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Introduction — Offshore wind substructures
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http://windpowernejikata.blogspot.com/2017/05/wind-power-gif.html
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Offshore wind structures deterioration: fatique & corrosion
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1) Deterioration — Fatigue & corrosion

SN Curves / Miner’s Rule

Bi-linear SN Curve
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1) Deterioration — 1D FM

Calibration SN Curves — FIVMI Model
1D Paris’ Law
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1) Deterioration — 2D FM

Calibration SN Curves — FIVMI Model

2D Paris’ Law — Stress intensity factor ‘DNV-GL RP C210’
System of ordinary differential equations

o
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1) Deterioration — FM / Reliability

Fracture Mechanics models (Unconditional case)

2D Paris’ L :
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2) Updating reliability (DBNSs)

(1) Monte Carlo simulations

(2) Dynamic Bayesian Networks (DBNs)

Inspection quality
PoD Curves

p(Z|a)

8 Computational performance of risk-based inspection methodologies for offshore wind support structures (WESC2019)



3 LIEGE

AAAAAAAAAAAAAAAAA
DDDDDDD

2) Updating reliability (DBNSs)

(1) Monte Carlo simulations
(2) Dynamic Bayesian Networks (DBNs)

Unconditional (No inspections) Conditional (Inspections)
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2) Updating reliability — FM 1D or 2D?

Fracture Mechanics models (including inspections)

Unconditional (No inspections) A Conditional (Inspections)
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2) Updating reliability — FM 1D or 2D?

Fracture Mechanics models (including inspections)

A Conditional (Inspections) Crack distribution
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3) Maintenance decision problem

‘Pre-posterior decision analysis’... 1220=3.8e21 branches

fai 1 second per branch = 1.24el4 years
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3) RBI / Heuristics: Direct search policies st A
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‘Periodic inspections’
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Deterioration Inspection Decision Repair Cost
model model rules model model

3) RBI / Heuristics: Direct search policies st A

‘Periodic inspections’ ‘Reliability threshold’
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3) POMDPs - Methodology

Partially Observable Markov Decision Processes

RBI Deterioration Repair Inspection Cost
model model model model

Dynamic

Bayesian

Transition matrix : v

POMDP « Network Emission matrix

Expected { POMDP I
maintenance costs |\ policy ’:
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3) POMDPs — Observations (emission)

Able to solve complex decision problems
@ Inspections < Monitoring
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3) POMDPs - CPU time

Application: ‘SARSOP Algorithm’ : POMDP 200 states
CPU time =~ 60 s
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“POMDP based Maintenance Optimization of Offshore Wind Substructures including Monitoring
Morato, P.G., Nielsen, ].S., Mai, A.Q. and Rigo, P., ICASP13 (2019)”
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Discussion & Conclusions

1) Deterioration model
1D-FM 1s faster than 2D-FM but yields different results
2) Updating reliability
DBNs are faster than MCS (similar result)
3) Risk-based inspection planning
POMPD for complex decision problems
* Future:

= System-level maintenance policies
» Different deterioration models
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3) Solving POMDPs

Decision problem:

? Belief State —— Action

‘Grid-based’ technique E‘Point-based’ technique_é

Reachable

Belief point
[51,52] Y O OO OO

* Finite set of belief points e ‘Optimally’ reachable beliefs
+ Extrapolation/interpolation * Large state space (Robotics)
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