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An active Distribution Network Equivalent derived
from large-disturbance Simulations with Uncertainty
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Abstract—A reduced-order, “grey-box” model of an active
distribution network, intended for dynamic simulations of the
transmission system, is derived. The network hosts inverter-based
generators as well as static and motor loads, whose dynamic
parameters are affected by uncertainty. This issue is addressed
using Monte-Carlo simulations. The parameters of the equivalent
are adjusted to match as closely as possible the average of the
randomized responses, while their dispersion is accounted for
through the weights of the weighted least-square minimization.
A procedure is used to remove from the identification the
parameters with negligible impact. To avoid over-fitting, the
equivalent is tuned for multiple large-disturbance simulations.
A recursive procedure is used to select the smallest possible
subset of disturbances involved in the least-square minimization.
Simulation results with a 75-bus MV test-system are reported.
They show that the equivalent is able to reproduce with good
accuracy the discontinuous controls of inverter-based generators,
such as reactive current injection and tripping.

Index Terms—active distribution network, inverter-based gen-
erator, dynamic equivalent, grey-box model, uncertain dynamic
model, Monte-Carlo simulations, LASSO method.

I. INTRODUCTION

D ISTRIBUTION systems are getting more and more com-
plex owing to the increasing number of Inverter-Based

Generators (IBGs) connected at Medium-Voltage (MV) level.
This makes distribution networks more and more responsive
and their influence on the whole power system dynamics
increases. Therefore, it becomes important for Transmission
System Operators (TSOs) to model those Active Distribu-
tion Networks (ADNs) in their dynamic simulation studies.
However, time simulations of combined transmission and
distribution systems are impractical owing to large computing
times and heavy maintenance of the model. Moreover, in some
countries, confidentiality rules prevent Distribution System
Operators (DSOs) from sharing detailed data with TSOs. To
tackle both issues, it makes sense to use equivalents, i.e.
reduced-order models of the ADNs in dynamic simulations of
the transmission system. This, in turn, requires the equivalent
to show a good compromise between accuracy and simplicity.

The approaches for setting up equivalents can be classified
into measurement-based and simulation-based. The former use
measurements (of typically the power flow into the ADN) to
best tune the parameters of the reduced-oder model (e.g. [1],
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[2],[3]). The focus in this paper is on large disturbances, such
as faults, taking place in the transmission system. Measure-
ments of the ADN response to such events are little available
and, if they are, the number of events is too limited for
identifying an equivalent valid for other disturbances. Hence,
a simulation-based approach is considered in this paper.

The first step consists of setting up a detailed, i.e. unreduced
model of the ADN. While it can be generally assumed that the
network model is accurate, dynamic models on the other hand,
are affected by uncertainty. For instance, in load models, the
parameters of equivalent motors are usually set to “typical”
values (e.g. [4]) to account for a population of similar smaller
motors. Regarding IBGs, grid codes allow for a range of
permissible behaviours [5], [6]. Monte-Carlo (MC) simulations
are a traditional way to deal with such uncertainties [7].
For a given disturbance, dynamic responses are generated
for randomized variations of the uncertain parameters [8].
Statistics such as the average (or the median) and the standard
deviations provide useful information on the time-varying
impact of parameter uncertainty.

The second step consists of deriving a reduced-order model.
A recent review of dynamic equivalents to reproduce the
response of loads and ADNs can be found in [9].

‘Black-box” approaches have been proposed, e.g. in [2], [3].
They are suitable when no model of the ADN is available. In
this case, the parameters are identified from measurements,
with the already mentioned limitation in terms of events.

Instead, this paper deals with a reduced model of the
“grey-box” type, as recommended in [10] and [11]. Such an
equivalent is usually appealing for it involves components of
the type used in the unreduced system. While its mathematical
model is specified, the involved parameters have to be iden-
tified. Examples of grey-box model identification of ADNs
can be found in [12]-[17]. However, no attention has been
paid to the above-mentioned uncertainty affecting the ADN
model parameters. Furthermore, the proposed models do not
reproduce the discontinuous response of IBGs, in particular
the tripping of some of them. This is another aspect covered
in this paper.

The unreduced and the equivalent ADN models assume
a balanced three-phase distribution grid and are used in
dynamic simulations under the phasor approximation [18]. The
equivalent must be able to reproduce with good accuracy the
nonlinear behaviour of the system and in particular the discon-
tinuous controls of IBGs, such as reactive current injection,
active current recovery and tripping.

A standard identification procedure consists of adjusting the
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parameters to approach in the least-square sense the response
of the unreduced system. In order to account for uncertainty,
the approach considered in this paper consists of: (i) using
the average of the randomized MC simulations as reference,
and (ii) weighting the deviations with respect to the latter to
account for the dispersion observed in MC simulations.

The number of parameters to adjust should be kept “as
small as possible”, to make the least-square minimization less
demanding, but also the parameter values more consistent from
one case to another and, hence, easier to interpret [19]. To that
purpose, a method inspired of the Least Absolute Shrinkage
and Selection Operator (LASSO) is proposed in this paper to
discard from the identification the parameters with a negligible
impact. The original LASSO method was proposed for linear
regression and presented in [20]. A nonlinear variant has been
used in [21], [22] to identify power system models.

Another distinctive feature of the procedure presented in
this paper is the training of the equivalent from multiple
disturbances (in the transmission system). The main objective
is to avoid over-fitting one particular scenario. Since han-
dling numerous disturbances can be demanding, a recursive
procedure is proposed to select the smallest possible subset
of disturbances, from which the parameters are identified.
The procedure guarantees the accuracy of the equivalent with
respect to disturbances not involved in the training.

This paper builds on the authors’ previous work (e.g. [23]).
The novelties are : (i) a different structure of the equivalent,
(ii) an improved training procedure, (iii) the handling of IBG
tripping, (iv) the identification of significant parameters, (v)
simulation results from a more complex test system.

The rest of the paper is organized as follows. The unreduced
and reduced ADN models are described in Section II and III,
respectively. Section IV details the optimization of the reduced
model parameters. Simulation results are reported in Section
V, and conclusions are offered in Section VI.

II. UNREDUCED MODEL OF THE ADN

The ADN model aims at rendering the impact on transmis-
sion system dynamics of numerous loads and IBGs dispersed
in a distribution grid. Rotor angle, frequency and voltage
stability studies are targeted. The focus is on transients lasting
up to 10 to 20 seconds after a large disturbance, but features
relevant to long-term dynamics can be easily added.

The model used for, respectively, all loads and all IBGs is
outlined in this section. Note that the methodology easily ac-
commodates other load components (e.g. [10], [18]) and other
types of dispersed generators (e.g. synchronous machines).

A. Load model

The generic load model considered is depicted in Fig. 1.
It is split into a standard exponential model and a third-
order induction motor [18]. Initially, the motor consumes a
fraction m of the total active power and the compensation
capacitor is adjusted to satisfy a specified power factor cos ϕm.
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Fig. 1. Load model: decomposition into exponential and motor parts
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Fig. 2. Controls of the IBG in response to large voltage deviations

B. IBG model

A generic IBG model is considered, aimed at capturing the
variations of the injected current with the terminal voltage.
The embedded controls meet recent grid code requirements
(e.g. [5], [6]), as detailed hereafter. The model is described in
greater detail in [24].

1) Phase Locked Loop (PLL): The PLL estimates the phase
angle of the terminal voltage, in order to inject the current
with the proper phase angle with respect to that voltage. A
Proportional-Integal (PI) control is used to align the d axis with
the voltage phasor; the PLL response time is not neglected.

2) Low Voltage Ride-Through (LVRT): Grid codes request
IBGs above a given rating to remain connected to the grid in
low voltage conditions. Yet the units are allowed to disconnect
if their terminal voltage falls below an LVRT curve. The curve
implemented is defined by six parameters, as shown in Fig. 2.a.

3) Reactive current injection: Grid codes request large-
capacity IBGs to inject reactive current into the grid if their
terminal voltage falls below some threshold. That current
varies linearly with the measured voltage, as shown in Fig. 2.b
where iQ0 is the initial reactive current, Inom the IBG nominal
current and Vm the measured terminal voltage.

4) Current limit: In low voltage conditions, in order to
leave room for the reactive current without exceeding the
Inom limit, the active current is decreased. For a large enough
voltage drop, it may even be decreased to zero.

5) Rate of active current recovery: After fault clearing,
once the voltage has recovered to normal values, the IBG
active current recovers. The recovery cannot be too fast to
prevent fast dynamics that can de-stabilize the system, but not
too slow either to avoid long lasting power imbalance. The
value of the rate of recovery of the active current has been
chosen in the range given in [25].

6) Other features: The model also involves time constants
affecting the voltage measurement and the outer control loops.
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III. REDUCED (EQUIVALENT) ADN MODEL

A. Structure of the equivalent

The structure of the equivalent is shown in Fig. 3.
The connection to the transmission grid is through a single

transformer, which is retained in the equivalent. The dis-
tributed IBGs (resp. loads) of the original system are lumped
into one aggregated IBG (resp. load). The aggregated load and
the aggregated IBG are connected through distinct impedances
Ra + jXa and Rb + jXb to take account their different
distributions within the ADN.

Note that the methods presented in this paper apply to other
structures of the equivalent, as discussed in Appendix A.

B. Load and IBG model in the equivalent

The model used for the aggregated load in the equivalent is
the same as that of individual loads in the unreduced system
(see Section II-A).

Similarly, the model used for the aggregated IBG retains
the features of the model of individual IBGs in the unreduced
system (see Section II-B). However, instead of the LVRT
feature, the aggregated model must account for the possible
tripping of some IBGs in the unreduced system [24], [27].
Indeed, the voltages being different from one IBG bus to
another, during a fault, some units may trip while the others
remain connected. Since there is a single aggregated IBG,
the aforementioned situation is accounted by providing the
aggregated IBG with a “partial tripping” feature, as illustrated
in Fig. 4. It consists of multiplying the output current Īnt given
by the model without tripping by a factor f (0 < f < 1)
evolving as depicted in the right part of Fig. 4. When the
voltage V of the equivalent IBG falls below the Vpt threshold,
f drops to γ, which corresponds to loosing a fraction 1−γ of
the IBGs. For further voltage drops, f decreases linearly with
V . Full disconnection (f = 0) takes place for V = Vft. If V
recovers before reaching Vft (as shown in Fig. 4) f remains
at the fmin value corresponding to the voltage nadir. Thus,
the tripping that could take place after the voltage nadir is not
considered. The technique is a simplified version of the one
considered in [24] and similar to the one used in [27].

C. Parameters to identify

The 20 parameters to identify are (see Figs. 1, 2 and 4) :
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Fig. 4. “Partial tripping” feature of the aggregated IBG

• for the aggregated load : α and β in the exponential model
and, for the motor, the stator and rotor resistances, the
magnetizing and the two leakage reactances, the inertia
constant and the nominal apparent power;

• for the aggregated IBG : the nominal current, the rate
of recovery of the active current, kRCI and VQ (reactive
current injection), γ, Vpt and Vft (partial tripping);

• for the equivalent impedances : Ra, Rb, Xa and Xb.

D. Initialization

The active power Pl and reactive power Ql initially con-
sumed by the aggregated load (see Fig. 3) are obtained by
summing the individual load powers throughout the ADN.
Similarly, Pg and Qg are obtained by summing the powers
produced by the dispersed IBGs.

The initial input powers Pe and Qe, which include the losses
in the equivalent impedances Ra+jXa and Rb+jXb, may not
match the powers estimated by the TSO. Furthermore, in the
course of identifying the parameters of the equivalent, Pe and
Qe are specified but Ra, Rb, Xa and Xb vary. In both cases,
a “slack” load is added at the MV end of the transformer.
Usually small, this load is treated as constant admittance.

IV. REDUCED MODEL IDENTIFICATION

As mentioned in the Introduction, a number d of distur-
bances are used to train the equivalent in order to avoid
over-fitting one particular scenario. Each of them consists of
imposing large variations of the amplitude, the phase angle,
or the frequency of the voltage source V̄tr replacing the
transmission system (see Fig. 3).

A. Monte-Carlo simulations

It is assumed that the dynamic models of loads and IBGs
are qualitatively correct but involve uncertain parameters. MC
simulations are used to assess the impact of this uncertainty
on the dynamic response of the unreduced system.

Assume that the ADN feeds nL loads and hosts nG IBGs.
Let πL and πG be the number of uncertain parameters in
the load and IBG models, respectively. For the whole system,
those parameters are gathered in a vector p with nLπL+nGπG

components. The latter are treated as independent random
variables, and p is uniformly distributed in [pmin pmax]. By so
doing, the parameters are randomized from one MC simulation
to another but also from one load (resp. one IBG) to another.
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In the absence of further information, uniform distributions
are considered for the randomized parameters. Appendix B
offers a comparison with Gaussian distributions.

Let s be the number of randomly drawn instances of p.
The variables of interest are the active and reactive power

entering the ADN. For the j-th disturbance (j = 1, ..., d), the
i-th instance p(i)of p (i = 1, . . . , s) and a discrete time instant
k, the following values are extracted from the MC simulations:

P (j, k,p(i)) the active power at time k obtained with p(i)

Q(j, k,p(i)) the corresponding reactive power
µP (j, k) the average of the s values P (j, k,p(i))
µQ(j, k) the average of the s values Q(j, k,p(i))
σP (j, k) the standard deviation of the s values P (j, k,p(i))
σQ(j, k) the standard deviation of the s values Q(j, k,p(i)).

B. Weighted least-square identification

The equivalent is tuned so that its responses to disturbances
matches the average response of the unreduced system.

The parameters to identify are grouped in a vector θ. The
latter is adjusted so that, for each discrete time k and for all
disturbances j, the active power Pe(θ, j, k) (resp. the reactive
power Qe(θ, j, k)) entering the equivalent approaches in the
least square sense the average µP (j, k) (resp. µQ(j, k)).

Thus the following constrained optimization is considered :

min
θ

F (θ) =
1

d

d∑
j=1

[FP (θ, j) + FQ(θ, j)] (1)

with FP (θ, j) =
1

N

N∑
k=1

[
Pe(θ, j, k)− µP (j, k)

σP (j, k)

]2
(2)

FQ(θ, j) =
1

N

N∑
k=1

[
Qe(θ, j, k)− µQ(j, k)

σQ(j, k)

]2
(3)

θL ≤ θ ≤ θU (4)

where N is the number of discrete times of the simulation.
The bounds θL and θU keep θ in realistic ranges of values.

Note that each term in (2) (resp. (3)) is weighted by the
inverse of the variance σ2

P (j, k) (resp. σ2
Q(j, k)) to reflect the

dispersion of the MC responses. By so doing, at a given time k,
the deviation from µP (j, k) (resp. µQ(j, k)) is more penalized
if the dispersion of the power response in the MC simulations
is small. Conversely, at a time k when a large dispersion is
observed, denoting a large impact of parameter uncertainty,
the deviation of the equivalent from µP (j, k) (resp. µQ(j, k))
is less penalized. If σP (j, k) or σQ(j, k) becomes too small,
the subsequent times k are not included in (2),(3) to avoid
distorting the minimization.

C. Solving the optimization problem (1)-(4)
An analytical expression of the gradient of the objective

function (1) being impossible to derive, standard mathematical
programming methods cannot be envisaged to solve the least-
square minimization problem (1)-(4). Instead, a metaheuris-
tic, derivative-free optimization method has been preferred.
Among the wide variety of metaheuristic methods an evo-
lutionary algorithm, namely Differential Evolution (DE) [28]

has been preferred. The choice of DE was motivated by the
comparison reported in [29], where it outperformed other
algorithms on various benchmark problems. A systematic
comparison with other methods - such as those used in [30],
[31], [32], [33] - was outside the scope of this research. While
other algorithms could offer a most welcome speed-up, DE has
been found to be a reliable solver for the optimization problem
(1)-(4) in a large number of cases.

The solver has been derived from the open source Python
code available in [34]. The version of the algorithm is denoted
rand/1/bin because θ is randomly chosen and only one vector
difference is added to it. The binomial crossover strategy was
used to mix the information of the trial and the target vectors.
Moreover, at each new generation, the mutation factor is
randomly selected in the range [0.5, 1] as it has been found that
this technique may improve convergence significantly [28].
More information is available in [34].

Since the DE algorithm is iterative, a proper stopping
criterion is important. It was found appropriate to stop iterating
when, for all disturbances (j = 1, ..., d) :

FP (θ, j) ≤ 1 and FQ(θ, j) ≤ 1 (5)

i.e. when the deviation of Pe(θ, j, k) from µP (j, k) (resp.
Qe(θ, j, k) from µQ(j, k)) is smaller than σP (j, k) (resp.
σQ(j, k)) on average over discrete times k. Yet a maximum
number of DE iterations is enforced in case (5) is not satisfied.

D. Recursive training procedure

The larger the number d of disturbances, the lower the risk
to over-fitting but the larger the computational burden to solve
the minimization problem (1)-(4). To tackle this problem, a
recursive procedure is proposed, which consists of focusing
on a subset of disturbances from which the parameters are
identified. More precisely, “training” disturbances are progres-
sively added, until the equivalent is found sufficiently accurate
with respect to all other, non-trained disturbances. The detailed
procedure is as follows :

1) A set of c candidate disturbances is initially defined. For
each disturbance, MC simulations are performed and the
time-varying averages µP (j, k), µQ(j, k) and standard
deviations σP (j, k), σQ(j, k) are collected.

2) A small subset of disturbances is selected for the initial
training : d := d0 << c.

3) The minimization problem (1)-(4) is solved, with the
stopping criterion (5), yielding the solution θ̂. The
following worst scores are determined :

Fmax
P (θ̂) = max

j=1,...,d
FP (θ̂, j) (6)

Fmax
Q (θ̂) = max

j=1,...,d
FQ(θ̂, j) (7)

4) With that value θ̂, the scores FP (θ̂, i) and FQ(θ̂, i) are
computed for each non-trained disturbance i.

5) If, for all of them :

FP (θ̂, i) ≤ max(1, Fmax
P (θ̂)) (8)

FQ(θ̂, i) ≤ max(1, Fmax
Q (θ̂)), (9)
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then, the procedure stops; else, the disturbance with the
largest value of FP (θ̂, i) is added to the training set and
similarly for the one with the largest value of FQ(θ̂, i),
unless it is the same disturbance. d is increased by 1 or
2, accordingly.

6) Steps 3 to 5 are repeated using the last value θ̂ as initial
guess in the minimization.

The right-hand side in (8) and (9) is justified as follows. If
the worst scores of the trained disturbances do not satisfy the
tolerance of 1 specified in (5), that tolerance is also relaxed
for the non-trained disturbances.

E. Discarding non significant parameters

As mentioned in the Introduction, a procedure that bears
the spirit of the LASSO method is used to discard the less
significant parameters of the least-square minimization, for
higher computational efficiency, better consistency and easier
interpretation of the results.

The method consists of adding a penalty term to (1) :

min
θ

F (θ) + λ

n∑
l=1

|θrefl − θl| (10)

where λ is a scaling factor, n is the size of θ and θref is
a reference value for the parameters. The penalty term tends
to make θl depart from its θrefl reference only if this yields
a significant decrease of F (θ), i.e. if θl has a significant
influence on F (θ), thereby making the dynamic response of
the equivalent more accurate.

The procedure starts with λ set to a large value λo, which
yields θ̂ ≃ θref . Then, λ is decreased steps by steps (namely
divided by an integer a larger than one at each step). For
each value, the minimization problem (1)-(4) is solved with
the penalty term added as in (10). This procedure is repeated
until the accuracy condition (5) is satisfied.

At this point, the components of θ̂ and θref are compared.
For the l-th component (l = 1, . . . , n), if :

|θ̂l − θrefl |
θrefl

≤ δ (11)

the parameter of concern is considered to have little impact,
since constraining θl to remain close to its reference θref

l has
little impact on the final scores FP (θ̂, j) and FQ(θ̂, j).

A non significant parameter is given the estimated value
(i.e. θl = θ̂l), and is removed from θ.

For the significant parameters, the estimated value θ̂l is used
to update the limits in (4) :

θLl = θ̂l − αθ̂l (12)
θUl = θ̂l + αθ̂l (13)

where 0 ≤ α ≤ 1. The recursive procedure of Section IV-D is
then applied with the original objective function (1).

Remark. It may happen that a parameter θl impacts the
dynamic response of the equivalent, but remains close to
its reference value θrefl , because the latter happens to be
near optimal. Therefore, it would be more accurate to state
that the method identifies parameters whose variations from

Large-Capacity

PV system

Wind Turbine

∆V

∆T

t

Vtr

disturb. No ∆V (pu) ∆T (s)

1 0.2 0.10
2 0.2 0.25
3 0.3 0.10
4 0.3 0.25
5 0.4 0.10
6 0.4 0.25
7 0.5 0.10
8 0.5 0.25
9 0.6 0.10
10 0.6 0.25
11 0.7 0.10
12 0.7 0.25
13 0.8 0.1
14 0.8 0.25

Fig. 5. One-line diagram of test system and candidate training disturbances

their reference values improve the dynamic response of the
equivalent. Even if a parameter θl is unduly labeled as non
significant, this has no consequence on accuracy since it is set
to its near optimal value θrefl .

V. SIMULATION RESULTS

A. Test system and disturbances

The simulations have been performed on a modified version
of the 75-bus 11-kV distribution system previously used in
[13]. Its one-line diagram is given in Fig. 5. In total, the
system hosts 22 dispersed IBGs, belonging to two categories :
large-capacity PhotoVoltaic (PV) systems and Wind Turbines
(WTs). WTs are located closer to the main substation. All
IBGs have fault-ride through and reactive current injection
capabilities. Their total capacity is 14.8 MW. The initial IBG
production is 9.8 MW. The WTs operate at 80 % of their
capacity, and the PV units at 50 % of their capacity. The loads
are connected to the (75-22=) 53 buses without IBGs. The total
initial consumption is 19.95 MW / 3.40 Mvar. The net power
entering the system is 10.33 MW / 3.63 Mvar.

Extensive simulation results have shown that the equivalent
trained from voltage dips properly covers other types of distur-
bances, such as phase jumps, voltage oscillations or frequency
variations. This will be illustrated in Section V-H. The reverse
is not true. The candidate training disturbances are thus voltage
dips. They are listed in Fig. 5. They are characterized by a
depth ∆V and a duration ∆T typical of fault clearing by
(main and back-up) protections at transmission level.

The dynamic evolutions of the active power P and reactive
power Q entering the ADN are collected over five seconds.
The RAMSES software for dynamic simulation in phasor mode
has been used [35]; the average time step size is 0.01 s.

B. MC simulations of the unreduced system

The parameters randomized in the MC simulations are :
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20

209

Fig. 6. Evolution of ε with s (14 disturbances)

• for the motor part of each load : the stator and rotor resis-
tances, the magnetizing and the two leakage reactances,
the inertia constant, the fraction of quadratic mechanical
torque, the load factor [4], the fraction m of the power
initially consumed by the motor and the initial power
factor cosϕm (see Fig. 1);

• for the static part of each load : the exponents α and β
(see Fig. 1);

• for each IBG : the rate of active current recovery, the time
constants of the PLL and the power controllers [24], the
kRCI slope and VQ voltage (see Fig. 2(b)).

One practical issue is to select the number s of MC
simulations. This is a compromise between representativity of
the sample and computational burden. Keeping in mind that
the purpose is to extract the reference values µP and µQ used
in (2),(3), MC simulations can be stopped when those values
do no longer vary significantly with s [8]. This is decided by
monitoring :

ε =
√

ε2P + ε2Q (14)

with ε2P =
1

dn

d∑
j=1

n∑
k=1

[
µ
(s+1)
P (j, k)− µ

(s)
P (j, k)

]2
(15)

ε2Q =
1

dn

d∑
j=1

n∑
k=1

[
µ
(s+1)
Q (j, k)− µ

(s)
Q (j, k)

]2
(16)

where µ
(s)
P (j, k) is the value of µP (j, k) computed over the

first s MC simulations, and similarly for reactive power.
An example of variation of ε with s is given in Fig. 6. MC

simulations are stopped when ε remains smaller than 0.2 MVA
for 20 successive values of s. As shown in the figure, this
yields s = 209.

The value of ε is a compromise between representativity
of the sample and computational burden. For instance, when
decreasing ε to 0.15 MVA (resp. 0.1 MVA) s increases to 260
(resp. 320). The corresponding time evolutions of µP and µQ

are shown in Fig. 7), relative to disturbance No. 7. There is
clearly no gain of accuracy in setting ε lower than 0.2 MVA.

Figure 8 shows the 209 randomized time evolutions of P
and Q in response to disturbance No. 7. All curves start from
the same value, since the same operating point is considered,
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Fig. 7. Evolution of µP and µQ for different values of ε; disturbance #7

and come back to that value, since this rather mild disturbance
does not trigger IBG disconnection.

The overall evolution is explained as follows. During the
voltage dip, the load with exponential model decreases while
the IBGs sacrifice their active current to inject reactive current.
This is confirmed by the lower plot in Fig. 8, where the reactive
power flow reverses during the voltage dip. When the voltage
recovers to its initial value, so do the powers of loads with
exponential model, while the motors draw some additional
power, due to their re-acceleration. Moreover, the IBGs ramp
up their active power. This takes between 1.8 and 3.8 s to the
various IBGs.

Figure 8 also shows the distribution of power values at t =
0.5 s with the corresponding values of µP , σP , µQ and σQ.
There are no “outliers” in the set of system responses. This
justifies using the average for µP and µQ. If outliers were
present, the median would provide a more robust estimate.

Another source of uncertainty stems from the LVRT capabil-
ity of individual IBGs. Grid codes state that they are allowed
to disconnect if their voltages fall below the LVRT curve, but
do not request their disconnection. This has been taken into
account by also randomizing the disconnection of IBGs in the
MC simulations : among the IBGs with voltage falling below
the LVRT curve, some disconnect, some do not.

Figure 9 shows the 209 evolutions of P and Q in response
to the more severe disturbance No. 13. The large dispersion of
final values results from the random disconnection of IBGs.
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Fig. 8. Randomized evolutions of P and Q in response to disturbance # 7

C. Steps of the reduced model identification

The bounds θL and θU of the search interval in (4) have
been set to plausible values of the corresponding parameters,
inspired of literature (e.g. [4]) or grid codes.

The equivalent impedances Ra + jXa and Rb + jXb have
been first estimated using a network reduction technique.
Then, the DE algorithm is let to adjust Ra, Xa, Rb and Xb

in intervals centered on the so obtained estimates.
The equivalent is identified in three steps :
1) scenarios without IBG disconnection have been consid-

ered, leaving aside γ, Vpt and Vft (see Fig. 4). Among
the (20-3=) 17 remaining parameters, 10 have been
identified as significant by the method of Section IV-E;

2) those 10 parameters have been optimized by the recur-
sive training algorithm of Section IV-D;

3) scenarios with IBG disconnection have been used to
identify γ, Vpt and Vft, the previous 10 parameters being
set to their values found at Step 2).

D. Step 1 : Identifying the significant parameters

The LASSO method has been used on disturbances No. 7
and 8 with intermediate values of the voltage dip (see Fig. 5).
θref has been set to (θL + θU )/2.

Figure 10 shows a plot of the objective function F (θ̂) vs.
the penalty term

∑n
l=1 |θ

ref
l − θl|, for decreasing values of

λ. As expected, while λ is decreased, the deviation of θ̂

Fig. 9. Randomized evolutions of P and Q in response to disturbance # 13

with respect to θref increases, and F (θ̂) decreases. At the
point marked with a circle, corresponding to λ = 0.125, the
accuracy criterion (5) is satisfied. The corresponding scores
defined in (6),(7) are Fmax

P (θ̂) = 0.77 and Fmax
Q (θ̂) = 0.97.

Figure 11 shows the relative differences defined in (11),
for each of the 17 parameters. With a threshold δ = 5%,
represented by the dashed red line, seven parameters are
identified as non-significant. These are :

• for the aggregated load: the exponent β (see Fig. 1), the
stator resistance, the magnetizing reactance and the inertia
constant of the motor;

• for the aggregated IBG: no parameter discarded;
• for the equivalent impedances : Ra, Rb and Xa (which

tends to confirm that the impedances estimated by net-
work reduction were appropriate).

The validity of this approach has been verified as follows.
The DE algorithm involving random changes of the variables,
two separate executions may yield different values of θ̂. To
assess this, the results of a set of separate executions of
the DE algorithm have been compared, for the 17- and the
10-dimensional vectors θ, respectively. In the former case,
some components θ̂l exhibit significant variations, making
comparisons difficult. With the 10-dimensional vector, a much
lower variability has been observed, i.e. the variations from
one DE execution to another are insignificant.

An illustration is provided in Fig. 12, showing 20 separate
estimates of the VQ component (see Fig. 2), when 17 and 10
components are included in θ, respectively. It is clear that the
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Fig. 11. LASSO method : final values of |θ̂l − θrefl |/θrefl (in %)
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Fig. 12. Variability of VQ estimates over 20 runs of the DE solver. Disks
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The 20 values have been normalized so that the smallest is equal to 0 and
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variability of the estimate from one run of DE to another is
much smaller in the latter case. This yields a better model
interpretation and consistency, which are expected advantages
of a grey-box model.

E. Step 2 : Optimizing the significant parameters

The recursive training iterations are shown in Table I. The
c = 12 candidate disturbances are the voltage dips No. 1 to 12
(see Fig. 5) not causing IBG disconnection. Columns 3 and

TABLE I
RESULTS OF RECURSIVE TRAINING ALGORITHM

trained non trained
Iteration Trained disturbances disturbances

disturbances Fmax
P Fmax

Q Fmax
P Fmax

Q

1 7, 8 0.78 0.96 1.57 2.34

2 7, 8, 11, 12 1.15 1.01 4.32 0.93

3 7, 8, 11, 12, 6 1.24 1.13 1.31 1.08

4 7, 8,11, 12, 6, 2 1.29 1.21 0.79 0.87
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Fig. 14. Reactive power responses to the non-trained disturbance No 13

4 give the worst scores defined by (6),(7), while Columns 5
and 6 give the corresponding worst scores of the non-trained
disturbances. After four iterations all non-trained disturbances
show scores lower than the worst score of the trained ones,
i.e. the stopping criterion (8), (9) is satisfied.

F. Step 3 : Optimizing the partial tripping parameters

The algorithm execution continues now on the whole set of
c = 14 disturbances but focusing now on the value of γ, Vpt

and Vft (see Fig. 4). This leads to adding one more training
disturbance (No. 14, the most severe).

G. Accuracy of the equivalent for non trained disturbances

In this section the accuracy of the equivalent is illustrated
in response to disturbances not used for its training. Voltage
dip No. 13 is considered, for which some IBGs disconnect.
Figure 13 shows with dotted line the evolution of Pe for
the intermediate θ̂ obtained after Step 2. As γ, Vpt and Vft
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Fig. 15. Reactive power responses to an electromechanical oscillation

have not yet been optimized, IBG tripping is ignored and the
response is inaccurate. On the other hand, the Pe response for
the final θ̂ obtained after Step 3 is shown with heavy solid line.
It matches accurately the average response given by µP , in
particular its final value. For comparison purposes, Fig. 13 also
shows the 5th and 95th percentiles, which reflect the dispersion
of the randomized responses of unreduced system.

Similar curves relative to Qe are given in Fig. 14. They
confirm the accuracy of the equivalent for the reactive power.

H. Accuracy of the equivalent for other disturbances

Figure 15 shows the reactive power response of the equiv-
alent to a very different (and also non-trained) disturbance,
namely an oscillation of the magnitude and phase angle of
V̄tr (see Fig. 3) that could represent the effect of an interarea
electromechanical oscillation in the transmission system. The
oscillation of the voltage magnitude is shown with dotted
line. The other two curves show the evolution of respectively
Qe and µQ. The latter has been obtained from randomized
responses of the unreduced system to that disturbance. The
overall accuracy is good, in particular near the first two nadirs.
The discrepancies observed in the subsequent swings is due
to a little excessive reactive current injection by the IBG in
the equivalent (transiently decreasing the net reactive load).

Finally, Fig. 16 deals with a frequency transient, imposed
by varying the phase angle of V̄tr. The frequency variation,
which could result from a generator outage, is shown with
dashed line. The other two curves show the evolutions of
Pe and µP , respectively. The latter has been obtained from
randomized responses of the unreduced system. The accuracy
of the equivalent is further confirmed by the perfect match of
these two curves.

VI. CONCLUSION

A methodology has been presented to identify ADN equiv-
alents for use in transmission system dynamic simulations.

The proposed methodology is valid for any distribution
systems. The procedure decomposes into the following steps:

• Monte-Carlo simulations are performed to account for
parameter uncertainty in the unreduced ADN model. A
set of randomized dynamic responses is thus generated
for each disturbance;
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Fig. 16. Active power responses to a frequency transient

• a weighted least-square problem is solved to make the
response of the equivalent approach the average of the
randomized responses. The weights reflect the dispersion
of the dynamic responses around their average;

• a metaheuristic (Differential Evolution) algorithm is used
to deal with this minimization problem;

• for better interpretation of the results, a procedure based
on the LASSO method allows removing from the iden-
tification the parameters with negligible impact on the
response of the equivalent;

• multiple candidate disturbances are considered to avoid
over-fitting only a few of them;

• a recursive procedure is used to involve the smallest
possible sub-set of them in the least-square minimization;

• two sub-sets of parameters are estimated sequentially,
using scenarios without and with IBG disconnection,
respectively.

Simulation results show that the equivalent can reproduce
the non-linear and discontinuous behaviour of the ADN, in
particular the disconnection of some IBGs under low voltage
conditions. The accuracy has been checked on disturbances
not used for training, and illustrating a few applications.

The methodology presented in this paper has been recently
extended to deal with different operating points. This entails:
(i) selecting among a set of previously estimated θ̂’s the one
that best fits the new operating point and, (ii) if none is sat-
isfactory, adding a new estimate with minimal computational
effort, which is another application of the LASSO method.

APPENDIX A
ALTERNATIVE STRUCTURES OF THE EQUIVALENT

A single equivalent IBG has been considered in this paper,
but several of them can be used if the ADN hosts IBGs with
different controls (e.g. small residential vs. large industrial PV
units [13], [23]). A similar remark applies to loads.

A more general structure is shown in Fig. 17. Loads
are split into residential and industrial. Moreover, IBGs are
differentiated by grid requirements. Residential IBGs, such as
rooftop PV units, are lumped separately; they have neither
LVRT nor reactive current injection capabilities. An equivalent
synchronous generator is also treated separately.

The chosen configuration should be in adequacy with the
components. Configurations such as that of Fig. 17 are rec-
ommended in [26], encouraging to differentiate the aggregated
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Fig. 18. Gaussian randomized parameters: P and Q responses to dist. # 7

distributed energy resources according to performance require-
ments, to represent the fundamentally different behavior of
future and legacy units, respectively.

APPENDIX B
MC SIMULATIONS OF UNREDUCED SYSTEM WITH

GAUSSIAN RANDOMIZED PARAMETERS

MC simulations with randomized parameters obeying a
Gaussian, instead of a uniform distribution are reported here.
For coherency between the two cases, the Gaussian distribution
of parameter pi has its average set to (pmin

i + pmax
i )/2

and its standard deviation to (pmax
i − pmin

i )/6, where pmin
i
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Fig. 19. Evolutions of µP and µQ for uniform and Gaussian distributions
of the parameters; disturbance # 7

(resp. pmax
i ) is the lower (resp. upper) bound of the uniform

distribution.
Figure 18 shows the randomized evolutions of the active

power P and reactive power Q in response to disturbance
No. 7. The curves can be compared with those in Fig. 8. As
expected, the responses are significantly less dispersed. The
distributions of P and Q values at t = 0.5 s are closer to
Gaussian ones.

Figure 19 shows, for the same disturbance, the evolution
of µP and µQ for a uniform and a Gaussian distribution
of parameters, respectively. The difference is marginal. Fig-
ure 20 shows the corresponding evolutions of σP and σQ.
The difference between both distributions is pronounced over
a 2-second time interval after the recovery of voltage. The
Gaussian distribution yields smaller σP and σQ values, which
confirms the smaller dispersion of the power responses.

All in all, whether the parameter distribution is Gaussian
or uniform influences only marginally the reference evolution
that the equivalent must approach. The difference lies in
the weighting factors assigned to the various points in time.
However, as many of the points tend to have a higher weight
with the Gaussian distribution, the resulting estimate θ̂ is only
marginally affected.
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