively).  502 

The co-existence of these overlapping (i.e. spatially co-existing) and yet, distinct (i.e. from their 503 

properties) organizational principles and the interplay between them may give rise to the 504 



functional/behavioral specifications of brain regions and determine distinct neurocognitive 505 

patterns in pathologic conditions.  506 

In particular, considering the hippocampal complex role in multiple different behavioral 507 

domains, its distinct cytoarchitectonic properties, its importance as a hub node in the human 508 

connectome and its involvement in multiple disorders, understanding its multiple organizational 509 

principles, may provide novel insights towards a unifying model of the hippocampus and its 510 

variabilities in health and disease. In the current study we examined the change in the structural 511 

covariance patterns of the hippocampal voxels with the rest of the brain, to disentangle the 512 

different dimensions of its structural organization.  513 

Structural covariance, defined as coordinated change in the local morphological 514 

properties between distinct pairs of brain regions across a population, reflects long-range 515 

co-plasticity. Shared genetic influences, direct structural connections (Yee et al., 2018), 516 

similarity of micro-structural properties and coordinated growth (Alexander-Bloch et al., 517 

2013b), shared vulnerability towards toxic agents but also co-activation and co-firing of 518 

neurons, all may shape the pattern of structural co-plasticity of a given brain region. From 519 

this standpoint, the study of structural covariance may provide unique information about 520 

the interaction between these local and global factors and their relative representations 521 

on hippocampal neuroimaging-derived macrostructural properties.  522 

4.2. The main dimension of structural covariance of the hippocampus map onto the anterior-523 

posterior functional differentiation:  524 

The major principal gradient of the structural covariance, running in the anterior/posterior 525 

direction, explained more than 20% of variance in the whole data and demonstrated a smooth 526 

transition pattern of structural co-plasticity across the longitudinal axis of the hippocampus. 527 

Our investigation of the replicability of the principal dimensions of hippocampal structural 528 

covariance in an independent dataset confirmed the sample-independence of this core finding. 529 

In other words, our results demonstrated the existence of a generalizable strong organization 530 



principle, governing hippocampal co-plastic patterns across its major longitudinal axis, among 531 

healthy individuals. 532 

Multiple lines of evidence pointed out the pattern of differentiation of hippocampal properties 533 

along its longitudinal axis. In particular, a recent study have determined a gradual pattern of 534 

gene expression along the hippocampal longitudinal axis (Vogel et al., 2019). Similarly, 535 

associations with behavioral function, defined from task-activation meta-analytic analysis, 536 

indicated an emotion-cognition gradient along the anterior-posterior axis of the hippocampus, 537 

e.g. (Moser and Moser, 1998). However, the strongest support for the existence of an 538 

organizational principle along the hippocampal long-axis comes from its patterns of 539 

connectivity with the rest of the brain. Indeed, anatomical projections and electrophysiological 540 

recordings in rodent have demonstrated a gradual variation in the connectivity patterns of the 541 

hippocampus along the longitudinal axis (Strange et al., 2014). Similarly, in humans, using 542 

resting-state functional connectivity analysis, it has been shown that the large-scale functional 543 

interaction properties follow a dominant gradual change across hippocampal longitudinal axis 544 

(Vos de Wael et al., 2018). In the same line, our findings of strong spatial correlations between 545 

the major gradient of the structural covariance and functional connectivity analyses, suggest 546 

that the major organizational structural principle within the hippocampus may be enforced 547 

through long-range functional synchronous firing and task co-activation.  548 

These findings can be related to the evidence of differential involvement of the anterior and 549 

posterior hippocampus in different neurodegenerative diseases (LaJoie et al., 2014b; Lee et al., 550 

2017). In particular, our findings can be related to the differential impact of different 551 

pathologies, for example Amyloid/Tau pathology versus TDP-43-pathies (Lladó et al., 2018), 552 

in atrophy along the hippocampal longitudinal axis and hence provide a system-level 553 

explanation for the mechanisms underlying these pathologic changes and the related behavioral 554 

phenotypes. For instance, while many studies have shown local atrophy within the 555 

hippocampus, in both Alzheimer’s disease and semantic dementia, it is known that the 556 



behavioral phenotype differ to a relatively large extent between these two diseases, with 557 

episodic memory being mainly impaired in the former. (LaJoie et al., 2014a) interpreted the 558 

differential behavioral outcomes linked to hippocampal changes in terms of the variabilities of 559 

global functional interactions of the hippocampus within distinct large-scale networks in the 560 

two diseases. Similar complementary interpretations were found when considering the local 561 

hypermetabolism along the hippocampal longitudinal axis, that were linked to differential 562 

network-level interactions and hence were associated with different behavioral symptoms 563 

among patients with depression compared to schizophrenic patients (Small et al., 2011). These 564 

findings provide evidence that specific aspects of local structural variations in the hippocampus 565 

are explained through the study of hippocampal global interactions, opening doors towards the 566 

identification of mechanistic biomarkers differentiating patients’ specific profile across the 567 

disease spectrum.  568 

4.3. Linking additional dimensions of hippocampal structural covariance to local structural 569 

properties:  570 

The local microstructural properties of the hippocampus, unlike the distribution of its functional 571 

interaction and behavioral associations, do not predominantly differentiate along the 572 

anterior/posterior axis (DeKraker et al., 2019). Instead, the distinctions within the hippocampus 573 

based on the histological findings have been mainly defined across the dorsal-ventral and 574 

medial-lateral direction (proximal-distal axis), showing mainly that the structural properties of 575 

the hippocampus differentiate roughly orthogonal to its longitudinal axis and allowing the 576 

definition of subfields.  577 

As a major principal organizational rule of the hippocampus, we expected to find an impact of 578 

the variations in these local structural properties in the structural covariance gradients. 579 

Accordingly, we found a moderate association between the spatial distributions of T1wT2w 580 

ratio, a proxy marker of myelin density, and the second gradient from the structural covariance 581 

data, in both hemispheres. These moderate associations suggests a link between the second 582 



dimension of macro-structural organization and the hippocampal internal circuitry 583 

(Augustinack et al., 2010; Zeineh et al., 2017). Linking the crude cytoarchitectonic 584 

differentiations to gradients from the structural covariance also showed a tendency in the CA 585 

subfield and subiculum to load on opposite ends of the second gradient. Since proximity in the 586 

gradient space reflects the similarity of the patterns of structural covariance, these findings 587 

suggest that, in the second main mode of structural covariance, the voxels in the CA show in 588 

general a distinct pattern of covariance with other gray matter voxels than the patterns shown 589 

by the voxels within the Subiculum. Although caution should be taken when interpreting 590 

these findings, due to the wide range of the values within each subfield, the trend in 591 

difference between subfields is congruent with our recent clustering of hippocampus’ voxels 592 

based on their structural covariance pattern in healthy adults (Plachti et al., 2018). Indeed, 593 

applying a clustering algorithm to cluster hippocampus voxels based on the similarity of their 594 

brain co-plasticity pattern reveal a differentiation within the hippocampus body and tail that 595 

resembles the CA vs. Subiculum differentiation. Thus, altogether, the results of our previous 596 

clustering study together with the results of the current study suggest the partial influence of 597 

underlying microstructural properties in the pattern of structural covariance of hippocampus’ 598 

voxels.   599 

The distribution of in-vivo markers of myelin are shown to demonstrate differences across 600 

hippocampal subfields, with the highest levels of myelin concentrations being found in the 601 

subiculum (DeKraker et al., 2018; Patel et al., 2019; Vos de Wael et al., 2018). The elevated 602 

myelin estimate within this subfield could be assumed to party result from the perforant path, 603 

passing through the subiculum, conceptually linking myelin distribution to subfield boundaries 604 

(DeKraker et al., 2018).  605 

Finally, further dimensions of structural covariance, despite their general high degree of cross-606 

sample replicability, did not show stable association with the functional gradients. Furthermore, 607 

their associations with the distribution of T1wT2w-ratio in the whole hippocampus and the 608 



atlas-defined cytoarchitectonic differentiations were also negligible. Altogether, these lack of 609 

associations suggest that these second-order dimensions cannot be characterized by our current 610 

estimates of myelin and a crude cytoarchitectonic differentiation. This could be related to the 611 

limited neurobiological validity of our estimates and/or to associations with unexplored 612 

neurobiological features. The possible methodological limitations of our study are further 613 

discussed below. 614 

 615 

4.4. Challenges in linking patterns of structural covariance to local structural properties: 616 

An important aspect of the structural covariance analysis is the group-wise nature of the 617 

analysis, in which the covariance pattern of each voxel is defined based on correlation of 618 

morphological properties with the rest of the brain across a group of participants. Therefore, it 619 

requires the same definition of voxels across all participants of the cohort. Accordingly, to 620 

achieve such cross-individual correspondence, the structural images are preprocessed and 621 

registered to a common template, where gray matter volumes are defined within the same voxel 622 

on the template image for each individual. The procedure of registering single participant’s 623 

structural data to the template involves multiple linear and non-linear deformations and thus 624 

can result in considerable inaccuracies, in particular when considering distinctions between 625 

small sub-regions within the hippocampus. Such inaccuracies should be considered in the 626 

identification of the subfields and their deformation from histological scans to the MNI template 627 

space. The cumulative impact of these deformation and registration inaccuracies, can in turn 628 

disguise the impact of the underlying cytoarchitectonic properties in the computation of 629 

separate dimensions of large-scale structural covariance patterns. To overcome this limitation, 630 

some studies used a subject-wise estimate of the subfields, derived from automatic 631 

classifications of the structural (T1w and T2w MRI) scans that are already registered to the 632 

template space, e.g. (Vos de Wael et al., 2018). However, due to possible inter-individual 633 

differences in the shape and size of the subfields, these algorithms are followed by further 634 



reparameterizations to improve correspondence of voxels across subjects, which can result in 635 

similar inaccuracies, particularly for structural covariance analysis, where the correlations are 636 

assessed as a result of group-level variations.  637 

Additionally, linking the microstructural properties to the major modes of structural covariance 638 

variation is limited by the restricted neurobiological validity of the T1wT2w-ratio as an in-vivo 639 

marker of myelin (Arshad et al., 2017; Hagiwara et al., 2018; Uddin et al., 2018). The use of 640 

more direct and quantitative in-vivo correlates of myelin (Weiskopf et al., 2013) and even 641 

combination of multiple modalities (such as additional use of markers of white matter integrity 642 

and myelin density from diffusion MRI scans (Patel et al., 2019)) may provide more detailed 643 

information about how the underlying micro-structural variabilities are represented and 644 

possibly shape the macro-structural co-plasticity and co-atrophy patterns of the hippocampal 645 

voxels. These scientific developments could in turn help to explain the specific aspects of local 646 

vulnerability of the hippocampus in pathologic conditions.  647 

4.5. Conclusions and future perspectives:  648 

The current study aimed to disentangle the major modes of variation in the similarity of 649 

hippocampal voxels in terms of their co-plastic properties. Here we demonstrated that using a 650 

data-driven decomposition approach, the major modes of variation of the structural covariance 651 

patterns could be identified reliably across independent datasets with different age ranges. This 652 

replicability allows us to assume that the major dimensions shown in this study reflect 653 

generalizable patterns and are caused by general principles governing hippocampus’ 654 

organization.  655 

In this regard we showed that the principal component of the structural covariance followed the 656 

hippocampal longitudinal axis, depicting a smooth gradient running from the head to the tail 657 

and hence suggesting a smooth transition in the covariance patterns along this axis. The spatial 658 

pattern depicted by this gradient correlated highly with the major gradient of the functional 659 

connectivity analysis, suggesting an influence of global connectivity and co-firing in the 660 



realization of the main mode of variation in the structural covariance patterns in the 661 

hippocampus. In contrast, the second gradient of structural covariance ran in the orthogonal 662 

direction mainly along the dorsal-ventral side and was moderately associated with hippocampal 663 

microstructural properties and cytoarchitectonic differentiation.  664 

Considering the multi-faceted nature of the structural covariance information, further research 665 

incorporating more local and global complementary information, including gene expression 666 

patterns (Vogel et al., 2019), global white-matter connectivity patterns (Maller et al., 2019) and 667 

more quantitative measures of local micro-structural properties (Menon et al., 2019; Weiskopf 668 

et al., 2013) can help to further understand the underlying organizational forces generating 669 

different co-plastic modes in health and to characterize the vulnerability patterns between and 670 

within different pathologic conditions. 671 

  672 
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Figures:  921 

 922 
Figure1. Map of hippocampal cytoarchitectonic differentiation (Amunts et al., 2005) (A). Clustering of hippocampus from 923 
(Plachti et al., 2018),  based on its pattern of resting-state functional connectivity, showing differentiation along the 924 
longitudinal axis but also a medial and lateral differentiation within the intermediate clusters (B). CA: cornu-ammonis; DG: 925 
dentate gyrus; Sub: subiculum; 926 
 927 
 928 

 929 
Figure 2 Schematic description of the analysis steps. 𝜆 ∶ 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥. 𝐺: 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡. 930 

 931 
Figure 3 A: Spatial maps of the first two principle gradients of the structural covariance of the hippocampus. For better 932 
visualization, colormaps show ranked gradients. Opposite ends of the colormap, depict voxels with the most distinct pattern 933 
of structural covariance with the rest of the brain. B:  Variance explained by the diffusion-embedding components (left and 934 
right hemisphere). For each hemisphere the scatter plot of the first two connectivity embedding gradients are also shown. 935 
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 936 
Figure4. Absolute spearman’s rank correlation coefficient (𝜌) between corresponding diffusion-embedding components from 937 
structural covariance maps derived within the HCP (columns) and eNKI (rows) sample. G: gradient; SC: structural covariance;  938 

HCP_G1
ρ

HCP_G2
SC

HCP_G3
SC

HCP_G4
SC

HCP_G1
SC

HCP_G2
SC

HCP_G3
SC

HCP_G4
SC

eNKI-G1SC

eNKI_G2SC

eNKI_G3SC

eNKI_G4SC

Right hempisphereLeft hempisphere

0.9

0.75

0.6

0.45

0.3

ρ



 939 
Figure 5. A: Absolute spearman’s rank correlation coefficient (𝜌) between corresponding diffusion-embedding components 940 
from the functional connectivity measures (rows) and structural covariance maps (columns) derived within the HCP cohort. B: 941 
Association between spatial distribution of T1wT2w-ratio values and the major four gradients of structural covariance in the 942 
HCP cohort, defined using spearman’s rank correlation. Darker colors represent stronger associations. . G: gradient; SC: 943 
structural covariance; RSFC: resting state functional connectivity; MACM: meta-analytic connectivity modelling; T1w: T1-944 
weighted scan; T2w: T2-weighted scan. 945 
 946 
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 947 
Figure 6. Boxplots showing distribution of the gradient values within the CA and subiculum subfields, across the major four 948 
gradients of structural covariance in each hemisphere; Significant difference is shown using * and shows p < 0.002 of the 949 
Wilcoxon-Mann-Whitney-test. SC: structural covariance; CA: cornu-ammonis; G: gradient.  950 
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Data and code availability:  
The analysis in the manuscript is based on freely available functions in python and MATLAB. 
An example snippet will be submitted to the first author’s github page.  
The data used in this manuscript is mainly acquired from the Human Connectome project. For 
more information: https://db.humanconnectome.org.  
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