



# The Effect of Failure Criteria on Risk-based Inspection Planning of Offshore Wind Support Structures

MS-2 Life-Cycle Performance Assessment of Civil Engineering Systems

### Nandar Hlaing, Pablo G. Morato & Philippe Rigo

Naval & Offshore Engineering, ArGEnCo, University of Liege, 4000 Liege, Belgium

### Peyman Amirafshari & Athanasios Kolios

Department of Naval Architecture, University of Strathclyde, Glasgow G4 0LZ, United Kingdom

#### Jannie S. Nielsen

Department of the Built Environment, Aalborg University, 9220 Aalborg, Denmark





- Introduction Risk-based Maintenance Optimization
- Failure Criteria
- Risk-based Inspection Framework
- Application to a Tubular Joint
- Conclusion Discussion and Future Work

Risk-based Maintenance Optimization





Source: https://i.ytimg.com/vi/ixQQiGvBK6U/ma xresdefault.jpg





Conventional through-thickness criteria

Failure Assessment Diagram (for redundant structures)









# Simplified Failure Assessment Diagram criterion (JCSS 2011)

Limit state:

$$g(t) = R_f - \sqrt{K_r^2(t) + L_r^2(t)}$$

Assessment point:

$$K_r = \frac{K_I}{K_{mat}} + \rho$$
;  $L_r = \frac{\sigma_{ref}}{\sigma_Y}$ 











- Decision Rule: Heuristic rules
  - Equidistant inspections
  - To identify optimal interval and optimal failure probability threshold. • Constant failure probability threshold
- Repair if the inspection outcome is "Detection" • Decision Rule:
- Example: Inspection at every 5 years, Repair if the inspection outcome is "Detection"









- Design (Fatigue model SN curves)
- Miner's Rule:

$$\boldsymbol{D} = nT_d \left[ \frac{\boldsymbol{q}^{m_1}}{\boldsymbol{a_1}} \Gamma\left(1 + \frac{m_1}{h}; \left(\frac{S_1}{\boldsymbol{q}}\right)^h\right) + \frac{\boldsymbol{q}^{m_2}}{\boldsymbol{a_2}} \Upsilon\left(1 + \frac{m_2}{h}; \left(\frac{S_1}{\boldsymbol{q}}\right)^h\right) \right]$$

- Inspection (Fracture mechanics model crack growth)
- Paris Law:

$$\frac{d\boldsymbol{a}}{dn} = \boldsymbol{C}_{\boldsymbol{a}} (\boldsymbol{\Delta \sigma} \boldsymbol{Y}_{\boldsymbol{a}} \sqrt{\pi \boldsymbol{a}})^{m} ; \quad \frac{d\boldsymbol{c}}{dn} = \boldsymbol{C}_{\boldsymbol{c}} (\boldsymbol{\Delta \sigma} \boldsymbol{Y}_{\boldsymbol{c}} \sqrt{\pi \boldsymbol{a}})^{m}$$

• Calibrated SN – FM

# Application – Deterioration Modelling



#### **One-dimensional FM Model**

| Variable          | Distribution  | Parameters                       |
|-------------------|---------------|----------------------------------|
| $a_0$             | Exponential   | $\mu = 0.1235$                   |
| log(Ca)           | Normal        | $\mu=-27.7903$ ; $\sigma=0.3473$ |
| q (calibrated)    | Normal        | $\mu=6.4839$ ; $\sigma=0.2$      |
| n                 | Deterministic | $3.5\cdot 10^7$                  |
| Y <sub>a</sub>    | Lognormal     | $\mu=1$ ; $CoV=0.1$              |
| m                 | Deterministic | 3                                |
| a <sub>crit</sub> | Deterministic | 16                               |

#### **Two-dimensional FM Model**

| Variable          | Distribution  | Parameters                       |
|-------------------|---------------|----------------------------------|
| $a_0$             | Exponential   | $\mu = 0.1603$                   |
| log(Ca)           | Normal        | $\mu=-27.6302$ ; $\sigma=0.4599$ |
| $a_0/c_0$         | Deterministic | 0.2                              |
| DOB               | Deterministic | 0.81                             |
| $C_a/C_c$         | Deterministic | 1                                |
| m                 | Deterministic | 3                                |
| a <sub>crit</sub> | Deterministic | 16                               |

#### **SN Model**

|  | Variable         | Distribution  | Parameters                  |
|--|------------------|---------------|-----------------------------|
|  | $m_1$            | Deterministic | 3                           |
|  | $m_2$            | Deterministic | 5                           |
|  | $\log_{10}(a_1)$ | Normal        | $\mu=12.48$ ; $\sigma=0.2$  |
|  | $log_{10}(a_2)$  | Normal(Fully  | $\mu=16.13$ ; $\sigma=0.2$  |
|  |                  | correlated)   |                             |
|  | Δ                | Lognormal     | $\mu=1$ ; $CoV=0.3$         |
|  | <i>q</i> (*)     | Normal        | $\mu=6.4839$ ; $\sigma=0.2$ |
|  | h                | Deterministic | 0.8                         |

Application – Inspection and Cost Modelling 😻



**Probability of detection (POD) of eddy current (EC) inspection** 









# • Option 1

- One-dimensional crack growth + Through-thickness failure criteria
- Option 2
  - Two-dimensional crack growth + Through-thickness failure criteria
- Option 3
  - Two-dimensional crack growth + Simplified FAD criteria





### **Crack Growth**

## **Reliability Updating**







**Constant failure probability threshold** 

## **Equidistant inspections**



## In both cases, option 3 >>> less number of inspections and lower expected cost.



- Both failure criteria and fracture mechanics model can affect the optimal inspection decision.
- Significant reduction of failure cost (>50%) by using the failure assessment diagram criterion.
- Limitation: only for reductant structures with high fracture toughness.
- Future research interest:
  - Inspection method which gives discrete crack size
  - POMDP/DRL which can provide dynamic policies





# The Effect of Failure Criteria on Risk-based Inspection Planning of Offshore Wind Support Structures

MS-2 Life-Cycle Performance Assessment of Civil Engineering Systems

# Nandar HLAING

nandar.hlaing@uliege.be