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• MECHANICS • significant swelling upon hydration 
(swelling deformation, swelling 
pressure dry density dependent);

BENTONITE = clay material that primarily consists of montmorillonite:
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• HYDRAULICS • very low permeability (~10-20 - 10-21 m2 in 
saturated conditions);

BENTONITE = clay material that primarily consists of montmorillonite:
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• ENGINEERING
• different forms (powder, pellets, 

compacted blocks...) 
• different types (Febex, MX-80, 

Kunigel...);
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Seiphoori et Al. 2014CEA - BEACON -Deliverable D5.1.1
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Sauzeat et al., 2001

EB experiment, Mont Terri

Multi-scale structure of bentonite materials

1. Introduction



BENTONITE = clay material that primarily consists of montmorillonite:

French CIGEO concept for ILW [ANDRA]

EB experiment, Mont Terri
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2. Materials and method

Schematic representation of the experimental set-up

Second layer with crushed pellets during installation
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32 mm pellets and crushed pellets 
grain size distribution 



3. Experimental results

Swelling pressure in radial and axial directions function of time Suction function of time

Swelling pressure in axial direction and suction measurement at 
z=100 mm from the bottom face function of time.

Swelling pressure in axial direction and water intake function of time. 9
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For constant volume conditions:

4. Coupled hydro-mechanical model
4.1 Mechanical model

Modified CamClay - Barcelona Basic Model 
(Alonso et al 1990)

Suction – Mechanics

Plastic yield surface



(Seiphoori et Al. 2014) SEM on MX-80 bentonite

Dubinin model « Van-Genuchten » model

11

4. Coupled hydro-mechanical model
4.2 Hydraulic model: Water retention behaviour-double-porosity structure 
(Dieudonne' 2016)



4. Coupled hydro-mechanical model
4.2 Hydraulic model: Permeability - double-porosity structure

Fo-Ca-clay powder and pellets

The permeability evolution affects 
the velocity of the swelling pressure 
development, but in pellet-mixture 
is a difficult process to evaluate.

(Van Geet et al 2005) –X-ray tomography on  pellet mixture during 
hydration test (Dry density)-
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5. Numerical results and analysis
5.1 Geometric configuration of the simulation

• Monodimensional problem;
• Homogeneous medium (same mechanical and 

hydraulic properties);
• Homogeneous initial state (suction=171 MPa and 

confining stress σa= 0.02 MPa  and σr = 0.2 MPa ).

Boundary condition of the model
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5. Numerical results and analysis
5.2 Permeability evolution and water intake

Evolution through time of permeability over the height of the 
sample during water injection (numerical results)

Water mass injected from the bottom end. Comparison between 
experimental data and model predictions
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5. Numerical results and analysis
5.3 Swelling pressure

Swelling pressure in axial direction. Comparison between 
experimental data and model predictions

Swelling pressures in radial direction. Comparison between 
experimental data and model predictions
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5. Numerical results and analysis
5.4 Post mortem analysis

Dry density distribution over the height of the sample at the end of the 
test. Comparison between experimental data and model predictions

Water content distribution over the height of the sample at the end of 
the test. Comparison between experimental data and model predictions

Macrovoid ratio distribution over the height of the sample at the end of 
the test. Comparison between experimental data and model predictions
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6. Conclusions
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• The analysed sample presented a prominent initial heterogeneous pore structure 
distribution which is not considered in the numerical strategy...

• Nevertheless the numerical model is able to predict remarkably well the experimental 
results in terms of:

• swelling pressure (especially its non-monotonic evolution);

• water intake (direct consequence of the selected permeability law evolution);

• final dry density and water intake distribution.
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