Companion detections through spectra and ML

Rakesh Nath

Image (object)

WWELENGTH (MICRONS)

ML blackbox

Spectra of every pixel

Probability map

Flux~10⁻⁸

Flux~10²

HD142527

ML data preparation

Initial spectrum Sum spaxels Pre-process Ref spectrum Crop Divide by ref

Split into two sets of H_0 and H_1

ML data preparation

Initial spectrum

Sum spaxels

Ref spectrum

Crop

Divide by ref

Split into two sets of H_0 and H_1

Next steps

- * 'Force' the network to learn absorption features.
- * Create a metric to compare ML and cross-corr
- * Compare the 'sensitivity' of ML and cross Corr
- * Compare 'specificity' (fake companions in progress) of ML and cross Corr
- * Try this with PDS 70 and potentially explain why it may or may not work.