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Research Highlights 

 Review shows diverse approaches and objectives for mapping riparian vegetation 

 Scale of observation, remote sensing data and mapped features are strongly related 

 Finer spatial and temporal resolution will renew large scale and diachronic analyses  

 We discuss the challenges of conveying remote sensing tools to managers 

 Open access tools and co-construction with managers foster technology transfer 
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Abstract 

Riparian vegetation is a central component of the hydrosystem. As such, it is often subject to 1 

management practices that aim to influence its ecological, hydraulic or hydrological functions. 2 

Remote sensing has the potential to improve knowledge and management of riparian vegetation by 3 

providing cost-effective and spatially continuous data over wide extents. The objectives of this 4 

review were twofold: to provide an overview of the use of remote sensing in riparian vegetation 5 

studies and to discuss the transferability of remote sensing tools from scientists to managers. We 6 

systematically reviewed the scientific literature (428 articles) to identify the objectives and remote 7 

sensing data used to characterize riparian vegetation. Overall, results highlight a strong relationship 8 

between the tools used, the features of riparian vegetation extracted and the mapping extent. Very 9 

high-resolution data are rarely used for rivers longer than than 100 km, especially when mapping 10 

species composition. Multi-temporality is central in remote sensing riparian studies, but authors use 11 

only aerial photographs and relatively coarse resolution satellite images for diachronic analyses. 12 

Some remote sensing approaches have reached an operational level and are now used for 13 

management purposes. Overall, new opportunities will arise with the increased availability of very 14 

high-resolution data in understudied or data-scarce regions, for large extents and as time series. To 15 

transfer remote sensing approaches to riparian managers, we suggest mutualizing achievements by 16 

producting open-access and robust tools. These tools will then have to be adapted to each specific 17 

project, in collaboration with managers. 18 

Keywords 19 

Riparian forest, alluvial forest, floodplain vegetation, LiDAR, UAV, satellite 20 
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1. Introduction 22 

At the interface between terrestrial and aquatic biota, riparian vegetation is a central element in the 23 

hydrosystem, where it plays many ecological roles and interacts with all hydrosystem components 24 

(Naiman et al., 2005). In a broad sense, riparian vegetation corresponds to all vegetation types that 25 

grow within the area influenced by a river network (Naiman and Décamps, 1997).  26 

Despite covering a relatively small area, riparian vegetation provides many ecosystem services 27 

related to river flow (Dixon et al., 2016), sedimentary processes (Zaimes et al., 2004), biodiversity 28 

(Naiman and Décamps, 1997), water quality (Honey-Rosés et al., 2013, Brogna et al., 2018), cultural 29 

value (Décamps, 2001, Klein et al., 2015, Vollmer et al., 2015). However, riparian ecosystems 30 

experience multiple pressures (e.g. land use, water diversion, modified flood regime) (Stella and 31 

Bendix, 2019) and have been severely altered in many regions of the world, for example in Western 32 

Europe (Hughes et al., 2012), southwestern North America (Poff et al., 2011), in the Murray‐Darling 33 

Basin in Australia (Mac Nally et al., 2011) or in South Africa (Holmes et al, 2005). Consequently, 34 

riparian vegetation is often the focus of management practices, including restoration or 35 

rehabilitation measures (Dufour and Piégay, 2009; González et al., 2015; Capon and Pettit, 2018), 36 

buffer implementation (Lee et al., 2004) or repeated maintenance operations such as wood removal 37 

(Piégay and Landon, 1997; Wohl et al., 2016). 38 

In this context, management practices must be based on accurate and up-to-date information about 39 

the state of riparian vegetation (National Research Council, 2002). Regional or national programs 40 

have thus been established in many countries to monitor the health of riparian ecosystems. 41 

Examples include southern Belgium (Debruxelles et al, 2009), Spain and more generally the European 42 

Union in the frame of the Water Framework Directive (Munné et al., 2003, Willaarts et al., 2014), 43 

Australia with the South East Queensland Healthy Waterways Partnership (Bunn et al., 2010) or the 44 

monitoring of riparian condition in several National Parks in North America (Starkey, 2016). Dense 45 

sampling schemes can help target and implement management practices (Landon et al., 1998; 46 
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Beechie et al., 2008) or assess their effectiveness (González et al., 2015). However, due to the spatial 47 

arrangement, dynamism and inaccessibility of riparian ecosystems, data acquisition in the field can 48 

be labor-intensive, especially for large areas (i.e. more than 100 km of a river) (Johansen et al., 2007). 49 

It is thus difficult to sample densly in the field, and the density or the extent of observations must be 50 

reduced. This can be problematic, because river scientists argue that small scale or discontinuous 51 

observations are inadequate to understand spatially continuous processes that occur at large spatial 52 

scales (Fausch et al., 2002; Marcus and Fonstad, 2008; see also Tabacchi et al., 1998 or Palmquist et 53 

al., 2018 for examples related to riparian vegetation). 54 

Remote sensing provides the ability to acquire continuous data over large extents. In the past few 55 

decades, the continued development of sensors, vectors and computational power has fueled the 56 

development of applications in environmental science (Anderson and Gaston, 2013; Wulder et al., 57 

2012). The positive contribution of remote sensing to the management of natural resources is 58 

adressed by many articles related to river or riparian management (Carbonneau and Piégay, 2012, 59 

Dufour et al., 2012). This is not only a theoretical issue as is it regularly raised by riparian managers in 60 

the grey literature (Vivier et al., 2018, Fédération des Conservatoires d’espaces naturels, 2018). 61 

However, it is difficult for managers to know whether and which remote sensing methods are 62 

relevant to a particular situation (Dufour et al., 2012). 63 

The use of remote sensing to study riparian vegetation raises specific challenges. These challenges 64 

are linked to the vegetation’s relative structural complexity and spatial organization (Naiman and 65 

Décamps, 1997), or to the difficulty to extract specific features or processes related to riparian 66 

vegetation functions (e.g. surface roughness by Straatsma and Baptist (2008), shading of streams by 67 

Loicq et al., 2018). In a recent literature review, remote sensing emerged as a particularly dynamic 68 

subject in riparian studies (Dufour et al., 2019). Remote sensing of riparian vegetation was 69 

mentioned in several reviews addressing the remote sensing of rivers (Muller et al., 1993; Goetz, 70 

2006, Tomsett and Leyland, 2019, Piégay et al., 2020). Specific aspects were also reviewed such as 71 
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the mapping of roughness coefficients with remote sensing (Forzieri et al., 2012) or the use of 72 

satellite images to map riparian vegetation in New Zealand (Ashraf et al., 2010). Dufour et al. (2012) 73 

and Dufour et al. (2013) summarized and discussed several examples of remote sensing applications 74 

to map riparian vegetation. However, none of the aforementioned articles comprehensively 75 

reviewed the use of remote sensing to map riparian vegetation across regions, scales and 76 

researcher’s interests. Indeed, the latter are fragmented among several fields of knowledge (e.g. 77 

ecology, geomorphology or hydraulics) (Dufour et al., 2019). 78 

The aims of this article are 1) to provide a comprehensive overview of the relevance of remote 79 

sensing to support the study of riparian vegetation and 2) to discuss how remote sensing approaches 80 

can be valued as operational tools for managing riparian vegetation. To these ends, we first 81 

systematically review the different types of data used to study major features, functions and 82 

processes related to riparian vegetation across scales (section 3). The second part of the article 83 

(section 4) is based on expert judgment. We provide concrete examples where remote sensing is 84 

used in management contexts, in order to identify the challenges of conveying remote sensing tools 85 

from scientists to managers. 86 

2. Materials and methods 87 

Our approach was structured as following: we first selected relevant articles in the Scopus database. 88 

Second, relevant information was extracted for each article, and summarized into graphs. Our results 89 

were discussed in terms of trends and perspectives for research, and in terms of operationality and 90 

transferability to riparian managers. The Figure 1 synthesizes our approach. Major steps are further 91 

detailed in the following sections. 92 
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 93 

Figure 1. General workflow for the reviewing process 94 

2.1. Database collection 95 

Relevant articles were selected from the Scopus database (www.scopus.com) for the period 1980 - 96 

April 2018, when the database was queried. We searched the title, abstract and the keywords for 97 

words related both to riparian vegetation and to remote sensing technologies. More precisely, we 98 

used the request described in the Figure 2. 99 

 100 

Figure 2. Keywords used for database collection 101 
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Our choice of keywords excluded articles that mentioned riparian zones, but not specifically riparian 102 

vegetation. While some of these articles could have been relevant for this review, including keywords 103 

related to riparian zones would have resulted in unmanageable noise. 104 

This request yielded 791 articles. We first filtered out irrelevant articles based on their title (672 105 

articles kept). Then, we sorted through the remaining articles based on their abstracts (428 articles 106 

kept). During these two filtering steps, we removed mainly articles in which riparian vegetation was 107 

not an essential part of the study. For example, we removed geomorphological articles in which 108 

riparian vegetation was mentioned in the abstract but was not actually studied. Articles that used GIS 109 

but no remote sensing data were also removed (e.g. those using cadastral archives). 110 

We also built a second database using only keywords related to riparian vegetation, excluding those 111 

related to remote sensing. This second database was solely used to estimate the proportion of 112 

remote sensing studies among riparian vegetation studies, and was not analyzed using the analysis 113 

grid described in the following section. 114 

2.2. Analysis grid 115 

We searched for features that characterized the articles collected to perform quantitative analysis 116 

and statistics. We built our analysis grid (Table 1) around five groups of variables: “general 117 

information”, “remote sensing technology”, “study extent”, “type of indicator” and “multi-118 

temporality”. In this paragraph, when not obvious, we highlight in bold the codes (used in figures) 119 

associated with the variables. ”General information” included variables such as the publication year 120 

and location of study area. “Remote sensing technology” described the type of remote sensing data 121 

used. To simplify interpretation, we recorded this information as common combinations of sensors 122 

and vectors. We distinguished the following: airplane with a RGB/GS (red-green-blue or 123 

panchromatic), digital or analog sensor (Plane_RGB); airplane with a multispectral or hyperspectral 124 

sensor (Plane_MSHS); UAV with any sensor (UAV); any vector with a LiDAR sensor (LiDAR); any 125 

vector with a RADAR sensor (RADAR) and satellite with a multispectral or hyperspectral sensor. This 126 
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last variable was coded according to image resolution: medium (> 10 m, Satlow) or high (≤ 10 m, 127 

Sathi). ”Study extent” described the extent of the study area as the length of studied river or area of 128 

the study area. These two variables were recorded in categories and then summarized into a single 129 

category to simplify interpretation: study extent. “Type of indicator” described the type of features 130 

extracted with remote sensing data to describe riparian vegetation. Delineation of riparian 131 

vegetation among other land cover types (DLC) is the first feature extracted for managing riparian 132 

vegetation. Species composition is a major feature of riparian plant formations. It is related to 133 

habitat provision, bank stabilization and flood regulation functions; for example, willow is a pioneer 134 

species that helps to stabilize banks (Hupp, 1992). We distinguished studies that differentiate groups 135 

of species (Communities) and studies that differentiate species (SP). We also distinguished studies in 136 

which the target species were invasive (SP_invasive), since riparian zones are particularly prone to 137 

invasions (Richardson et al., 2007). We distinguished studies in which the target communities were 138 

succession stages, since riparian systems are pulsed systems in which succession is regularly 139 

reinitiated, leading to a mosaic of succession stages (Kalliola and Puhakka, 1988). The structure of 140 

riparian vegetation is related to many ecological functions. We recorded general descriptors of 141 

vegetation structure such as vegetation height, density, biomass and landscape structure. We also 142 

recorded studies interested in hydraulic properties of vegetation (Roughness), since riparian 143 

vegetation has tremendous effects on the hydraulic regime of rivers, especially by slowing river flow 144 

(Curran and Hession, 2013). Riparian shade (or overhang) influences fish habitats and is a major 145 

factor regulating stream temperature (Poole and Berman, 2001). Large woody debris (LWD) has 146 

many effects on provision of aquatic habitats, river morphology and flood risk prevention (Wohl, 147 

2017). Features related to physiological processes, including phenology and health statuts (e.g. tree 148 

dieback), are a major concern for managers (Cunningham et al., 2018). Riparian evapotranspiration 149 

has often been studied in arid or semi-arid systems because it has a major effect on providing water 150 

for human use (Dahm et al., 2002). ”Multi-temporality” included only one variable (Diachronic), 151 

which corresponded to a special type of study  diachronic analysis  that uses a temporal series of 152 
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images to describe vegetation dynamics. We recorded all variables as presence/absence data to 153 

capture the use of several types of data or the mapping of several indicators in the same article. 154 

Table 1. Analysis grid used for each article in the database 155 

Group of variables Variable Values Description 

General information Year  Publication year 

X1  Longitude of the study area 

Y1  Latitude of the study area 

Biome  World Wildlife Fund Biome of the study 

area (extracted from the geographical 

coordinates of the study area) 

Type of remote sensing 

data 

Plane_RGB 0/1 Use of black and white or true-color aerial 

images (except images acquired from UAVs) 

Plane_MSHS 0/1 Use of aerial images with 4 or more spectral 

bands (except those from UAVs) 

Satlow 0/1 Use of satellite images with resolution > 10 

m 

Sathi 0/1 Use of satellite images with resolution  10 

m 

UAV 0/1 Use of images acquired from UAVs 

LiDAR 0/1 Use of LiDAR data 

RADAR 0/1 Use of RADAR data 

Extent of the study area Length 1 to 5 Length of the river studied (for studies at 

the scale of the minor bed or floodplain) 

Area 1 to 5 Area of the study area (for studies at the 

watershed scale) 

Study extent 1 to 5 Combination of Length and Area: 

 Local: Length < 10 km 
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 River segment: Length 10-100 km OR 

Area < 100 km² 

 Subregional: Length 100-1000 km OR 

Area 100-1000 km² 

 Regional: Length > 10,000 km OR Area 

1000-10,000 km² 

 Very large scale: Area > 10,000 km² 

Type of 

indicator 

Delimitation DLC 0/1 Mapping of riparian vegetation (including 

land cover studies) 

Species 

composition 

Communities 0/1 Mapping of several distinct riparian plant 

communities 

Succession stages 0/1 Mapping of several succession stages 

SP 0/1 Mapping of riparian vegetation at the 

species level 

SP_invasives 0/1 Mapping of invasive species 

Vegetation 

structure 

Height 0/1 Mapping of vegetation height 

Landscape 0/1 Calculation of landscape metrics (e.g. 

continuity) 

Density 0/1 Mapping of vegetation density 

Shade 0/1 Mapping of shade cast by vegetation 

Biomass 0/1 Mapping of biomass 

LWD 0/1 Large woody debris (wood in rivers) 

Roughness 0/1 Mapping of vegetation hydraulic properties 

Physiological 

processes 

Evapotranspiration 0/1 Estimate of vegetation evapotranspiration 

Health status 0/1 Mapping of vegetation health status (e.g. 

tree dieback, defoliation) 

Phenology 0/1 Mapping of vegetation phenology 

Multi-temporality Diachronic 0/1 Diachronic analysis 
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2.3. Statistical analysis 156 

We computed the annual number of published studies using remote sensing of riparian vegetation. 157 

We also computed for each year the proportion of studies that used remote sensing among all 158 

riparian vegetation studies. To do so, we compared the number of articles in the database related to 159 

remote sensing and riparian vegetation with the number of articles in the database related to 160 

riparian vegetation in general.  161 

The data collected with the analysis grid were summarized and plotted. We computed the number of 162 

articles for each WWF biome, the use of different remote sensing technologies through time. We 163 

then compared the use of different technologies according to the scale of observation, the indicator 164 

extracted and the multi-temporal character of studies. 165 

Finally, we performed a multiple correspondence analysis in order to highlight relationships between 166 

the type of data and the type of feature extracted. We used the package FactoMineR of R software. 167 

All variables were recorded as categorical variables. Variables related to study extent and multi-168 

temporality were added as supplementary variables. 169 

2.4. Interpretation of results 170 

Results were discussed in two phases. First (section 3), we use our quantitative review of the 171 

literature to establish the state of the art and main perspectives in the use of remote sensing to map 172 

riparian vegetation. Second (section 4), we discuss how remote sensing can be used in real 173 

management contexts. We first discuss the added value of remote sensing in such contexts using 174 

concrete examples from the grey literature and personal experience. Then, we use these examples to 175 

discuss the challenges that must be overcome in order to promote the use of remote sensing by 176 

riparian managers. Therefore, while the section 3 of this article is based on a rigorous review of the 177 

scientific literature, the section 4 of this article is rather based on expert judgment. 178 
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3. Results and discussion of the systematic review 179 

3.1. Location of the studies 180 

Most studies in the 428 selected layed in the Northern Hemisphere (79%), especially in North 181 

America (40% of studies) and Europe (20% of studies) (Figure 3). South America, Oceania, Asia 182 

(mostly Japan) and Africa represented respectively 9%, 9%, 11% and 5% of studies. Most represented 183 

biomes (Figure 4) were hardwood and mixed temperate forests (28%), temperate coniferous forests 184 

(14%), and deserts and xeric bushes (13%). Mediterranean biomes (10%) and temperate open 185 

biomes (8%) were also well represented. Well-represented biomes generally corresponded to those 186 

in developed countries. Conversely, boreal forests and tundra were least represented (< 1% of 187 

studies), though they cover a large area globally (> 10% of emerged land area). In addition, despite 188 

the large extent of tropical biomes (tropical and equatorial forests or open vegetation, ca. 30% of 189 

emerged land area), few studies focused on them. 190 

 191 

Figure 3: Locations of the study areas of the studies reviewed 192 
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 193 

Figure 4. Locations of studies reviewed, by World Wildlife Fund biome 194 

This result highlights the lack of knowledge and studies about tropical and boreal riparian forests, 195 

perhaps due to the location of laboratories, which are often located in developed countries and 196 

temperate climates. Our results are similar to those of Dufour et al. (2019) for all riparian vegetation 197 

studies and those of Bendix and Stella (2013) for studies of vegetation/hydromorphology 198 

relationships.  199 

However, we suggest that the increasing quality of remote sensing data has great potential for 200 

research in understudied areas and at the global scale. One condition is that these data must be 201 

available to their potential users. Open or free remotely sensed data, such as Landsat, MODIS or, 202 

more recently, Sentinel images, allow researchers to overcome the issue of the prohibitive cost of 203 

data acquisition. This is particularly true for researchers in developing countries for data that are 204 

produced in wealthier countries (Sá and Grieco, 2016). However, to broaden the user base, it is also 205 

necessary to facilitate access to these data (Turner et al., 2015). Access can be facilitated by 206 

providing higher-level (e.g. atmospherically corrected) or derived products, such as global land cover 207 

maps (Gong et al., 2013), global floodplain models (Nardi et al., 2019) and maps of riparian zones 208 
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(Weissteiner et al., 2016, at the European scale). Access can also be made easier by developing an 209 

open, free or user-friendly environment to find, visualize and process data (Turner et al., 2015).  210 

3.2. Changes over time in the number of studies that used remote 211 

sensing to study riparian vegetation 212 

Most of the 428 studies (89%) that used remote sensing to study riparian vegetation from 1980-2018 213 

were published after 2000 (Figure 5A), when the number of studies began to increase greatly. Before 214 

1990, few studies used remote sensing to study riparian vegetation. The percentage of studies using 215 

remote sensing among studies studying riparian vegetation increased in the 2000s (Figure 5B). Each 216 

year after 2000, 2-6% of all studies of riparian vegetation used remote sensing. Thus, even recently, 217 

relatively few studies use remote sensing data to study riparian vegetation, and field-based 218 

approaches dominate riparian vegetation studies despite the development of remote sensing and 219 

modeling approaches. This could be due to three main reasons. First, field-based approaches have 220 

traditionally been used and are straightforward. Some aspects of riparian vegetation, such as 221 

biogeochemical functioning and soil properties, cannot realistically be studied with remote sensing 222 

(Dufour et al., 2012). Second, the spatial structure of riparian vegetation makes it difficult to study 223 

using remote sensing. Its complexity (Naiman et al., 2005) and narrow shape is difficult to observe 224 

with low resolution satellite images (Johansen et al., 2010). Additionally, the linear shape of riparian 225 

corridors requires acquiring images over large areas (to cover sufficient corridor length), only to focus 226 

on small areas (near the river, rather than other land cover classes). For example, Weissteiner et al. 227 

(2016) estimated that Europe's riparian area represented ca. 1% of its total continental area. Third, 228 

we removed duplicate and irrelevant articles from our database, but did not do so when identifying 229 

all articles describing studies of riparian vegetation in general, which may have led us to 230 

underestimate the percentage of all riparian studies that used remote sensing. 231 
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 232 

Figure 5. A: Number of studies from 1980-2018 that used remote sensing to study riparian vegetation. B: Percentage of 233 

studies from 1980-2018 that used remote sensing, out of all studies concerning riparian vegetation (see section 2.3). 234 

3.3. Changes in remote sensing data over time 235 

The remote sensing data used most were aerial RGB/GS images (44% overall) and medium-resolution 236 

satellite images (> 10 m resolution, and ≤ 50 m for most studies) (Figure 6). Aerial multispectral 237 

images appeared in the 1990s and peaked during the 2000s. The use of high resolution satellite data 238 

(≤ 10 m such as IKONOS, SPOT 5 and WorldView) started in the late 1990s and reached a plateau 239 

around 2010. The use of LiDAR data consistently increased during the 2000s, accounting for 20% of 240 

studies using remote sensing for riparian vegetation in 2017. The use of UAV images sharply 241 

increased in the 2010s. As the use of these technologies increased, the percentage of studies using 242 

RGB/GS aerial images and low resolution satellite images decreased slightly. Overall, less than 2% of 243 

studies used RADAR data. Their use peaked in the early 2000s and then decreased. 244 
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 245 

Figure 6. Percentage of studies that used a given technology per year. The curve was smoothed using a loess regression. 246 

The popularity of RGB/GS aerial and low resolution satellite images can be explained by their low 247 

cost and wide availability, including as time series. Other data have been used as they became 248 

available (e.g. LiDAR and high resolution satellite images in the 2000s, UAVs in the 2010). The relative 249 

decrease in the use of multispectral aerial images could be due to their replacement by high 250 

resolution satellite images. Finally, the low percentage in the use of RADAR data could be due to the 251 

relative difficulty of interpretation of such data, especially as water surfaces can modify RADAR 252 

signals. Most studies in our database that used RADAR data focused on the interaction between 253 

water and riparian vegetation, mapping flooding events or roughness coefficients (Townsend, 2002). 254 

The early decrease in the use of RADAR data coincides with the increase in the use of LiDAR data, 255 

which also provide structural information.  256 

3.4. Which technology for which study scale? 257 

There was a strong relationship between the scale of the study (local to very large scale) and the type 258 

of remote sensing data used (Figure 7). In general, aerial images were used more at relatively local 259 

scales (i.e. local and river segment), while medium-resolution satellite images were used more at 260 

larger scales (i.e. regional or very large scale). There is often a tradeoff between resolution and 261 



 

18 
 

coverage: UAVs can produce images with centimetric resolution but struggle to cover large areas, 262 

while satellites such as Landsat and MODIS provide images at a lower resolution (30 m for Landsat, 263 

250 m for MODIS) but can cover large areas.  264 

 265 

Figure 7. Percentage of studies that used a given remote sensing technology, by spatial extent of the study 266 

3.4.1. Use of UAVs at the local scale 267 

At the local scale (< 10 km long), 86% of studies were based on airborne remote sensing (of which 268 

79% used airplanes and 11% used UAVs). This scale of study lies within the range of action of 269 

relatively inexpensive UAVs that can carry RGB and multispectral cameras. While most UAVs were 270 

used at the local scale, the low percentage of local scale studies that used UAVs was surprising. This 271 

can be explained by the recent availability of these platforms: of studies published in the 2010s, 20% 272 

of those at the local scale used UAVs. UAVs are considered more versatile than planes, and a growing 273 

number of “ready-to-fly” platforms allow end-users to perform their own acquisitions (Anderson and 274 

Gaston, 2013). Moreover, UAV imagery provides very high spatial resolution imagery (up to 275 

centimetric), which is ideal for operator photointerpretation, which is frequently used at this scale. 276 
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However, most developed countries have established regulations that restrict the potential and 277 

spread of UAV technology (Stöcker et al., 2017). 278 

3.4.2. Use of airplanes and satellites at the segment and subregional scales 279 

Both airborne and spaceborne sensors were used at the segment (10-100 km) and subregional scales 280 

(100-1000 km). RGB/GS aerial images were used in 55% and 39% of studies at respectively the river-281 

segment and subregional scale (Figure 7). Most researchers photointerpret these images to describe 282 

riparian vegetation features. This method is long-standing, but remains a relevant and effective 283 

approach to map riparian vegetation over small watersheds or along dozens (more rarely hundreds) 284 

of km of rivers (Jansen and Backx, 1998; Matsuura and Suzuki, 2013; Carli and Bayley, 2015; González 285 

del Tánago et al., 2015; Solins et al., 2018). However, photointerpretation of hundreds of km of river 286 

can become tedious. In this case, one would use more automated approaches, such as object-based 287 

approaches, which can decrease the time required for photointerpretation (Belletti et al., 2015).  288 

The effectiveness of automated techniques is strongly correlated with the homogeneity of spectral 289 

signatures within a single feature class (Cushnie, 1987). Homogeneity in spectral signatures requires 290 

homogeneous atmospheric and illumination conditions within the dataset. To this end, airplanes 291 

equipped with multispectral cameras can be used over long river segments in a short period to avoid 292 

variations in weather and illumination conditions (Forzieri et al., 2013; Bucha and Slávik, 2013). 293 

However, this approach remains challenging for large river networks, which decreases the possibilty 294 

of automation at these scales (Dauwalter et al., 2015).  295 

In this context, the wider swath of satellite imagery would be an advantage. High-resolution satellite 296 

images were often used to map vegetation automatically (16% and 9% of studies at respectively the 297 

river-segment and subregional scale) (Figure 7). For example, Strasser and Lang (2015), Riedler et al. 298 

(2015) and Doody et al. (2014) used WorldView-2 data to map riparian vegetation along a few dozen 299 

km. Tormos et al. (2011) and Macfarlane et al. (2017) used SPOT images and GeoEye-1 images to 300 

map vegetation along corridors respectively 60 and 90 km long. However, it may be difficult to 301 
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acquire high-quality datasets for larger areas, for which several high-resolution satellite images must 302 

be combined (Goetz, 2002; Johansen et al., 2010b; Zogaris et al., 2015).  303 

The percentage of studies based on LiDAR surveys decreased with scale: 19%, 16%, 7% and 6% of 304 

studies at respectively the local, river-segment, subregional and regional scale (Figure 7). However, 305 

some authors were able to use LiDAR data to monitor narrow riparian corridors over large areas 306 

(Johansen et al., 2010; Michez et al., 2017). One advantage of tri-dimensional LiDAR data is that they 307 

are less subject to changing atmospheric and lightning conditions during the survey than spectral 308 

data. Moreover, LiDAR coverage is becoming more frequent at the regional/national scale (Parent et 309 

al., 2015; Wasser et al., 2015; Shendryk et al., 2016; Tompalski et al., 2017). When an initial 310 

nationwide LiDAR survey is performed, digital aerial photogrammetry (DAP) can be used to further 311 

update LiDAR canopy height models (CHMs). DAP CHMs can be produced from aerial images 312 

acquired on a regular basis by national or regional mapping agencies in several countries and can 313 

potentially provide vegetation height data at low additional cost (Michez et al., 2017). 314 

3.4.3. Large scale: satellite images 315 

The use of satellite images with medium to coarse resolution (> 10 m) increased as the extent 316 

increased. For studies at the regional or very large scale, satellite images were used in respectively 317 

72% and 82% of cases (Figure 7). Coarse-resolution images (> 100 m) were not used to study riparian 318 

vegetation, which often appears as linear or fragmented features (Gergel et al., 2007). Medium-319 

resolution images such as Landsat TM, ETM+ or OLI images are preferred. The use of these data to 320 

map riparian vegetation cover has yielded satisfying results in wide riparian corridors (Lattin et al., 321 

2004, Yousefi et al., 2018). However, their resolution often becomes limiting in the case of narrow 322 

riparian corridors or small vegetation units that are a few Landsat pixels wide (Congalton et al., 2002, 323 

Henshaw et al., 2013). Although aerial images (multispectral, RGB and panchromatic) were used in 324 

25% of studies at the regional scale, they were always used with medium-resolution satellite images 325 

(Fullerton et al., 2006; Groeneveld and Watson, 2008; Claggett et al., 2010). High-resolution satellite 326 
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images, which were used in 8% of studies at the regional scale, were used mostly with pansharpening 327 

methods to enhance lower resolution satellite images (Seddon et al., 2007; Staben and Evans, 2008; 328 

Scott et al., 2009). 329 

3.5. Which technology for which riparian feature? 330 

The features of interest extracted from remote sensing data to describe riparian vegetation were 331 

strongly related to the type of remote sensing data (Figure 8). Four major trends emerged. First, the 332 

study of physiological processes (e.g. phenology, evapotranspiration and, to a lesser extent, health 333 

status) was strongly associated with the use of medium-resolution satellite images and large study 334 

extents. Second, the study of features or processes related to vegetation structure (shade, 335 

roughness, height) was strongly associated with the use of LiDAR data. Third, the study of features 336 

related to species composition was associated with the use of high-resolution multispectral images 337 

(acquired from satellites, planes or UAVs) or RGB/GS aerial images (especially for successional stages) 338 

and with small study extents. Fourth, the delineation of riparian vegetation was weakly associated 339 

with the use of RGB/GS aerial images or medium-resolution satellite images. These four trends are 340 

discussed in the following four sections. 341 
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 342 

Figure 8. Results of the multiple correspondence analysis (see section 2.3. for the methods). Supplementary variables (i.e. 343 

variables related to study extent and multi-temporality) are represented as crosses with text in italics. The first two axes 344 

explain 19.6% of total variance. Ellipses were drawn arbitrarily to simplify interpretation. See Table 1 for code definitions. 345 

3.5.1. Delineation of riparian vegetation 346 

How riparian vegetation is delineated depends on how it is defined (Verry et al., 2004). In general, 347 

riparian vegetation is defined based on its specific characteristics (e.g. spectral signature, texture) 348 

and on contextual information (e.g. topographic position, proximity to a river) (Weissteiner et al., 349 

2016). Photointerpretation of RGB/GS aerial images is a traditional approach in which the operator 350 

uses both types of information (Morgan et al., 2010). It was used in 53% of studies that delineated 351 
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riparian vegetation (Figure 9). Multispectral images (airborne or spaceborne, accounting for 45% of 352 

studies) are often used to delineate riparian vegetation in an automated way (Alaibakhsh et al., 2017; 353 

Johansen et al., 2010b; Bertoldi et al., 2011). Contextual information can be provided by ancillary 354 

data (e.g. hydrographic network, as in Claggett et al. (2010) or Yang (2007)), a LiDAR digital terrain 355 

model (DTM) (Arroyo et al., 2010; Wagner-Lücker et al., 2013), or a Shuttle RADAR Topography 356 

Mission DTM (Maillard and Alencar-Silva, 2013; Weissteiner et al., 2016). Congalton et al. (2002) 357 

indicate that medium-resolution satellite data (used in 29% of studies) are not adapted for 358 

delineating narrow riparian corridors because the corridors do not contain enough pixels (see section 359 

3.4.3). 360 

 361 

Figure 9. Percentage of studies that used given remote sensing data to delineate riparian vegetation (i.e. distinguish riparian 362 

vegetation from other land-cover types) 363 

3.5.2. Species composition 364 

Species composition is a recurrent subject that was studied in 42% of studies. Photointerpretation of 365 

RGB/GS aerial images concerned 51%, 47% and 45% of studies that differentiated respectively 366 

communities, species, and invasive species (Figure 7). This approach is widely used to describe 367 

successional stages or changes in their distribution (86% of such studies). Indeed, RGB/GS aerial 368 

images have been available since before the 1950s (González et al., 2010; Rood et al., 2010; Varga et 369 
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al., 2013; Wan et al., 2015). However, manual interpretation of images is time-consuming, and the 370 

discriminating power of RGB/GS aerial images is limited by their low spectral range (Narumalani et 371 

al., 2009; Fernandes et al., 2014). Medium-resolution satellite images were used in 21% of studies 372 

that differentiated communities. These images were used mainly when vegetation patches were 373 

larger than the image resolution (Vande Kamp et al., 2013; Hamandawana and Chanda, 2013; Sridhar 374 

et al., 2010; Groeneveld and Watson, 2008; Townsend and Walsh, 2001), although spectral unmixing 375 

can, to some extent, resolve this issue (Gong et al., 2015; Wang et al., 2013). 376 

 377 

Figure 10. Percentage of studies that used given remote sensing data to map indicators related to species composition. 378 

The most promising approaches to address this issue are based on high-resolution, aerial or 379 

spaceborne, multispectral or hyperspectral images. These images were used in 30%, 33% and 45% of 380 

studies that differentiated respectively communities, species and invasive species (Figure 10). The 381 

accuracy of a particular project depends on the context, objectives, available data and methods used 382 

to evaluate it. Therefore, we present recent studies that mapped species in the Table 2. In general, a 383 

large number of narrow spectral bands increases the ability to distinguish species. However, in 384 

mature, species-rich floodplain forests, it remains challenging to obtain classification accuracy that is 385 
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satisfactory for operational use, even when using hyperspectral imagery (Richter et al., 2016). The 386 

use of multi-temporal images, which reveal the succession of phenological stages, can sometimes 387 

replace the spectral range. For example, Rapinel et al. (2019) used Sentinel-2 time series to classify 388 

grassland plant communities in a temperate floodplain using the relationship between inundation, 389 

grassland management and vegetation composition. Similarly, Michez et al. (2016b) used UAV time 390 

series to distinguish riparian tree species using images acquired during several phenological stages 391 

(from spring to fall). It is also possible to acquire images at a single but appropriate date to take 392 

advantage of the singular aspect of one species at a particular phenological stage. This approach is 393 

especially effective when a single species has to be mapped, such as the invasive species Arundo 394 

donax (Fernandes et al., 2013b) or Heracleum mantegazzianum (Michez et al., 2016a). The spatial 395 

resolution of images must be sufficiently high to limit the occurrence of mixed pixels that hinder the 396 

performance of automated classifications (Belluco et al., 2006; Narumalani et al., 2009). However, 397 

small mixture of species remains a source of difficulty, even with a cm resolution (Michez et al., 398 

2016a). LiDAR data, also used to classify species, can supplement multispectral data with vegetation 399 

height data (Forzieri et al., 2013). They can also be used to segment trees before classifying them 400 

(Dutta et al., 2017). They have also been used as the sole source of data by relating species identity 401 

to the structure of the point cloud (Laslier et al., 2019). 402 
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Table 2. Examples of remote sensing methods used to classify riparian species in different settings and their accuracy 403 

Reference Data Classes Accuracy Comment 

Mature riparian forests 

Fernandes et 

al. (2013a) 

RGB-NIR aerial imagery (0.5 m 

resolution) 

3 types of mature, 

temperate/Mediterranean 

riparian forests 

61 (small) - 

78% (large 

river) 

 

Dunford et 

al. (2009) 

RGB imagery acquired with UAV 

(0.13 m resolution) 

4 tree species (Populus, Salix 

and 2 Pinus) in a riparian 

Mediterranean forest 

91% (for an 

image) - 71% 

(for a mosaic) 

 

Michez et al. 

(2016b) 

RGB-NIR imagery acquired with 

UAV (0.1 m resolution) 

5 tree species in a temperate, 

riparian forested/agricultural 

landscape 

84 (forested) 

- 80% 

(agricultural) 

Multi-temporal 

dataset 

Richter et al. 

(2016) 

Hyperspectral aerial imagery (367 

bands, 2 m resolution) 

10 tree species in a mature 

temperate floodplain forest 

74% (single-

date survey) - 

78% (two-

date survey) 

 

Dutta et al. 

(2017) 

Hyperspectral aerial imagery (48 

bands, 1 m resolution) 

4 groups of tree species in a 

mature, temperate riparian 

forest 

86% LiDAR is used to 

segment the trees 

Laslier et al. 

(2019) 

High density (> 45 points/m²) LiDAR 

point cloud 

8 tree species in a temperate 

riparian agricultural/forested 

landscape 

67%  

Pionneer/species-poor riparian settings 

Macfarlane 

et al. (2017) 

Pansharpened GeoEye-1 imagery 

(RGB-NIR, 0.5 m resolution) 

Pioneer (Salix, Populus) and 

invasive (Tamarix) species in 

an arid context 

80%  

Forzieri et al. 

(2013) 

RGB-NIR aerial imagery (0.2 m 

resolution); hyperspectral aerial 

imagery (102 bands, 3 m 

resolution) and LiDAR data 

(DSM/DTM with 1 m resolution) 

Pioneer (Salix, Populus) and 

invasive (Arundo donax) 

species in a temperate 

context 

93%  
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Invasive species 

Narumalani 

et al. (2009 

Hyperspectral aerial imagery (62 

bands, 1.5 m resolution) 

Tamarix, Elaeagnus 

angustifolia, Cirsium arvense, 

Carduus nutans and mixed 

classes 

74% Mixed classes are not 

well classified and 

decrease overall 

accuracy 

Fernandes et 

al. (2014) 

RGB-NIR aerial imagery (0.5 m 

resolution) 

Arundo donax 97% Choice of the best 

date for aerial survey 

WorldView 2 imagery (8 bands, 2 m 

resolution) 

Arundo donax 95%  

Michez et al. 

(2016a) 

RGB-NIR imagery acquired with 

UAV (0.05-0.1 m resolution) 

Impatiens glandulifera 72% Mixture with native 

species hinders 

accurate classification 

Heracleum mantegazzianum 97%  

Fallopia japonica 68%  

Peerbhay et 

al (2016) 

WorldView 2 imagery (8 bands, 2 m 

resolution) 

Solanum mauritanum 68%  

Miao et al. 

(2011) 

Hyperspectral aerial imagery (227 

bands, 1 m resolution) 

Prosopis glandulosa and 

Tamarix 

92%  

Doody et al. 

(2014) 

WorldView 2 imagery (8 bands, 2 m 

resolution) 

Salix 93%  

These approaches based on high resolution data, although powerful, are mainly used at the local 404 

scale. We showed in the section 3.4.2 that upscaling such data was challenging beyond a few dozen 405 

km of river. However, at this scale, remote sensing would be a particularly useful alternative to field 406 

campaigns or photointerpretation. Species classification methods that are more robust to upscaling 407 

still need to be developed, as indicated by Fassnacht et al. (2016) in a review of forest tree species 408 

classification. 409 

3.5.3. Physiological processes 410 

Medium-resolution satellite images (> 10 m resolution and ≤ 50 m for most studies) were the most 411 

popular type of data used to assess physiological processes of riparian vegetation (100%, 73% and 412 
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54% of studies concerning respectively evapotranspiration, phenology and health status) (Figure 11). 413 

One advantage of using these images in this context is that they are often available as dense series, 414 

which is useful for studying cyclic processes. For example, Wallace et al. (2013) used AVHRR images 415 

(return period < 1 day) to detect variations in the timing of greening up/scenescing of vegetation. 416 

Nagler et al. (2012) used MODIS (return period 1-2 days) to study phases of the life cycle of the 417 

tamarix leaf beetle (Diorhabda carinulata) throughout the year. Cadol and Wine (2017) and Nagler et 418 

al. (2016) used long-term records (several years) of satellite images along with flow data to 419 

investigate relationships between hydrology and physiological processes in riparian vegetation. 420 

Zaimes et al. (2019) used a 27-year time series of Landsat images to study the impact of dam 421 

construction on vegetation health status. Sims and Colloff (2012) used MODIS images over several 422 

years to assess responses of riparian vegetation during and after flooding events. However, the low 423 

resolution often means that pixels in the image aggregate greater heterogeneity in ground features. 424 

Accuracy thus decreases, making it more complicated to study different types of vegetation 425 

separately (Tillack et al., 2014; Cunningham et al., 2018). The health status of vegetation is often 426 

studied with higher resolution data, occasionally with a single image (Tillack et al., 2014; Michez et 427 

al., 2016b; Bucha and Slávik, 2013; Shendryk et al., 2016; Sankey et al., 2016). 428 

 429 

Figure 11. Percentage of studies that used given remote sensing data to describe physiological indicators. 430 



 

29 
 

3.5.4. Vegetation structure 431 

LiDAR appears to be the most used technology for describing vegetation structure features, except 432 

for Large Woody Debris, landscape metrics and vegetation cover (Figure 12). LiDAR appears 433 

therefore to be the most promising technology for describing vegetation structure and related 434 

functions such as shading or surface roughness. The LiDAR signal can penetrate the canopy and the 435 

water surface, and provides information about topography under dense canopies, the internal 436 

structure of canopies and bathymetry.  437 

 438 

Figure 12. Percentage of studies that used given remote sensing data to map structural features of riparian vegetation. 439 

Retrieving simple structural attributes of vegetation (e.g. height, continuity, overhanging character) is 440 

straightforward, since they can be extracted from DTMs, DSMs or CHMs delivered by LiDAR data 441 

producers. These applications have reached an operational level. However, further methodological 442 

developments for processing the 3D point cloud and new generations of full-waveform LiDAR data 443 

must be explored before they can be transfered to management operations. For example, full-444 

waveform LiDAR data have shown promising results in forestry applications (e.g. Koenig and Höfle, 445 

2016), but there are few examples for riparian vegetation (Shendryk et al., 2016). 446 
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LiDAR data have been used in 90% of studies (Figure 12) to map riparian shade, which is a major 447 

parameter that influences stream water temperature (Poole and Berman, 2001). Temperature 448 

regulates the habitat of aquatic species such as the brown trout (Salmo trutta fario L.) (Caissie, 2006; 449 

Georges et al., 2019), and the effect of riparian shade on stream water temperature is strong enough 450 

to affect aquatic communities significantly (Bowler et al., 2012). Field methods used to measure 451 

stream shade are expensive and time-consuming (Rutherford et al., 2018). LiDAR data appears to be 452 

the most promising alternative because they can describe shade at a fine scale (Richardson et al., 453 

2019). Several methods for using LiDAR data to measure riparian shade have been described in the 454 

literature. Richardson et al. (2009) calculated light penetration index raster products as a predictor of 455 

light conditions. LiDAR data can describe shadowing properties using a simple CHM derived from 456 

point clouds (Michez et al., 2017; Loicq et al., 2018; Wawrzyniak et al., 2017). Other studies have 457 

used 3D point clouds to retrieve the finest-scale information about vegetation structure. For 458 

example, Akasaka et al. (2010) used a LiDAR point cloud to estimate biomass overhanging the river, 459 

while Tompalski et al. (2017) used one to model solar shading on a given summer day. Recently, 460 

Shendryk et al. (2016) used full-waveform LiDAR data to estimate the dieback of individual riparian 461 

trees, which was related to their shadowing properties. 462 

LiDAR data have also been used in 61% of studies to map floodplain roughness in a spatially 463 

continuous manner (Figure 12). Forzieri et al. (2012) distinguished two main approaches for mapping 464 

floodplain roughness using remote sensing: classification-derived mapping and hydrodynamic 465 

modeling. In the former, thematic maps of land cover or vegetation classes are produced with 466 

remote sensing data. A roughness coefficient (often Manning’s coefficient) is then assigned to each 467 

class using a lookup table. In the latter, hydrodynamic properties of vegetation are estimated using 468 

an indicator of vegetation structure (e.g. leaf area index, stem or crown diameter, vegetation height). 469 

LiDAR technology has several advantages in this case: it measures structural attributes directly and 470 

can account for complex, multilayered structures (Manners et al., 2013; Jalonen et al., 2015). 471 

Hydrodynamic modeling is often combined with classification-derived mapping, with separate 472 
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modeling of hydrodynamic properties of each vegetation class (Straatsma and Baptist, 2008; Zahidi 473 

et al., 2018). Development of restoration and multi-objective management practices (to promote 474 

ecosystem health while protecting people and goods) has increased demand for models that 475 

represent effects of vegetation on flow more accurately (Rubol et al., 2018). However, research on 476 

hydrodynamic properties of vegetation and how to measure them in the field is ongoing (Shields et 477 

al., 2017). 478 

3.6. Multi-temporality of remote sensing riparian studies 479 

Overall, 54% of studies in the database were multi-temporal (i.e. studies where data acquired at 480 

several dates are used to understand the dynamics of riparian vegetation). RGB/GS aerial images 481 

were used in more than 60% of the multi-temporal studies (Figure 13A), such as those of Dufour et 482 

al. (2015) or Lallias-Tacon et al. (2017). Such studies usually focus on decadal time scales. It can be 483 

explained by the fact that this type of images is simple to use and has been available over a large 484 

extent since the 1950s (Dufour et al., 2012). In most of the countries previously highlighted as active 485 

in riparian research, public administrations have performed long-term and systematic national aerial 486 

surveys for general purposes (e.g. urban planning) that researchers can use at low cost. Most multi-487 

temporal studies that included aerial photographs used photointerpretation to describe riparian 488 

vegetation features. Medium resolution satellite images were often used in multi-temporal studies, 489 

notably for the study of physiological processes (see section 3.5.3). 490 
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491 
Figure 13. Use of remote sensing data in (A) multi-temporal and (B) mono-temporal studies (respectively 54% and 46% of 492 

the studies). 493 

Conversely, more recent technologies (e.g. high-resolution satellite images, LiDAR data) were far 494 

more common in studies that focused on one period than in multi-temporal studies (Figure 13B). For 495 

example, LiDAR and high-resolution satellite data were used in respectively 24% and 18% of mono-496 

temporal studies against 4% and 5% of multi-temporal studies. In mono-temporal studies, the 497 

methods developed to map riparian forest attributes were more complex and mostly automated, 498 

such as supervised classifications (Michez et al., 2016b; Antonarakis et al., 2008) and calculation of 499 

metrics (Riedler et al., 2015). 500 

We predict that diachronic analyses will be renewed by the increasing quality and availability of 501 

remote sensing data. Indeed, data acquired from new sensors, such as LiDAR and hyperspectral 502 

sensors, become more and more available as time series. For example, a LiDAR survey covers the 503 

entire region of Wallonia (southern Belgium) every six years. In France, in the framework of the 504 

Litto3D program, ca. 45,000 km² of coast (bathymetry included) will be regularly covered with a 505 

dense LiDAR survey, in order to monitor sediment dynamics and erosion processes. These new data 506 

provide the opportunity to monitor changes in specific features of riparian vegetation, such as 507 

canopy height, species composition or fine scale physiological processes. In addition, acquisition 508 
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frequency has increased. For example, UAVs can acquire dense time series easily. High-resolution 509 

satellite images such as Sentinel-1 and Sentinel-2 (four bands at 10 m resolution) provide images of 510 

the Earth’s entire surface every few days. More recently, CubeSat constellations provide higher 511 

resolution and higher frequency. For example, the Dove constellation (Planet Labs, Inc., San 512 

Francisco, CA, USA) provides resolution up to 3 m and daily coverage. This increased frequency of 513 

image acquisition provides new opportunities to study rapid riparian vegetation processes, including 514 

intra-annual ones such as phenology and impacts of flood events.  515 

4. Perspectives for riparian vegetation management 516 

The second objective of this review was to discuss how remote sensing approaches developed by 517 

scientists can be used by riparian managers. Research in remote sensing of riparian vegetation often 518 

has an applied perspective, and 38% of the abstracts in our database contained the words 519 

“management”, “restoration” or their derivatives. However, scientific articles usually do not describe 520 

how remote sensing developments are made available to managers, and how they can be 521 

implemented in management situations. 522 

Therefore, we completed our systematic review of the literature with an approach based on expert 523 

judgment, focusing on how remote sensing developments can be valued as operational tools 524 

available to managers. In section 4.1, we selected five examples of applications for riparian 525 

management. For each example, we highlight how remote sensing approaches can be embedded in 526 

operational tools, and how scientific developments (previously discussed in section 3) can contribute 527 

to these tools. In section 4.2, we further discuss the challenges of knowledge transfer from scientists 528 

to managers, illustrated by the five selected examples. 529 

4.1. Examples of near-operational applications 530 

We chose three contrasting fields of applications that we considered as particularly relevant for the 531 

riparian context: eradication of invasive plant species, monitoring ecological integrity at the regional 532 

scale and maintenance of hydraulic conveyance. 533 



 

34 
 

4.1.1. Example 1: Managing invasive plant species at the local scale 534 

Riparian managers often conduct programs to eradicate invasive plant species. These programs 535 

require identifying and locating individuals prior to eradication measures and subsequent monitoring 536 

of invasive cover (i.e. to ensure that practices were effective and that the species do not re-emerge) 537 

(Vaz et al., 2018). These actions can be perfomed with UAVs that combine high spatial resolution 538 

(useful for detecting invasive plant species at an early stage, before they form large clumps) and high 539 

temporal resolution (invasive plant species are often more distinct from the background during a 540 

particular phenological phase, according to Manfreda et al. (2018)). Many studies have shown that 541 

detecting invasive plant species using a UAV could outperform ground surveys in terms of cost, 542 

effectiveness and risk mitigation for operators (Martin et al., 2018; Michez et al., 2016a). The 543 

detection of invasive plants can be performed using photo-interpretation (most simple method) or a 544 

supervised classification (most scalable method) of orthoimages (Hill et al., 2017). In the future, real-545 

time or onboard processing (i.e. analysis of streamed imagery) will enable detection and eradication 546 

steps to be performed at the same time (Hill and Babbar-Sebens, 2019).  547 

In order to implement this approach, river managers must have access to skilled staff who are able to 548 

pilot the UAV and process the images based on the needs of riparian managers. The staff can be 549 

recruited and trained within the organization, or work for an exterior contracting organization. For 550 

invasive species, work is often concentrated in time, and skilled staff must be available at that time. 551 

4.1.2. Examples 2 and 3: Monitoring ecological integrity at the regional scale 552 

Managers of riparian vegetation at the regional or national scale sometimes need information about 553 

the entire river network to assess effects of policies or define management strategies (e.g. to 554 

prioritize which zones should be restored). For example, all EU member states must monitor the 555 

state of riparian ecosystems to comply with the Water Framework Directive (WFD), which promotes 556 

a good health status of European rivers. These assessments have historically been performed during 557 

field visits to sites sampled throughout each river network (Hering et al., 2010; Munné et al., 2003). 558 
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They can include remote sensing techniques in different ways. We briefly present two contrasting 559 

approaches to include remote sensing in ecological assessments: a sampling- and 560 

photointerpretation-based approach using aerial images, or the use of regional LiDAR data to map 561 

riparian structural attributes automatically. 562 

In the first approach (hereinafter referred to as example 2), aerial images can be integrated with 563 

minor adaptations into a traditional field-based, sampling approach. Aerial images are used to target 564 

sampling sites (e.g. where riparian vegetation is present) and to perform certain aspects of the 565 

assessment, especially those that require less specific information at a larger scale. For example, the 566 

Riparian Quality Index, initially developed for Iberian rivers, includes measurements of width, 567 

continuity, strata, composition, regeneration, bank condition, lateral connectivity and substratum 568 

(González del Tánago and García de Jalón, 2011). Width, continuity and strata can be described using 569 

aerial imagery, while other attributes are assessed in the field.  570 

In the second approach (hereinafter referred to as example 3), regional LiDAR data can be used to 571 

assess riparian features in a spatially continuous manner. In this case, the strength of LiDAR data is 572 

that the 3D component is homogenous at the regional scale unlike spectral data (see section 3.4.2). 573 

Moreover, it can extract attributes of the channel even when it is hidden by vegetation. Riparian 574 

attributes are calculated with a high level of automation and can be updated at the same frequency 575 

as the actualization frequency of the LiDAR cover. For example, in Wallonia (southern Belgium), 576 

Michez et al. (2017) used LiDAR and photogrammetric point clouds to map riparian buffer attributes 577 

along 12,000 km of rivers (vegetation continuity, height and overhang; channel width and sinuosity; 578 

and lateral connectivity, indicated by emerged channel depth). The results are meant to be used as 579 

decision making tools by river managers. They are made available on an online platform, where river 580 

managers must plan their management practices for a six year period.  581 

4.1.3. Examples 4 and 5: Improving flood modeling with better estimates of 582 

floodplain roughness  583 
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Many regions of the world must address significant and increasing threats of flooding, as well as the 584 

need to conserve riparian ecosystems (Straatsma et al., 2019). Floodplain vegetation can influence 585 

flood risk by increasing hydraulic roughness (Curran and Hession, 2013). In the Netherlands, where 586 

these challenges are particularly acute, several remote sensing applications integrate riparian 587 

vegetation management more into flood mitigation strategies. 588 

One example (hereinafter referred to as example 4) includes a legal map produced to describe the 589 

maximum roughness of vegetation cover allowed within the floodplains of major Dutch rivers. The 590 

legal map uses a historical situation as a target reference (Rijkswaterstaat, 2014). To support use of 591 

this legal map, Deltares (an independent applied research institute) and the Rijkswaterstaat (the 592 

administration responsible for river management) developed an online vegetation-mapping tool 593 

based on free multispectral, high-resolution satellite images. In the Google Earth Engine 594 

environment, users can easily classify the vegetation cover observed on recent Sentinel-2 images to 595 

ensure that it complies with the legal standard. The tool is available on smartphones and can be used 596 

in the field. Actual vegetation can be compared to the map before each winter, when most floods 597 

occur. The tool provides information about the areas on which management practices should focus, 598 

following a dialogue with the landowners concerned (Penning, 2018).  599 

Modeling approaches are also useful to support decisions. To prevent flood damage in Dutch deltas, 600 

multiple practices, such as raising dikes or removing riparian vegetation, must be implemented in a 601 

coordinated manner. Straatsma and Kleinhans (2018) developed the RiverScape toolbox. This tool 602 

models the effects of riparian cutting on flow using hydrological and spatial data (including a DTM, a 603 

vegetation map and its associated roughness coefficients). The RiverScape toolbox (hereinafter 604 

referred to as example 5) can optimize the location of cutting operations to reduce water levels 605 

during floods. 606 

4.2. Challenges of conveying tools to managers 607 
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The five examples given in the previous section illustrate that remote sensing approaches can be 608 

embedded in operational tools for riparian managers. In this section, we discuss more generally how 609 

scientists and managers can collaborate to produce and implement such tools for the management 610 

of riparian vegetation.  611 

We distinguish three main steps in this process (Figure 14). First, managers and remote sensing 612 

experts must work together to define clear objectives. Second, the development step implies a 613 

technological phase. Third, thorough assessment must be performed for accuracy, reliability and 614 

relevance for managers. Critical thinking is required throughout this process because the choice of a 615 

remote sensing approach is not neutral and has implications for how riparian vegetation is managed.  616 

 617 

Figure 14. Conceptual framework of the transfer of remote sensing tools from scientists to managers. On the graphics to the 618 

right, the horizontal axes represent scientific challenge and exchange degree to be planned between managers and 619 

researchers (from low to high), while the vertical axes represent their dynamics from start to finish. 620 

4.2.1. Identifying the issues/needs of riparian vegetation managers 621 

The first step in implementing a remotely sensed application is to define the needs and objectives of 622 

riparian vegetation managers. Key issues must be addressed, such as the features to be mapped, the 623 

scale of observation, the time required to obtain usable information and the frequency of updating. 624 

Objectives can be refined during the development step, depending on the tradeoffs between costs 625 

and image quality. Nevertheless, thoroughly defining the objectives beforehand is clearly a factor of 626 
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success (Kennedy et al., 2009). In the example 1 (use of UAVs to help eradicate invasive species, 627 

section 4.1.1), it is often easier to detect plants at a particular phenological phase. For instance, H. 628 

Mantegazzianum is easier to detect while flowering, thanks to its characteristic white umbels 629 

(Michez et al, 2016a). While this detection period might be appropriate for scientific purposes, it 630 

does not fully satisfy eradication requirements, since individuals must be removed before they form 631 

fruit, which leaves little time for eradicators to remove them. One must consider that kind of details 632 

when developing operational tools for management. 633 

The thorough definition of objectives is not straightforward. To translate monitoring objectives into a 634 

remote sensing approach requires an explicit space for collaboration between remote sensing 635 

specialists and managers (Kennedy et al., 2009). Managers are often unsure about the operational 636 

potential of remote sensing approaches (Vanden Borre et al., 2011). This is increasingly true, since 637 

new technologies (e.g. satellites, UAVs) seem to be developed very quickly, and even faster than the 638 

applications for using them. Therefore, realistic monitoring objectives must be defined along with 639 

remote sensing specialists. Moreover, field and remote sensing approaches often are not perfectly 640 

interchangeable (Dufour et al., 2012). Challenging the work routine of managers might be required to 641 

fully benefit from remote sensing approaches. The collaborative process should thus be open enough 642 

to consider adapting work routines. Similarly, when relevant, managers and scientists from different 643 

fields must be involved. It is important to combine a variety of scientific perspectives (e.g. geomatic, 644 

landscape planning, riparian ecology) to avoid too narrow or inappropriate solutions. 645 

In many cases at this stage, riparian vegetation is not the center of management operations. Many 646 

studies and management operations focus on the river channel and its hydrological and 647 

geomorphological components. In the example 5 (modeling the impact of management practices on 648 

flood hazard, section 4.1.3), the RiverScape toolbox does not only consider riparian cuttings but also 649 

raising dykes or lowering floodplain level.  650 

4.2.2. Developing applications that use remote sensing data 651 
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Once the objectives have been clearly identified, the next step is to develop the solution to use 652 

remote sensing data to pursue the manager’s objectives. Several stakeholders are involved in this 653 

process. We artificially distinguish “data producers” from the “developers”.  654 

We consider “data producers” the stakeholders who provide rough datasets, such as raw satellite 655 

images or raw ancillary data (e.g. national space agencies such as NASA and CNES, UAV constructors). 656 

While they do not interact closely with riparian vegetation managers, their role is important in the 657 

long run since they set the agenda for the main future developments of new remote sensing 658 

technologies. More directly, they can promote the use of remote sensing data for natural resource 659 

managers by making the data affordable and easier to use, as mentioned in section 3.1. In the 660 

example 4 (floodplain roughness monitoring with Google Earth Engine, section 4.1.3), the 661 

classification of vegetation in the floodplain is made possible by the availability of free temporal 662 

series of Sentinel-2 images. 663 

We consider “developers” the stakeholders who develop tools that use raw remote sensing data. 664 

They may interact more closely with riparian vegetation managers and provide solutions that are 665 

tailored to the latter’s needs through the previously mentioned space for collaboration. The main 666 

stakeholders in this category are academic and research institutes, as well as commercial or non-667 

academic organizations, which use remote sensing data. In theory, the needs identified define the 668 

type of stakeholders involved. For example, if the manager’s issue has scientific relevance (e.g. 669 

understanding the spread of an invasive species not studied before), academics would logically be 670 

involved. If no scientific issue is identified, however, then commercial or non-academic organizations 671 

are more appropriate.  672 

Simple remote sensing approaches can be sometimes be deployed with only minor investment, such 673 

as the monitoring of riparian quality attributes with aerial images described in the example 2 (section 674 

4.1.2). However, the fixed costs of implementing a remote sensing approach are often relatively high 675 

and can be prohibitive for many local managers, even though free solutions increasingly appear on 676 
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the market. These costs include designing the method, deploying the platform or acquiring the 677 

minimum number of satellite images and possibly training personnel. Moreover, performing certain 678 

analyses requires technical skills (e.g. object-based image analysis, machine learning approaches, 679 

LiDAR full waveform analysis). Therefore, remote sensing could have greater relevance when the 680 

area to be mapped is large and/or the operation must be repeated several times (Johansen et al., 681 

2007). The approach deployed in the example 3 (monitoring river networks with LiDAR data) is 682 

efficient because it concerns 12.000 km of rivers and it is to be repeated every 6 years. However, 683 

many stakeholders with different objectives are generally involved, since riparian vegetation covers 684 

large geographical areas. This can reduce the potential for economies of scale, whether for river 685 

managers trying to develop their own expertise or for businesses offering their services. This narrow 686 

market provides relatively limited opportunities for companies to develop specific tools adapted for 687 

this vegetation type. Indeed, we do not expect specific UAV applications to become as developed for 688 

managing invasive species in riparian areas (see example 1 in section 4.1.1) as they are for precision 689 

agriculture.  690 

To address the challenge of attaining “critical mass” for riparian vegetation, we suggest a more 691 

collaborative approach, as described by Steiniger and Hay (2009). Processing routines developed by 692 

remote sensing scientists could be embedded into OpenAccess toolboxes. To benefit a large 693 

audience, these tools must be robust by having little sensitivity to situations that differ slightly from 694 

those for which they were created. For managers to use them, they need to be flexible and integrate 695 

easily with other processing routines or platforms (e.g. GIS platforms) (Vanden Borre et al., 2011). 696 

Finally, they should be based on widely available data: the tool presented in the example 4 697 

(floodplain roughness monitoring using Sentinel images in the Netherlands, section 4.1.3) could 698 

potentially be replicated in many regions since Sentinel-2 images are available worldwide. 699 

OpenAccess tools for river or ecosystem management could be collected in community repositories 700 

along with other tools for river or ecosystem management, along with freely available datasets, as 701 
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suggested by Tomsett and Leyland (2019) or Piégay et al (2020). These tools could form a foundation 702 

that commercial companies, researchers and managers could adapt to specific projects. 703 

4.2.3. Assessment and feedback 704 

The final step in conveying remote sensing tools to riparian managers involves accurate and effective 705 

assessment of the maps produced and the potential for future monitoring. Accuracy involves the 706 

statistical validity of the product, which is the conformity of the map to reference data (e.g. thematic 707 

accuracy, in the case of classification). This step is crucial because it indicates the extent to which the 708 

map can be trusted. Remote sensing specialists usually consider it a central element, although 709 

controversy remains on the reliability of popular accuracy assessment methods (Pontius and 710 

Millones, 2011). Moreover, users must be cautious when reproducing the method at another site, 711 

since accuracy is often assessed for small test sites, and robustness is often not assessed sufficiently 712 

(Fassnacht et al., 2016). 713 

However, the relevance of a remote sensing approach cannot be reduced to its accuracy. The 714 

relevance of the information for management purposes must consider the costs and benefits of 715 

obtaining such information (Kennedy et al., 2009). We argue that temporality should be considered 716 

when addressing this aspect. The true effectiveness of a tool is often observed long after it is first 717 

produced. Moreover, the issue of using remote sensing data in future monitoring (or not) must be 718 

considered. For example, after a restoration action, vegetation must be monitored in the short term 719 

(i.e. after one year) and the long term (i.e. after 5-10 years). Consequently, it is important to define 720 

which stakeholders are involved in this future monitoring (the initial producer of the map, the 721 

managers themselves or an external stakeholder) and which methods will be used. If managers are in 722 

charge of future monitoring, training should be provided. The example 2 (monitoring of riparian 723 

quality attributes with aerial images, see section 4.1.2) only requires basic training in GIS and photo-724 

interpretation. However, for the example 3 (monitoring river networks with LiDAR data), training 725 
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courses that include programming must be provided to river managers, in order to enable them to 726 

update riparian indicators based on future regional LiDAR coverage.  727 

The ease of use of the tools developed and their integration into existing workflows are also central 728 

aspects determining whether a manager will adopt remote sensing tools (Vanden Borre et al., 2011). 729 

We argue that it is crucial to obtain feedback from managers about the real use of the maps and 730 

features produced using remote sensing data. This feedback would help to develop tools that are 731 

more adapted to the managers’ needs. 732 

4.2.4. Issues beyond the remote sensing discipline 733 

The development and use of remote sensing tools to manage riparian vegetation is not only a 734 

technical issue. It raises at least two particular issues that must be addressed in an interdisciplinary 735 

or even transdisciplinary manner. First, the information must be scientifically relevant from a 736 

thematic perspective. In the example 3 (section 4.1.2), LiDAR data make it possible to measure 737 

vegetation height or continuity. However, whether this information is sufficient or relevant to assess 738 

a particular function of riparian vegetation must be discussed with experts from different disciplines 739 

(e.g. ecologists, hydrologists). Second, critical feedback about the use of remote sensing tools is also 740 

needed afterwards. Using these tools to assess environmental patterns and processes or to map 741 

natural resources is clearly not neutral. In some cases, these methods exclude certain stakeholders 742 

who do not have access to the technology, limit the understanding of certain complex phenomena 743 

and generate controversial data (e.g. Fairhead and Leach, 1998; Harwell, 2000; Turner and Taylor, 744 

2003; Rajão, 2013). In the example 5 (section 4.1.3), the RiverScape tool helps managers finding the 745 

best location for practices that aim to reduce flood hazard. However, the tool is not meant to be 746 

used alone to make decisions. Within a larger governance system, it can help stakeholders find a 747 

common ground through providing a large scale perspective, and through highlighting tradeoffs 748 

between stakes and stakeholders (Straatsma et al, 2019). More generally, sociological and cultural 749 

effects must be understood, and adverse effects of using remote sensing for natural resource 750 
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management should be properly handled. Social scientists should be involved throughout the 751 

process to address these issues. 752 

5. Conclusion 753 

We found a substantial body of literature in which remote sensing was used to study riparian 754 

vegetation. Remote sensing became considerably popular at the turn of the millennium, but its 755 

relative use in riparian vegetation studies remains limited (ca. 4%), and mostly in developed 756 

countries. In order to increase the user base, scientists can develop approaches that are robust to 757 

slight context changes and that take advantage of widely available data. These approaches can be 758 

embedded in Open Access or easy-to-use tools. The production, dissemination and use of large or 759 

global datasets concerning rivers, floodplains or land cover should also be promoted. 760 

Development of new sensors and platforms has improved remote sensing approaches. However, 761 

most studies that use newer sensors and platforms focus on the local-to-river segment scale. Large-762 

scale studies are based on medium-resolution satellite images. Algorithms are needed to process 763 

high-resolution data that is robust to upscaling. Spectral heterogeneity makes upscaling the study of 764 

species composition using spectral data more challenging than upscaling the study of vegetation 765 

structure using 3D data. 766 

Riparian vegetation is highly dynamic, and the multi-temporal nature of riparian remote sensing 767 

studies is central (54 % of studies are multi-temporal). To date, diachronic analyses have relied 768 

essentially on aerial photographs, and it is clear that these data will remain popular given their 769 

availability and simplicity of use. However, other data time series become increasingly available. 770 

Scientists should test using these data to study complex and subtle phenomena, beyond changes in 771 

the extent of riparian forests or plant succession. For example, temporal series of LiDAR data should 772 

be tested to map subtle changes in vegetation structure such as growth, regeneration or senescence. 773 

Higher resolution or more frequent satellite images could help understand physiological or 774 
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community responses of riparian vegetation to environmental stress over large extents, yet at a finer 775 

spatial or temporal scale than before. 776 

It is often suggested that remote sensing approaches can contribute to management of riparian 777 

vegetation by providing objective, continuous and up-to-date data for a large area. This contribution 778 

was difficult to determine via a review of the scientific literature, and an extensive review of the gray 779 

literature could provide further insight into this subject. However, there are many examples of 780 

operational or near-operational applications, not only with aerial images but also with more recent 781 

data (LiDAR, UAVs and satellite images). We suggest that a collaborative effort is required to make 782 

remote sensing approaches more robust and available, both in terms of cost and ease of use. 783 

However, implementing a remote sensing approach in actual management context still requires a 784 

tailored approach. It must include managers and scientists (thematicians and remote sensing 785 

scientists), be structured around well-defined objectives and include sufficient feedback. 786 
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