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1. Introduction
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BENTONITE = clay material that primarily consists of montmorillonite:
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pressure dry density dependent);




1. Introduction
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BENTONITE = clay material that primarily consists of montmorillonite:

. significant swelling upon hydration
MECHANICS (swelling deformation, swelling
pressure dry density dependent);

. very low permeability (~¥10-20 - 1021 m2in
HYDRAULICS saturated conditions);
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1. Introduction w LIEGE

BENTONITE = clay material that primarily consists of montmorillonite:

CEA - BEACON -Deliverable D5.1.1 Seiphoori et Al 2014

different forms (powder, pellets,
compacted blocks...)

different types (Febex, MX-80,
e.unsar foo Kunigel...);
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Multi-scale structure of bentonite materials

Engineering scale
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Platelet scale

Tactoid scale
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Laboratory scale
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BENTONITE = clay material that primarily consists of montmorillonite:

Possible pore size distribution of pellet and powder

Intra-aggregates Inter-aggregates &
porosity inter pellets
porosity

—Powder

—Pellet

Pore size distribution, PSD [-]
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Possible pore size distribution of a bentonite compacted
block

Intra-aggregates Inter-aggregates
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2. Materials and method

High-rigidity
frame

Piston

Confining cell

Bentonite
plug

240 mm

Load cell

—Fluid inlet/outlet

Viton "O" ring

Porous disk
Opening for sensor access
Porous disk

Fluid inlet/outlet

Schematic representation of the experimental set-up

32 mm pellets and crushed pellets
grain size distribution
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3. Experimental results

5.00

—S2 z=40 mm

—S3z=60 mm
S4 z=80 mm
S5 z=100 mm

—Radial: z=20 mm

Swelling pressure [MPa]
Suction, s [MPa]

—Radial: z=60 mm

Radial: z=80 mm

Axial: z=100 mm

400 600 800 400 600
Time [days] Time [days]

Swelling pressure in radial and axial directions function of time Suction function of time

Swelling pressure [MPa]
Water inflow [mL]
Swelling pressure [MPa]

Suction [MPa]

—Axial swelling pressure

—Axial swelling pressure

Injected water mass

Suction at z=100 mm
‘ 0
400 600 800 200 400 600 800 1000
Time [days] Time [days]

Swelling pressure in axial direction and water intake function of time. Swelling pressure in axial direction and suction measurement at
z=100 mm from the bottom face function of time.




4. Coupled hydro-mechanical model

4.1 Mechanical model
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Suction — Mechanics

Modified CamClay - Barcelona Basic Model
(Alonso et al 1990) v,

o=0or—u,l

. K dp K; ds
I'LL:‘”'=ZL+E: +1+es+u
p atm

Plastic yield surface

A(s) =A(0)[(1— r)exp (— ws) + 1]

(gldsutees

« dp For constant volume conditions:
dgg(p)=1+ep Ks
Net mean stress, p p(S) _ p (SA + uatm) K
= DPa
Sgp + Ugtm

Elastic domain

Deviatoric stress, q

Kg ds

Ks(D) = Keo * €xp (— @, *Pp)
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4.2 Hydraulic model: Water retention behaviour-double-porosity structure
(Dieudonne' 2016)

Aggregate

Intra-aggregate pore

Inter-aggregate pore

Inter-aggregate porosity
« Capillary » water

Intra-aggregate porosity
Inter-layer porosity

. Adsorbed water \
Dubinin model
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« Van-Genuchten » model
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4. Coupled hydro-mechanical model wLII‘EGE

4.2 Hydraulic model: Permeability - double-porosity structure

ey (1—eup)™™™m

Kw — R'wﬂ' {1 — EM}gxpm EME}EM

Fo-Ca-clay powder and pellets

dry 1st hydration 2nd hydration

The permeability evolution affects
the velocity of the swelling pressure
development, but in pellet-mixture
is a difficult process to evaluate.

(Van Geet et al 2005) —X-ray tomography on pellet mixture during
hydration test (Dry density)-
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5.1 Geometric configuration of the simulation

Monodimensional problem;

Homogeneous medium (same mechanical and
hydraulic properties);

Homogeneous initial state (suction=171 MPa and
confining stress 0,= 0.02 MPa and o, = 0.2 MPa)). r

> Impervious
<7 boundary

105.15 mm
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Boundary condition of the model
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5. Numerical results and analysis w LIEGE

5.2 Permeability evolution and water intake
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Distance from the wetting surface [mm]
Injected water mass [g]

- - Day 1000 —Experimental

Py . "
SF ; j ; ‘ Numerical

1.00E-20 1.00E-19

Intrinsic permeability, K,, [m?] 400 600 800
Time [days]

Evolution through time of permeability over the height of the Water mass injected from the bottom end. Comparison between
sample during water injection (numerical results) experimental data and model predictions
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5. Numerical results and analysis ;i: LIEGE

5.3 Swelling pressure

E-UNSAT

2020

5.00

Swelling pressure [MPa]

—Experimental

- - Numerical

400 600 800
Time [days]

Swelling pressure in axial direction. Comparison between
experimental data and model predictions

—Experimental z=20 mm
= =Numerical z=20 mm
—Experimental z=60 mm
= =Numerical z=60 mm
Experimental z=80 mm
Numerical z=80 mm

Swelling pressure [MPa]

400 600
Time [days]

Swelling pressures in radial direction. Comparison between
experimental data and model predictions




5. Numerical results and analysis

5.4 Post mortem analysis

100
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—=—Experimental

-+-Numerical

Distance from the bottom [mm)]
Distance from the bottom [mm)]

—a—Experimental

&+ Numerical

1.50 1.55 . 29 30 31
Dry density, pd [Mg/m3] Water content, w [%]

Dry density distribution over the height of the sample at the end of the Water content distribution over the height of the sample at the end of
test. Comparison between experimental data and model predictions  the test. Comparison between experimental data and model predictions
100

----Numerical

Distance from the bottom [mm)]

+ Experimental
[MIP interpretation]

0.15
Macro void ratio, eM [-]

Macrovoid ratio distribution over the height of the sample at the end of
the test. Comparison between experimental data and model predictions




6. Conclusions
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The analysed sample presented a prominent initial heterogeneous pore structure
distribution which is not considered in the numerical strategy...

Nevertheless the numerical model is able to predict remarkably well the experimental
results in terms of:

swelling pressure (especially its non-monotonic evolution);

water intake (direct consequence of the selected permeability law evolution);

final dry density and water intake distribution.
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