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Introduction: Myocardial remodeling due to large atrial septum defect (ASD) is

macroscopically characterized by dilation of the right-sided cardiac cavities secondary

to volume overload, the cellular mechanisms of which are not yet understood. We

postulated that inflammation, fibrosis, and cell death are actors of right atrial remodeling

secondary to ASD.

Patients and Methods: In 12 children with large ASD (median age: 63 months),

expression of genes coding for proteins involved in the response to cell stress

and -protection, inflammation, growth and angiogenesis, fibrosis, and apoptosis was

assessed by RT-PCR in right atrial myocardial biopsies taken during cardiac surgery. The

presence of cytokines in myocardial cells was confirmed by immunohistochemistry and

effective apoptosis by TUNEL assay.

Results: In all patients investigated, a cellular response to early mechanical stress with

the initiation of early protective mechanisms, of inflammation (and its control), -growth,

and -angiogenesis, of fibrosis and apoptosis was present. The apoptotic index assessed

by TUNEL assay averaged 0.3%.

Conclusions: In children with large ASD, macroscopic right atrial remodeling relates to

cellular mechanisms involving the expression of numerous genes that either still act to

protect cells and tissues but that also harm as they initiate and/or sustain inflammation,

fibrosis, and cell death by apoptosis. This may contribute to long term morbidity in

patients with ASD.

Keywords: myocardial remodeling, congenital heart disease, atrial septum defect, inflammation, growth, fibrosis,

apoptosis

INTRODUCTION

Atrial septal defect (ASD) is a common congenital heart disease responsible for inter-atrial
left-to-right shunt and for volume overload of the right cardiac cavities and their
dilation. Hemodynamic overload initiates myocardial remodeling that comprises changes
in tissue properties secondary to the activation of different signal cascades such as
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inflammatory-, growth- and death signaling pathways.
Consecutive cardiomyocyte loss due to cell death or phenotype
transformation in cardio-myofibroblasts ends up in myocardial
fibrosis and finally in systolic and/or diastolic myocardial
dysfunction. In patients with ASD, right atrial remodeling may
elicit late supra-ventricular arrhythmias.

Mechanisms of myocardial remodeling are complex and have
principally been studied in models of ischemic myocardial injury
or pressure overload, in particular in systemic hypertension
(1). In infants, mechanical stress related to pressure overload
of the right ventricle leads to myocardial expression of pro-
inflammatory cytokines mainly via the activation of p38MAPK
signaling (2). Nevertheless, little information is available about
the effect of volume overload on the pathophysiology of
myocardial remodeling.

This study was therefore designed to investigate mRNA
expression of genes coding for factors involved in mechanical
stress (ANF), cell protection [c-Fos, Heat Shock Protein (HSP)-
70, HSP-90], inflammation [Tumor necrosis factor (TNF)-
α, Interleukin (IL)-1β, IL-6, IL-10], growth and angiogenesis
[Cardiotrophin (CT)-1, Hypoxia Inducing Factor (HIF)-1α,
Vascular Endothelial Growth Factor (VEGF), Insulin-Like
Growth Factor (IGF)-1], fibrosis of the extracellular matrix
[Tissue Growth Factor (TGF)-β, the amino-terminal peptide
of Type III procollagen PIIIP, Collagen III], and regulation of
apoptosis (Fas Ligand, Bak, Bcl-xL) in children with volume
overload of the right atrium due to atrial septal defect.

PATIENTS AND METHODS

According to the current recommended strategy, the large
majority of patients undergo nowadays percutaneous- instead
of surgical ASD closure. Because only few patients are still
scheduled for surgical closure we recruited those matching the
criteria for entering the study from our two institutions where
the myocardial samples were processed and analyses performed.
For that reason, data of both patient groups were not pooled but
presented separately.

Inclusion criteria were (1) pre-pubertal state in children
aged <10 years of age; (2) the presence of an isolated ASD
with hemodynamic relevant left-to-right shunt requiring closure.
Exclusion criteria were (1) syndromic affection; (2) genetic
disorder; (3) infectious or inflammatory state.

The ethics committees of the University Hospital Aachen
(Institution I) and the University Hospital Leuven (Institution II)
gave their agreement, respectively. Parents gave their informed
and written consent. A total of 12 children were enrolled, divided
into 2 groups according to the institution of origin. Group 1,N =

7 (females, n= 5), Institution I, median age: 78.8 months; Group
2, n= 5 (females, n= 5), Institution II, median age: 49.6 months.

All patients had an ASD type ostium secundum but one who
had an ASD type superior sinus venosus. All patients showed
significant left-to-right shunt as shown by clinical examination
(hyperactivity of the right ventricle, systolic murmur of a
relative pulmonary stenosis with or without diastolic tricuspid
rumble), electrocardiography (right ventricular hypertrophy)

and echocardiography (enlarged right atrium, -right ventricle,
and -pulmonary artery). Left-to right shunt was calculated by
applying the Fick formula during heart catheterization that was
performed under general anesthesia at least 4 weeks before
surgery in 5 patients of group I who were initially scheduled for
interventional ASD closure.

Sampling of Myocardial Biopsies
In all cases and in both institutions, conventional general
anesthesia consisted of midazolam, fentanyl sulfate, and
pancuronium bromide. A biopsy (3 mm3) was taken from
the right atrial appendage immediately before institution of
cardiopulmonary bypass, during right atriotomy.

Biopsies were immediately snap-frozen in liquid nitrogen and
stored at−80◦C until processed.

Quantitative Real Time Reverse
Transcriptase-Polymerase Chain Reaction
(RT-PCR)
In group I, RNA isolation was performed with RNeasy R©

Micro-Kit (QIAGEN, Hilden, Germany), according to the
manufacturer’s recommendation.

Isolated RNA was reverse transcribed to complementary
DNA (cDNA) using iScriptTM cDNA Synthesis Kit (BioRad,
Germany). A standard for each primer set was generated for
quantitative real-time reverse transcription-polymerase chain
reaction (qRT-PCR) by cloning PCR products in pBluescript
and the identity was verified by sequencing. A 2 µl cDNA
sample was incubated with 20 µl QuantiTect Mix containing
fluorescence dye SYBR Green (QIAGEN Hilden R© Germany)
and 0.6 µmol/l of each primer pair. PCR amplification was
performed after initial denaturation at optimized annealing
temperatures for each primer pair using MJ Research Opticon
2 (Biozym). Melting curves were acquired by stepwise increase
of the temperature from 55◦ to 95◦C. Threshold cycles (CTs) of
real-time PCR curves were determined by Opticon R© Monitor
software (Biorad, Hercules, CA). The difference of the CTs (1CT)
of targets and 18S-RNA housekeeping control gene reflected the
amount of target mRNA in each sample. Target mRNA was
quantified according to standard curve and normalized to levels
of 18S-RNA.

In Group II RNA was also isolated by using the RNeasy
kit according to the manufacturers recommendations (QIAGEN
Inc., Hilden, Germany). Total mRNA concentration was assessed
by photometric analyses by measuring absorbance at 260 nm,
using a NanoDrop 2000-C apparatus (Thermo Scientific,
Wilmington, DE, USA).

RNA (2 µg) was reverse-transcribed to complementary
deoxyribonucleic acid (DNA) with random hexamers. Two
microlitre of cDNA samples were incubated with 20 µl of Quanti
Tect Mix containing fluorescing SYBR Green (Qiagen GmbH,
Hilden, Germany) and in each case 0.6µl of the primer pairs. The
real-time cycler conditions consisted of an initial activation PCR
step of 15min at 95◦C, and then 40 cycles of 15 s at 94◦C, 30 s at
55◦C, and 30 s at 72◦C. Three replicas were performed for each
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TABLE 1 | RT-PCR primer pair sequences in group I and in group II.

Genes RT-PCR Primer pair sequence

Group 1 Group 2

ANF AGTTCAGAGGATGGGCACAC

ATCACAACTCCATGGCAACA

c-Fos TTTATAGTGGGCGGAAGTGG

ACGTCCTGGACAAAGGTCAC

HSP-

70

CCGAGAAGGACGAGTTTGAG

AATCTTGGAAAGGCCCCTAA

AACTACAAGGGCGAGAACCG

GTC

GATGATCCGCAGCACGTTC

AGA

HSP-

90

CGCATGAAGGAGACACAGAA

TCCCATCAAATTCCTTGAGC

TGCGGTCACTTAGCCAAGATG

GAAAGGCGAACGTCTC

AACCT

TNF-α GGAGCCAGCTCCCTCTATTT

GGCTACATGGGAACAGCCTC

IL-1β CTGTCCTGCGTGTTGAAAGA

TTCTGCTTGAGAGGTGCTGA

IL-6 AACCTGAACCTTCCAAAGA

TGG

TCTGGCTTGTTCCTCACTACT

IL-10 CTGTCCTGCGTGTTGAAAGA

TTCTGCTTGAGAGGTGCTGA

CT-1 AACTCTTGGACCCTCCTCGT

TAAGGAAGCCAGCCAAGAGA

CACTTGGAGGCCAAGATCC

TCTCCCTGGAGCTGCACAT

HIF-1α TGATGACCAGCAACTTGAGG

TTGATTGAGTGCAGGGTCAG

GCACAGGCCACATTCACGTA

TAT

GGTTCACAAATCAGCACCA

AGC

VEGF CCCACTGAGGAGTCCAACAT

TTTCTTGCGCTTTCGTTTTT

CTGTCTAATGCCCTGGAGCC

ACGCGAGTCTGTGTTTTTGC

IGF-1 CAGCCCCCATCTACCAACAA

GCACTCCCTCTACTTGCGTT

TGF-β CACCATCGAGAGTTCCGGTT

AAGCGTTCCCGGATGTAGTC

PIIIP TAAACAACTGGGTGCCTTCC

CAGCAAGTCCTTCCCAAGAG

Collagen

III

CCTTCGACTTCTCTCCAGCC

TTTCGTGCAACCATCCTCCA

Fas-L GATGGAGGGGAAGATGATGA

TGGAAAGAATCCCAAAGTGC

Bak GGGTCTATGTTCCCCAGGAT

GCAGGGGTAGAGTTGAGCAG

GAGGATCTACAGGGGA

CAAGT

CTGAGTGGGAGCCCAGTTTC

Bcl-xL GGCTGGGATACTTTTGTGGA

GGGAGGGTAGAGTGGATGGT

GGTGAATGGAGCCACTGCG

CTTTACTGCTGCCATGGGGA

18sRNA AAACGGCTACCACATCCAAG

CCTCCAATGGATCCTCGTTA

Actin AGAGCTACGAGCTGCCTGAC

AGCACTGTGTTGGCGTACAG

analyzed sample, and positive and negative controls were tested
on each plate.

SYBR Green served as the DNA dye to quantify the PCR
products. Expression was normalized to levels of actin-mRNA
and calculated with 2−1CT. Primers used in both groups are listed
in Table 1.

TABLE 2 | Demographic and clinical patient data in group I and in group II.

Group 1 Group 2

n = 7 n = 5

Age (months) 78* (6) 53* (6.5)

Gender

Female (n) 5 5

Male (n) 2 0

ASD ostium secundum (n) 6 5

ASD sinus venosus (n) 1 0

Left-to-right shunt (%) 63 (15.4)** –

Right atrial pressure (mmHg) 7 (4.75) –

Results are shown as number or as median value (interquartile range).

ASD, atrium septum defect.

*P < 0.05 between both groups.

** n = 5.

TABLE 3 | Intra-myocardial concentrations of mRNA coding for target genes in

group I and group II.

Gene-mRNA Group 1 Group 2

N = 7 N = 5

ANF 89.646 ± 2.92

c-Fos 51.934 ± 2.50

HSP-70 86.65 ± 2.68 0.36 ± 0.74*

HSP-90 105.54 ± 2.51 4.20 ± 3.56*

TNF-α 0.43 ± 0.08*

IL-1β 0.69 ± 0.83

IL-6 3.22 ±1.79*

IL-10 1.19 ± 0.16

CT-1 61.98 ± 2.00 0.54 ± 0.18*

HIF-1α 77.97 ± 3.09

VEGF 57.629 ± 2.28 3.24 ± 2.58*

IGF-1 0.70 ± 0.48*

TGF-β 10.8 ± 0.22

Fas-L 37.094 ± 1.67

Bak 49.57 ± 1.80 0.81 ± 0.29*

Bcl-xL 72.13 ± 2.03 3.98 ± 193

PIIIP 67.98 ± 1.98

Collagen III 0.95 ± 0.41*

Concentrations are normalized for 18s in group I and for actin in group II.

*Indicates n = 4.

Immunohistochemistry and TUNEL Assay
In group II, frozen sections of 4µmwere mounted on polylysine-
coated glass slides. Sections were rehydrated through graded
ethanol (100% for 5min, ×2; 95% for 5min, 80% for 3min;
70% for 3min; ddH2O for 5min). Epitope unmasking was
achieved by incubating the sections in a humidified chamber with
proteinase K (20 µg/ml; Sigma) for 15min at room temperature.
Endogenous peroxidase activity was then blocked by incubating
the sections in a humidified chamber for 15min at 23◦C in 3%
H2O2 and incubated for 40min at 23◦C with blocking solution
(PBS + 10% serum). The sections were then incubated at 23◦C
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for 1 h with either anti-CT-1 (MAB2602. R.D Systems) (5µg/ml)
and or anti-IL1β (ab8320. Abcam) washed in PBS (PBS, Tween
20; 5min. ×3), and incubated further at 23◦C for 1 h with
secondary antibody (VC001-050 R.D Systems and ab150113,
Abcam respectively). After washing in PBS (5min. x 3), the
sections were counterstained with hematoxylin for 2min and
DAPI for 1min respectively. After dehydration through graded
ethanol solutions and xylenes, glass coverslips were mounted on
slides in Permount (Sigma).

TUNEL assay was performed with the in situ Cell Death
Detection Kit, TMR red (TUNEL; 6= 12156792910 Roche
Applied Science) according to manufacturer’s instructions.

Statistical Analysis
Results are expressed as median value and interquartile range or
as mean value ± SEM. Correlation of independent parameters

was assessed by the Pearson correlation test. A p < 0.05
was considered significant. Data were analyzed with statistical
Package for Social Science (IBM SPSS Software 20.0).

RESULTS

Demographic and clinical patient data are summarized in
Table 2. Results of mRNA expression measured in both groups
were not pooled but analyzed separately. Table 3 summarizes
mRNA concentrations of the genes of interest measured in group
I and/or in group II. In all patients tested, expression of mRNA
coding for following genes was detected: ANF as a marker of
mechanical stress, c-Fos, HSP-70, HSP-90, the immediate-early
genes providing protective mechanisms, the pro-inflammatory
TNF-α, IL-1β, IL-6, the growth- and angiogenesis controlling
factors CT-1, HIF-1α,VEGF, IGF-1, of those regulating apoptosis

TABLE 4 | Exemplary correlations between expression of mRNA coding for protective proteins, growth factors, and regulators of apoptosis that were present in both

groups.

CT-1 VEGF HSP70 HSP90 BAK

Group I Group II Group I Group II Group I Group II Group I Group II Group I Group II

CT-1 – – R = 0.94 R = 0.95 R = 0.98 R = 0.97 R = 0.93 R = 0.99

p = 0.002 p = 0.04 p = 0.000 p = 0.024 p = 0.002 p = 0.002

VEGF R = 0,94 R = 0,95 – – – – R = 0.93 R = 0.99 R = 0.90 R = 0.96

p = 0.002 p = 0,04 p = 0.002 p = 0.006 p = 0.006 p = 0.04

HSP70 – – – – – – R = 0.794 R = 0,963 – R = 0.952

– p = 0.033 p = 0.037 p = 0.048

HSP90 R = 0.98 R = 0.97 R = 0.93 R= 0,99 R=0,79 R = 0.96 – – R = 0,94 R = 0.98

P = 0.000 p = 0.024 p = 0.002 p = 0.006 p = 0,033 p = 0.037 p = 0.002 p = 0.023

BAK R = 0.93 R= 0.99 R = 0.90 R = 0.96 – R = 0.95 R = 0.94 R = 0.98 – –

p = 0.002 p = 0.002 p = 0.006 p = 0/04 p = 0.048 p = 0.002 p = 0.023

R, Pearson correlation coefficient.

P < 0.05 is considered significant.

FIGURE 1 | Plot chart showing the positive correlation between myocardial expression of CT-1-mRNA and VEGF-mRNA in group I (n = 7) (A) and in group II (n = 4)

(B). Pearson correlation coefficient co-efficient: 0.94, p = 0.002 in group I and 0.95, p = 0.04 in group II, respectively.
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(pro-apoptotic Fas-L and Bak, anti-apoptotic Bcl-xL) or fibrosis
of the extracellular matrix (TGF-β, PIIIP, Collagen III). mRNA
coding for the anti-inflammatory IL-10 was detected in 5 out of
the 7 patients of group II. In all patients, the expression of Bcl-
xL-mRNA was higher than that of Fas-L-mRNA or Bak-mRNA.
Expression of any of the target mRNAs tested was not correlated
with patient age.

In patients in whom cardiac catheterization was
performed before surgery, the amount of left-to-
right shunt and mean right atrial pressure were not
correlated with the mRNA-expression of genes of
interest, respectively.

In each patient group, expression of mRNA coding for genes
implicated in cell protection, growth, angiogenesis, apoptosis
but inflammation generally correlated with each other (Table 4,
Figures 1–5).

In all patients tested of group II, mRNA expression of TGFβ
negatively correlated with that of Bcl-xL (Pearson correlation
coefficient:−0.92, p= 0.029).

Immunohistochemistry and TUNEL Assay
Immunohistochemistry showed the presence of IL 1β and CT-1
in right atrial cardiomyocytes in all patients tested (Figures 6, 7).

TUNEL positive cardiomyocytes were clearly detected in all
patients with ASD (Figure 8). Apoptotic index, that is, the
number of TUNEL-positive cardiomyocytes was 0.3%.

DISCUSSION

In this series, we assessed mRNA-expression of genes implicated
in myocardial remodeling in the volume overloaded RA of
children with large ASD.

FIGURE 2 | Plot chart showing the positive correlation between myocardial expression of CT-1-mRNA and HSP90-mRNA in group I (n = 7) (A) and in group II (n = 4)

(B). Pearson correlation coefficient: in group: p = 0.000, and group II, p = 0.024, respectively.

FIGURE 3 | Plot chart showing the positive correlation between myocardial expression of CT-1-mRNA and BAK-mRNA in group 1 (n = 7) (A) and in group 2 (n = 4)

(B). Pearson correlation coefficient: 0.93 in group 1, p = 0,002 and 0.99 in group 2, p = 0.002, respectively.
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In all patients tested, the mRNA expression pattern indicated
a cellular response to mechanical stress, the initiation of
early protective mechanisms, of inflammation, growth, and
angiogenesis, of fibrosis and apoptosis. The presence of
the non-constitutive inflammatory cytokine IL-1β and of
the major growth factor CT-1 in the cardiomyocytes was
confirmed at protein level by immunohistochemistry and the
execution of apoptosis by the detection of DNA degradation
products, respectively.

The expression of ANF-mRNA in our patients reflects the
immediate biological response to mechanical stress of the volume
overloaded RA-myocardium secondary to the large inter-atrial
left-to right shunt. Accordingly, several studies have reported
increased intra-myocardial and also circulating levels of ANF

FIGURE 4 | Plot chart showing the positive correlation between myocardial

expression of VEGF-mRNA and HIF-1α-mRNA in patients of group 1 (n = 6).

Pearson correlation coefficient = 0.95, p = 0.004.

in patients with ASD (3). ANF possesses well-known biological
effects beneficial to the overloaded cardiac cavities and may
prevent pathological remodeling (4). Our study shows that
other protective mechanisms are also initiated in the volume
overloaded RA-myocardium. Indeed, mRNA expression of early
markers of cellular stress such as c-fos, HSP-70 and HSP-90,
that are well-known to play cyto-protective roles in numerous
situations of injury (5, 6). c-Fos is a proto-oncogen that is
part of Activator Protein-1, a transcription factor complex
involved in cell survival and cell differentiation (5). It takes
also part in the complex interplay underlying extra-cellular
matrix (ECM) regulation by TGF-β and seems to be essential
for the induction of the tissue inhibitor of metalloproteinases
(Timp)-1 gene expression (7). Beside this, HSP70 and HSP-
90 are molecular chaperones that play an important role in
maintaining adequate protein folding in stressed cells and

FIGURE 6 | Exemplary immunocytochemistry study showing the presence of

IL1β (green fluorescent staining) in cardiomyocytes of the right atrial

myocardium. Magnification: x 200. The scale in the lower right corner

represents 40µm.

FIGURE 5 | Plot chart showing the positive relationship between the expression of PIIIP-mRNA and BAK-mRNA (A) and between PIIIP-mRNA and Bcl-xL-mRNA (B)

in patients of group 1 (n = 7). Pearson correlation coefficient: 0.93, p = 0,003 and 0.90, p = 0.006, respectively.
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FIGURE 7 | Exemplary immunocytochemistry study showing the presence of

CT-1 (blue staining) in cardiomyocytes of the right atrial myocardium.

Magnification: x 400.

FIGURE 8 | Exemplary positive TUNEL staining (pink fluorescent staining) in

the right atrial myocardium of one patient with ASD. Magnification: x 400.

prevent apoptosis (6). HSP90 has been recognized to be involved
in adaptive ventricular myocardial remodeling by modulating
Angiotensin II-mediated hypertrophy via the nuclear factor
(NF)kB pathway (8). In our patients, expression of HSP90-
mRNA was correlated with that of mRNA coding for genes
implicated in cell growth, angiogenesis, apoptosis and fibrosis,
suggesting that chaperone proteins might be involved in RA-
myocardial remodeling secondary to large ASD. In our study,
all patients tested showed right atrial expression of mRNA
coding for TGFβ, the major promotor of tissue fibrosis (9) the
levels of which increase in the pressure-overloaded myocardium
during hypertrophic growth (10). Furthermore, they showed also
expression of mRNA coding for PIIIP, a marker of collagen-3
production, the serum levels of which are elevated in children
with congenital cardiac disease (11), reflecting the activation
of fibrosis-inducing pathways in the RA myocardium of our
patients with ASD. Inflammatory cytokines are well-recognized
to play a central role in inducing and controlling fibrogenesis (12)
and participate in the structural changes that are characteristic
for adaptive remodeling such as cardiomyocyte hypertrophy

and for maladaptive events such as cardiac dilatation and heart
failure (13).We detectedmRNA coding for the pro-inflammatory
cytokines TNF-α, IL-1β, and IL-6 and confirmed the presence
of IL-1β at protein level in the RA myocardium of our patients.
These cytokines are not constitutively expressed in the normal
heart (14). This is in line with our previous observations showing
that hemodynamic overload leads to myocardial up-regulation
of pro-inflammatory cytokines by activating the NFkB and p38-
MAPK pathways (2). This latter plays also a crucial role in cell
differentiation, growth, and apoptosis (15). Besides its cardio-
depressive effect TNF-α produces structural changes in the
myocardium including cardiomyocyte hypertrophy, ventricular
dilatation, rapid collagen decrease and loss of interstitial
collagen network organization (16). TNF-α produced by stressed
or injured cardiomyocytes initiates inflammatory phenotype
transformation of cardiac fibroblasts that in turn express IL-
1β and IL-6 (17, 18). IL-1β is an early pro-inflammatory
cytokine also up-regulated in response to mechanical stress. It
participates to adaptive cardiomyocyte hypertrophy by inducing
IGF-1 (19). IL-1β promotes a matrix-degrading phenotype in
cardiac fibroblasts with up-regulation of the synthesis of matrix
metalloproteinases and plays an important role in extracellular
matrix organization in response to mechanical or ischemic stress
(20–22). Beside the expression of pro-inflammatory genes, the
majority of our patients tested showed expression of IL-10 at
mRNA level, suggesting the presence of a myocardial anti-
inflammatory response in this situation. IL-10 belongs to the
IL-10 cytokine family. It suppresses TNF-α and IL-1β synthesis
by activating one of its target genes, the Suppressor of Cytokine
Signaling (SOCS)-3, thus preventing from collagen synthesis by
activated myofibroblasts (23) and from myocardial fibrosis (24).

IL-6 is the major regulator of the systemic inflammatory
response that plays a protective role in the acute injured
myocardium by preventing apoptosis, while it depresses
contractility in chronically exposedmyocardium (25). In amouse
model of chronic β-adrenergic stimulation, its secretion by
activated fibroblasts leads to myocyte stimulation and finally to
myocardial hypertrophy (26). In our series, myocardial mRNA-
IL-6 expression suggests a stimulating effect of TNF-α and IL-1β
on it and the role of IL-6 in the remodeling process (25, 27).

CT-1 is another member of the IL-6 family of cytokines
and the most potent growth factor involved in myocardial
hypertrophy (28). In recent studies, a role of CT-1 in
extracellular matrix organization has been suggested (29). After
myocardial infarction, CT-1 expressed in infarcted tissue has
paracrine effects on neighboring fibroblasts of the adjacent
viable myocardium. As a consequence, fibroblasts proliferate,
and migrate to restore cellularity of the injured myocardium
(30). This proliferative, migratory phenotype counterbalances the
myofibroblast phenotype induced by TGF-β and Angiotensin
II (31, 32). However, CT-1 may also mediate myocardial
dysfunction as it has been suggested in our previous study where
myocardial CT-1-expression in patients with cyanotic cardiac
defect correlated with Troponin-I degradation (32). Besides its
autocrine and paracrine effects, CT-1 increases the synthesis of
HSP, in particular HSP 90 via the CT-1/ p42/44MAPK/NFkb-
IL-6 signaling pathway (33). Our results showing a significant
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relationship between CT-1-mRNA and HSP90-mRNA in all
patients of both groups suggests that this pathway might be
implicated in the event cascade of RA myocardial remodeling in
patients with ASD.

The presence of IGF-1-mRNA in the RA myocardium of our
patients indicates a possible protective role against fibrogenesis
as it has been shown in an animal model of partial IGF-1
deficiency (34).

Mechanical stretch due to increased wall expansion activates
several pathways as discussed above, among others stretch-
activated channels and the phosphatidylinositol 3-pathway.
These latter are responsible for the increase of the HIF-1α subunit
of HIF-1 that initiates in turn the expression of its target gene
VEGF via the activation of the ERK /c-Fos signaling pathway
(35). The presence of HIF-1α-mRNA and VEGF-mRNA in the
RA of our patients suggests an implication of these pathways
in the biological response to volume overload of the RA. The
correlations we found between levels of VEGF-mRNA and
levels of mRNA coding for HSP90, CT-1 and Bak, respectively,
reflect the complex interplay between protective- and growth
pathways and programed cell death in this clinical model of
volume overload.

Myocardial apoptosis has been documented in response to
a variety of cardiac stresses, including ischemia-reperfusion
injury, and heart failure (36–38). In our series, genes regulating
apoptosis were expressed at mRNA level in the RA myocardium
and apoptotic bodies were detected at TUNEL staining. This
is concordant with a previous study demonstrating increased
apoptosis in the RA of patients with ASD, most of them being
adults (39). However, in our patients, concentrations of Bcl-xL-
mRNA were higher than those of Bak and FasL and negatively
correlated with those of TGF-β-mRNA, suggesting that anti-
apoptotic signals might predominate over pro-apoptotic ones
in preschool children with ASD and prevent fibrosis. In this
series, we were not able to provide any correlation between
indicators of right atrial stretch such as the amount of left-
to-right shunt or right atrial pressure measured during cardiac
catheterization and the expression of mRNA coding for genes
involved in myocardial remodeling. Given the complexity
of the interactions between the different signaling pathways
involved (12, 23), such a linear correlation is hardly to
be expected in human tissue and must be tested in an
experimental setting.

Cardiac surgery itself is a source of inflammatory signaling
as we have demonstrated previously (40). However, given that
the myocardial samples were taken before atrial cannulation
and initiation of cardio-pulmonary bypass, we assume that the
systemic inflammatory response that is not yet measurable by an
elevation of circulating levels of pro-inflammatory cytokines at
this stage (41) did not impact the intra-myocardial expression of
the genes of interest in the present work.

Limitation Section
The small number of patients included in this descriptive
study is a limitation factor as is the absence of correlation

between the expression pattern of mRNA coding for genes
involved in myocardial remodeling and clinical outcome
variables. The rarity of surgeries for ASD closure motivated
us to include patients the myocardial tissue of whom was
processed in 2 different institutions. Their results were therefore
not pooled. The fact that similar results were obtained in
both patient groups may however be considered strength of
the study.

CONCLUSION

Our results show that in children with ASD, myocardial
remodeling of the RA involves inflammatory-, growth-
fibrogenic- and apoptotic signaling pathways that are likely
to be activated in response to cellular stress. Besides the
expression of harmful mediators such as pro-inflammatory
cytokines, protective mediators are also expressed that may
delay the apparition of irreversible tissue remodeling. With
this respect, the predominance of anti-apoptotic over pro-
apoptotic regulators in children could be understood as an
intrinsic myocardial protection allowing lesion reversibility
after ASD-closure.
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