Development of SLL equilibrium speciation and data fitting tool and its application to P recovery process from sludge

Z.A. Shariff, L. Fraikin, A. Léonard, A. Pfennig
za.shariff@uliege.be
Products, Environment, and Processes (PEPs)
Department of Chemical Engineering
University of Liège
https://www.chemeng.uliege.be
Jahrestreffen der ProcessNet-Fachgruppen Fluidverfahrenstechnik, Adsorption und Extraktion
Berchtesgaden, 26 – 28 Feb. 2020
agenda

- Introduction to P recycling
- PULSE process
- SLLE tool
- results
- summary
introduction

• essential element for all forms of life

• finite resource

• EU imports more than 90% of P

• sewage has potential to cover more than 20% of P demand in North-West Europe
PULSE (Phosphorus University of Liege Sludge Extraction) process

- Dewatered sludge (~20% DM)
- Drying (≥95% DM)
- Leaching (acid)
- Filtration

- Precipitation (base/Ca)
 - CaP

- Reactive extraction
 - Organic solvent
 - P + impurities

- Re-extraction agent/NH₃
 - Metals

- Solid waste
PULSE process

- Leaching of P and metals from sludge

 \[
 FePO_4 + 3HCl \rightarrow Fe^{3+} + H_3PO_4 + 3Cl^-
 \]

- Reactive extraction of metals with organic solvent

 \[
 Fe^{3+} + 4Cl^- \leftrightarrow FeCl_4^- \\
 R_3NHCl + FeCl_4^- \leftrightarrow FeCl_4 R_3NH + Cl^-
 \]

- Precipitation of CaP

 \[
 Ca^{2+} + HPO_4^{2-} \rightarrow CaH(PO_4)
 \]
why SLL equilibrium modelling

- process development
 - evaluation of unit operations
- deeper understanding
- process optimization
- minimize experimental work
liquid phase speciation

- **charge balance (CB)**
 \[0 = \sum_{i=0}^{n} c_i z_i \]

- **mass balance (MB)**
 \[C_{totj} = \sum_{i=0}^{n} v_{i,j} c_i \]

- **law of mass action (LMA)**
 \[\log K_m = \sum_{i=0}^{n} v_{i,r} \log a_i \]

\[a_i = \gamma_i c_i \]

\[a_i = \text{activity of } i\text{th species} \]

\[\gamma_i = \text{activity coefficient} \]

\[c_i = \text{concentration} \]
solid-liquid equilibrium

- $AB_{\text{solid}} \leftrightarrow v_1 A + v_2 B$

- from law of mass action

$$K_{sp} = a_A^{v_1} a_B^{v_2} \text{ (at equilibrium)}$$

- Ion Activity product: $IAP = a_A^{v_1} a_B^{v_2} \text{ (actual)}$

- Saturation Index: $SI = \log IAP - \log K_{sp}$
 - $SI = 0$: $IAP = K_{sp} \rightarrow$ equilibrium
 - $SI < 0$: $IAP < K_{sp} \rightarrow$ undersaturated (dissolution)
 - $SI > 0$: $IAP > K_{sp} \rightarrow$ supersaturated (precipitation)
SLE MATLAB tool results

[Graph showing concentration mol/l vs pH with various chemical species labeled, such as CaHPO₄(S), FeHPO, HPO₄²⁻, PO₄³⁻, etc.]
experimental v/s SLE speciation results

- Degree of P leaching vs equilibrium pH for various acid combinations:
 - HCl
 - H₂SO₄
 - HNO₃
 - HCl+HNO₃
 - HCl+H₂SO₄
 - HNO₃+H₂SO₄
 - H₃PO₄

- Model comparison to experimental data.
non-linear data fitting

- deviation of modelling results
 - complex nature of sludge
 - P and metals bound to organic matter
- lack of thermodynamic data
 - fitting of multiple parameters - equilibrium constants and reaction stoichiometry
metal extraction from sludge liquor

TBP 10%; Exxal 3%; diluent – Ketrul;
LLE - non-linear data fitting

\[\text{Log } K = 3.616 \]

stoich. Alamine: Fe \((n) = 1.44 \)

\[\text{FeCl}_m^- + nR_3NH^+Cl^- = \text{FeCl}_m(R_3NH)_n^- + nCl^- \]
summary

- MATLAB tool for simulation of SLLE with precipitation of multiple solid phases
- data fitting – lack of thermodynamic data and nature of sludge
- further development of the model
 - incorporate activity models for IS>1 mol/L
 - incorporate temperature dependence for logK
 - comprehensive tool to simulate the entire PULSE process
acknowledgements

we are thankful to

- BTC Europe GmbH – BASF for providing samples of Alamine336
- TOTAL Belgium for providing samples of Ketrul
- UGhent and Prayon for ICP analyses
Development of SLL equilibrium speciation and data fitting tool and its application to P recovery process from sludge

Z.A. Shariff, L. Fraikin, A. Léonard, A. Pfennig
za.shariff@uliege.be
Products, Environment, and Processes (PEPs)
Department of Chemical Engineering
University of Liège
https://www.chemeng.uliege.be
Jahrestreffen der ProcessNet-Fachgruppen
Fluidverfahrenstechnik, Adsorption und Extraktion
Berchtesgaden, 26 – 28 Feb. 2020
References

