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simulation study shows that our proposed method works well within the framework of a
data stream.
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1. Introduction

Quantile estimation is an active field in statistics and has been widely explored in various areas, including finance,
economics, biology and hydrology. There aremany circumstances underwhich it is essential to know the quantiles of a given
distribution. An overview of the use of special quantiles such as quartiles, deciles and percentiles in statistical applications
appears in the monograph of Fisz (1963), whereas recent works on applications of fractile estimation can be found in Jorion
(1996), Ridder (1998) and Gourieroux et al. (2000) and the references therein.

In financial econometrics, technological innovations and trade globalization have provided the financial community the
opportunity to develop sophisticated statistical techniques for risk management. Several measures of risk have been intro-
duced, the most popular being the so-called Value at Risk (VaR). This measure has become the standard and most useful
risk measure for some financial institutions. Practitioners define the VaR as the worst expected loss over a given horizon at
a fixed confidence level p ∈ (0, 1). More precisely, for some probability p, a bank might be able to know that the daily loss
of its trading portfolio will exceed the value of the VaR with probability 1 − p. According to this definition, the VaR can be
mathematically defined as the p-quantile of the daily loss distribution. We refer the reader to Scaillet (2003) for a historical
background on the VaR.

As another example, in hydrology, sometimes a researcher wants to obtain the value ℓp exceeded by the height of a
river with a given confidence probability p. Such information commonly forms the basis for decision making and regulatory
action.
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In this paper, we address the estimation of the quantile of a random variable X defined in a probability space (Ω,F , P),
with values on R. Various estimators of quantiles have been introduced in the literature using parametric, semi-parametric
or nonparametric approaches.

Many parametric developments have been investigated and are most often based on the assumption of normality of the
underlying distributions. In this parametric context, quantile estimation is reduced to an estimation of a finite number of
parameters. However, in many real situations, these parametric considerations can be rather stringent.

Another method is to consider a more general nonparametric approach that makes no explicit assumptions about
underlying distributions. The traditional estimator of this type is the empirical quantile. However, as indicated by Daouia
et al. (2011), this estimator suffers from a lack of efficiency due to the variation of individual order statistics.

The asymptotic properties of the empirical quantile were studied by David (1970), whereas Harrel and Davis (1982)
introduced a nonparametric quantile estimator and compared it to the empirical quantile. Kalgh and Lachenbruch (1982)
proposed an estimator that is a linear combination of order statistics. Nadaraya (1964) introduced a kernel estimator that
requires inverting the kernel estimator of the distribution function. The mean square error of the kernel quantile estima-
tor was established by Azzalini (1981), whereas the almost-sure convergence of the estimator was studied by Kulczycki
and Dawidowicz (1999) under ergodic conditions. Gourieroux et al. (2000) demonstrated the best behavior of the kernel
estimator for the VaR through an empirical study. Scaillet (2005) derived the asymptotic properties of kernel estimators
of conditional expected shortfalls for stationary and strong mixing processes. Cai and Wang (2008) established an asymp-
totic normality and the consistency of the nonparametric estimator of the conditional VaR and obtained expected shortfall
functions by inverting the weighted double kernel local linear estimate of the conditional distribution function.

Although, the kernel estimator can be preferable to the sample estimator, it suffers from computational problems. In
fact, there is no explicit expression for the inverse of the kernel distribution function estimator. Thus, quantile estimation is
obtained by numerical approximationmethods such as the Newton–Raphsonmethod. However, the convergence of this al-
gorithm requires a large number of iterations and can thus be time-consuming for large sample sizes. This situation is more
apparent in data streams, i.e., in which sample data are obtained by an observational mechanism that allows for an increase
in sample size over time. In recent years, data streams have become an increasingly important area of research. Common
data streams include Twitter activity, the Facebook news stream, Internet packet data, stock market activity, credit card
transactions and Internet and phone usage.We refer to Aggarwal (2007) for further information about and examples of data
streams. In the data stream setting, kernel estimates must be completely recalculated when each additional item of data is
received, after which a numerical approximation is provided. To bypass this problem, one may consider an alternative re-
cursive estimator obtained by a stochastic approximation algorithm. Themost famous use of the stochastic algorithm in the
nonparametric framework is described in the work of Kiefer and Wolfowitz (1952), who constructed an algorithm that al-
lows for the approximation of the point at which a regression function reaches its maximum. The simplest type of stochastic
approximation quantile estimators are based on the work of Robbins and Monro (1951). These pioneering works have been
widely discussed and extended in many directions (see, among many others, Blum, 1954, Fabian, 1967, Fabian, 1968, Kush-
ner and Clark, 1978 and Ruppert, 1982). Blum (1954) demonstrated the almost-sure convergence of the Robbins–Monro
procedure, and the asymptotic normality of the procedure was proved by Sacks (1958) under suitable conditions. Further-
more, Holst (1987) improved the theory and demonstrated the almost-sure convergence and asymptotic distribution of the
quantile estimator based on the Robbins–Monro procedurewithin the contexts of independent and dependent observations.

In this paper, we study a smooth version of the Robbins–Monro algorithm, which bears a resemblance in its structure
to the so-called adaptive Conditional Autoregressive Value-at-Risk (CAViaR) model, introduced by Engle and Manganelli
(2004). We establish the almost-sure convergence of our quantile estimator and derive an asymptotic normality.

The main contributions of our work are (i) the generalization of the previous work of Holst (1987) to a smooth version,
(ii) the illustration of the theoretical results developed in the above-cited references through a simulation study, (iii) the
improvement of the smooth algorithm of Gourieroux et al. (2000) with regard to estimation errors and computational cost
and (iv) the generalization of the adaptive CAViaR model in the one-dimensional stationary stream data setting.

The paper is organized as follows. In Section 2, we propose our algorithm, and in Section 3, the asymptotic results are
established. Section 4 is devoted to a simulation study in which our estimator is compared with other quantile estimators.
Finally, the proofs of the results are discussed in Section 5, and an Appendix is provided.

2. Presentation of the algorithm

Let X be a random variable valued onRwith a probability density function f , and let F denote the cumulative distribution
function of the random variable. Assume that F has a uniquely defined p-order quantile qp for a given p ∈ (0, 1).

We wish to estimate the solution x = qp of the equation F(x) = p based on a sample of independent and identically
distributed (i.i.d.) random variables X1, . . . , Xn, with the same distribution as X . This problem is a particular case of the gen-
eral issue addressed by stochastic approximation methods that are intended to find the unique root of the functionM(x) =

E(N(x, X)), for a given function N . To solve this problem, Robbins and Monro (1951) propose the following relationship:

xn = xn−1 + γnηn(xn−1), (1)

where ηn is a random function that depends on Xn such that E(ηn(x)) = M(x) and (γn) is a sequence of positive constants
such that


n≥1 γ

2
n < ∞ and


n≥1 γn = ∞. The initial value of xn may be chosen arbitrarily or at random.
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If we set ψp(x) := p − 11{x<0}, then we have p − F(x) = E

ψp(Xn − x)


. In addition, if (γn) is a sequence of the form

γn = (An)−1 with A > 0 and following (1), an estimator of qp is given by

xn = xn−1 +
ψp(Xn − xn−1)

An
. (2)

The algorithm (2) was studied by Blum (1954) for 0 < A < 2f (qp). It is shown in the cited reference that if A = f (qp), the
asymptotic variance of xn is minimal, while its asymptotic distribution is the same as that of the order statistic estimator.
Thus, as suggested in Robinson (1975) or Holst (1987), the constant A can be replaced by the current estimate of f (qp).

The algorithm (2) involves an indicator function in the incremental estimation of the quantile. This discrete component
increases abruptness because the step gives the same consideration to the observations that are close to the quantile esti-
mate and the observations that are extremely larger or smaller than the quantile estimate. Thus, instead of choosing ηn as
an unbiased estimator of p − F(x), we propose a smoothed asymptotically unbiased replacement that might improve the
performance.

The quantile estimator to be studied in the current paper is given by the following algorithm
xn = xn−1 + (nan)−1


p − H


xn−1 − Xn

bn


an = max {µ,min {fn, ν ln(n + 1)}}

fn =

1 − n−1 fn−1 +

1
nhn

K

xn−1 − Xn

hn


,

(3)

where f0, x0, µ and ν are some positive constants, (hn) and (bn) are sequences of bandwidths, K is a positive bounded
kernel function and H(z) =

 z
−∞

K(u)du. Note that fn is the current recursive kernel density estimator of f (qp) and can be
rewritten as

fn =
1
n

n
i=1

1
hi
K


xi−1 − Xi

hi


,

such that when at time n the new observation Xn occurs, it is controlled when it is in the vicinity of the latest estimate xn−1.
The sequence xn estimates qp.

Note that the choiceH(z) =
1

1+e−z implies thatH


t
bn


→ 11{t≥0} as bn → 0. Thus, our estimator bears a resemblance in

its structure to the adaptive CAViaR model, introduced by Engle and Manganelli (2004) to estimate a quantile that changes
over time. CAViaR models are estimated by a quantile regression procedure. In addition, our algorithmmight also be useful
whenwe replace kernel estimation by sieve or wavelet estimation (see Cosma et al., 2007). Gourieroux et al. (2000) propose
a smooth algorithm for quantile estimation based on the Newton–Raphson procedure via the following relationship:

xn,k = xn−1,k +
p −Fn 

xn−1,k


fn 
xn−1,k

 , k = 1, 2, . . . , kmax, (4)

where kmax ≥ 1fn(·) andfn(·) are the density and distribution kernel estimators, respectively, based on the sample X1, . . . ,
Xn. For each sample size n, the total computational cost of (3) isO(n), which is a tremendous gain for our proposed algorithm
when compared to the computational cost of (4), which is O(nkmax). Thus, the quantile estimation using (4) requires time
that depends on the sample size and the number of iterations of the Newton–Raphson procedure, which tends to infinity.
Clearly, in a stream data setting, it can be impossible to perform the quantile computation at every step, in addition to there
being a lack of space to store all past values of the sample.

3. Assumptions and main results

Before presenting our results, let us consider the following assumptions:
(A1) K is a Lipschitz and continuous function such that

R
K(u)du = 1,


R
uK(u)du = 0 and


R
u2K(u)du < ∞.

(A2) f is a bounded function and is twice continuously differentiable on a neighborhood of qp.
(A3) (bn) and (hn) are sequences of bandwidths such that bn → 0, hn → 0 and nhn → ∞ as n → ∞. Furthermore, (hn)

satisfies


k≥1
1

k2h2k
< ∞.

To obtain a rate of almost-sure consistency for the recursive quantile estimator, we will suppose that the following
additional assumptions hold.

(A4) The bandwidth (bn) is such that


k≥1 k
δ−1b2k < ∞ for any δ < 1

2 .

Assumptions (A1)–(A3) are common in the nonparametric estimation field, whereas the last part of (A3) plays a crucial role
in our calculation. (A1) is fulfilled by Gaussian and uniform kernels. The choice hn = cn−a, 0 < a < 1/2,with c > 0, is a
typical example of a bandwidth satisfying (A3). Assumption (A4) is satisfied when bn = cn−b, with b > δ/2 and c > 0.
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The following theorem establishes the pointwise almost-sure convergence of xn and fn.

Theorem 1. Let (xn) and (fn) be generated by the algorithm (3), and define∆ = max

µ, f (qp)


.

(a) If Assumptions (A1)–(A3) hold, then

lim
n→∞

xn − qp
 = 0 a.s. and lim

n→∞
|an −∆| = 0 a.s.

(b) Under assumptions (A1)–(A4), if µ ≤ f (qp) and δ < 1/2, then

lim
n→∞

nδ(xn − qp) = 0 a.s.

Similar results were established by Robinson (1975) for a non-smoothed stochastic algorithm. Based on the work of
Robinson (1975), the same estimator was studied by Holst (1987) within the context of i.i.d. observations. In particular, if
H


xn−1−Xn

bn


is replaced by 11{xn−1−Xn<0} and hn = n−b with 0 < b < 1/2, we find the results obtained in the above men-

tioned references. Other results such as Theorem 1 have been demonstrated for various estimators. Indeed, following (2),
we could replace the constant A by any estimator of f (qp) based on sample observations. Tierney (1983) studied the almost-
sure convergence of a spaced-efficient recursive procedure based on the stochastic approximation, which corresponds to
the case in which the constant A is estimated by min


1
n

n
i=1

11{|xi−1−Xi |<hi}

2hi
, a0n−a1


,with a0 > 0 and 0 < a1 < 1/2.

The following theorem allows for the asymptotic normality of xn to be obtained.

Theorem 2. Let (xn) and (fn) be generated by the algorithm (3). Assume that assumptions (A1), (A3) and (A4) hold.

(a) If µ ≤ f (qp), then
√
n(xn − qp)

D
−→ N


0, p(1 − p)/f 2(qp)


.

(b) Moreover, if there exist c1 ≥ 0, c2 > 0 and 0 < β < 1 such that nh5
n → c1 and n1−βhn → c2, then

nhn(fn − f (qp))
D

−→ N

m, σ 2 ,

where m and σ 2 are defined by

m =
√
c1

f ′′(qp)
2 − β


R
z2K(z)dz and σ 2

=
f (qp)
2 − β


R
K 2(z)dz.

The choices of bandwidths previously provided are typical examples satisfying the conditions involved in Theorem 2.
Because the results of Theorem2 depend on unknown quantities, usable asymptotic distributions can be provided, replacing
f (qp) by its current estimate with the choice of bandwidth hn ∼ n−a, 1/5 < a < 1/2. This choice allows for the bias term
m to be canceled. Therefore, a confidence interval of qp with level 1 − α is defined by

xn − z1− α
2


p(1 − p)/nf 2n ; xn + z1− α

2


p(1 − p)/nf 2n


,

where z1− α
2
is the (1 −

α
2 )-quantile of the standard Gaussian distribution.

4. Numerical studies

This section provides a comparison between our proposed algorithm (label (1)) and two other quantile estimators
presented in the literature, namely a non-smooth stochastic algorithm (label (2)) proposed by Holst (1987) and the non-
recursive kernel method (label (3)) proposed by Gourieroux et al. (2000). Our objective is to test these different estimation
methods via a simulation study.

We examine the case of data streams inwhich the observations are continually captured over time and real-time updates
of the models are required. In practice, it is often difficult to obtain real-time stream data, but this type of scenario can be
generated from the so-called stream package available in the R software environment. This tool has support for reading and
writing data streams through an R connection that allows for data generated outside of the R environment to be accessed.
In our example, we use data streams with a dimensionality of 1 simulated and stored on disk. Once the simulated database
is created and saved on disk, we can open a connection to the file where it was written and treat it as a stream of data.
In this context, in which there is a time-varying sample size, the quantile estimations are initiated with n0 = ⌊nmax/4⌋
observations, and the models will be continuously updated until they reach a sample size of nmax. In this simulation, nmax
is the sample size at the end of the online estimation process. Clearly, the aim is therefore to compute the values of the
quantile estimators based on the respective sequences X1, . . . , Xn0+t , for 1 ≤ t ≤ nmax − n0. However, to optimize the
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process and avoid unnecessary calculations, we add convergence conditions in both algorithms; specifically, the algorithms
are terminated if the absolute distance between two values of the quantile estimator obtained in two successive steps is
less than 10−6. The same stop condition is also used for the Newton–Raphson procedure at each step n. Throughout the
simulation study, the maximum number of iterations of the Newton–Raphson algorithm is fixed to kmax = 100.

Three distributions are selected: Standard Normal, Standard Lognormal and Weibull (1, 1). The sample sizes generated
from these distributions are 100, 200, 300 and 400.

4.1. Pointwise estimation

To select the smoothing parameters, we apply a heuristic method proposed by Kulczycki and Dawidowicz (1999) as
follows.
• Compute a pilot kernel density estimator f̃n with the bandwidth h̃n = 1.06 × σnn−1/5, σn being the standard deviation

of the sample X1, . . . , Xn.

• Compute themodifying parameters si =


f̃n(Xi)
γ

−1/2
, i = 1, . . . , n, where γ is the geometricmean of f̃n(X1), f̃n(X2), . . . ,

f̃n(Xn).

Our proposed algorithm and the non-smooth stochastic algorithm of Holst (1987) are provided using the modified
smooth parameters hn = h̃nsn, n ≥ 1. This choice of bandwidths fulfills assumption (A4) because it can be shown that
the pilot estimator f̃n converges uniformly to f . To simplify, we set bn = hn, but our algorithm can be improved by other
choices of bn.

For the estimator developed by Nadaraya (1964), the quantile estimation is obtained by the Newton–Raphson procedure
suggested by Gourieroux et al. (2000) and Kulczycki and Dawidowicz (1999), where the density function is estimated by
the adaptive estimatorfn(x) =

1
nh̃n

n
i=1

1
si
K


x−Xi
h̃nsi


,whereas the estimator of the distribution function is given byFn(x) =

1
n

n
i=1 H


x−Xi
h̃nsi


.

The Gaussian kernel is considered in the implementation of both algorithms. We consider 100 replications and compute
the mean square errors (MSEs) for p = 0.05, 0.5, 0.75 and 0.95. For the initialization constants xn0 and fn0 , we choose the
empirical quantile computed through the n0 observations and the corresponding kernel density estimator. Concerning the
other quantities involved in the stochastic algorithms, we set ν = 1, whereas µ is selected by a cross-validation procedure
over 100 equi-spaced points of the set [0, 1]. More precisely, we consider µ ∈ {0, 1/100, 2/100, . . . , 1} and the cross-
validation criterion

CV(µ) =
1

100

100
i=1


x(µ)n,i − qp

2
,

where x(µ)n,i is the estimated quantile for the ith stage of the Monte Carlo procedure given the sample size n and p ∈ (0, 1).
Then, we select the value µCV of µ that minimizes CV(µ).

Table 1 summarizes the performances of the differentmethods. From these results, it can be observed that (1) and (2) are
relatively more efficient (they performed better than (3) in 73% of the cases), whereas our proposed algorithm performed
relatively better than the non-smooth algorithm in 52%of the cases, even if for theWeibull distribution, the estimator (2)was
56% more efficient than (1). Estimators (1) and (2) are superior to estimator (3) mainly because to perform (3) at each step,
the researcher must first estimate the density and the distribution functions and then substitute these estimators into the
Newton–Raphson approximation. Unfortunately, no method performs better than any other one for any given probability
level and sample size. Globally, the estimation errors of the three methods are relatively close.

4.2. Computational times

Next, we compare the performance of both estimators in terms of computational time, which is another criterion that
is used when evaluating the efficiency of algorithms in a data stream setting. Table 2 summarizes the different results. As
expected, estimators (1) and (2) show a clear advantage with regard to computational time compared with estimator (3).
Additionally, it can be observed that our estimator is efficient with regard to computational time. The estimator is efficient
because the proposed algorithm can quickly reach the fixed threshold, unlike the two other methods.

In short, the advantage of our proposed approach involves the computational time gain that takes place without a sub-
stantial increase in the estimation errors.

5. Proofs

In the proofs, c will denote a constant whose value is unimportant and may vary from line to line. In addition, let Fn be
the σ -algebra generated by X1, . . . , Xn and set

Hbn(xn−1) = H

xn−1 − Xn

bn


and Khn(xn−1) = K


xn−1 − Xn

hn


.
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Table 1
Efficiency of quantile estimators.

p (1) (2) (3) (1) (2) (3)

Normal

nmax = 100 nmax = 200
0.05 0.0215 0.0434 0.0361 0.0052 0.0121 0.0196
0.5 0.0037 0.0046 0.0087 0.0084 0.0065 0.0069
0.75 0.0227 0.0255 0.0185 0.0056 0.0072 0.0084
0.95 0.0441 0.0691 0.0296 0.0064 0.0113 0.0159

nmax = 300 nmax = 400
0.05 0.0080 0.0064 0.0295 0.0437 0.0182 0.0316
0.5 0.0098 0.0097 0.0102 0.0008 0.0009 0.0009
0.75 0.0059 0.0064 0.0111 0.0032 0.0037 0.0027
0.95 0.0166 0.0093 0.0174 0.0021 0.0012 0.0109

Lognormal

nmax = 100 nmax = 200
0.05 0.0361 0.0373 0.1611 0.0046 0.0020 0.2693
0.5 0.0048 0.0053 0.0123 0.0035 0.0040 0.0177
0.75 0.0254 0.0200 0.0286 0.0416 0.0415 0.0415
0.95 0.1888 0.1960 0.0662 0.6455 0.7153 0.6402

nmax = 300 nmax = 400
0.05 0.0003 0.0006 0.2473 0.0037 0.0003 0.2294
0.5 0.0045 0.0036 0.0088 0.0032 0.0031 0.0084
0.75 0.0258 0.0274 0.0204 0.0187 0.0189 0.0192
0.95 0.5930 0.5932 0.4223 0.3257 0.4179 0.3704

Weibull(1, 1)

nmax = 100 nmax = 200
0.05 0.0085 0.0005 0.0731 0.0040 0.0002 0.0452
0.5 0.0086 0.0067 0.0088 0.0035 0.0039 0.0040
0.75 0.0034 0.0056 0.0193 0.0128 0.0124 0.0109
0.95 0.0114 0.0154 0.1865 0.0827 0.0660 0.0981

nmax = 300 nmax = 400
0.05 0.0022 0.0002 0.0303 0.0019 0.0001 0.0286
0.5 0.0066 0.0050 0.0035 0.0015 0.0013 0.0019
0.75 0.0073 0.0071 0.0081 0.0057 0.0057 0.0064
0.95 0.0515 0.0769 0.0461 0.0495 0.0423 0.0511

Table 2
Computational time in seconds of the three algorithms.

nmax 100 200 300 400 500

(1) 5.965 39.257 136.382 222.272 539.415
(2) 7.315 53.579 181.802 411.728 806.535
(3) 12.751 77.226 226.176 488.098 906.395

5.1. Proof of Theorem 1

In the sequel, we assume that n is large enough. It follows from (3) that

E


xn − qp
2

|Fn−1


≤


xn−1 − qp

2
+ 2n−1a−1

n


xn−1 − qp

 
p − EHbn(xn−1)


+ cn−2.

Integration by parts and a change of variables with the help of Taylor’s formula allows for the following expression

p − EHbn(xn−1) = p −
1
bn


R
K


xn−1 − u

bn


F(u)du =


R
K(v)


F(qp)− F(xn−1 − bnv)


dv

= F(qp)− F(xn−1)+ τn,

with

τn =
b2n
2


R
v2K(v)f ′(xn−1 + tbnv)dv where 0 < t < 1.

Since τn → 0 as n → ∞ and qp is uniquely defined, then |τn| ≤ inf{x:|x−qp|>0}
F(qp)− F(x)

 which implies that

xn−1 − qp


F(xn−1)− F(qp)− τn


≥ 0, for n large enough. Consequently,

E


xn − qp
2

|Fn−1


≤


xn−1 − qp

2
− 2n−1a−1

n

xn−1 − qp
 F(xn−1)− F(qp)− τn

 + cn−2.
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Lemma 3 (see the Appendix) allows to conclude that
xn−1 − qp

 → ξ a.s., where ξ is a random variable and

+∞
k=2

k−1a−1
k

xk−1 − qp
 F(xk−1)− F(qp)− τk

 < ∞ a.s. (5)

It remains to be shown that ξ = 0 a.s. Suppose that this is not the case; then there exists a set S with P(S) > 0 such that
ξ(ω) > 0 for everyω ∈ S. Letω ∈ S; therefore, there exists ϵ > 0 such that |xn−1(ω)−qp| > ϵ. Since qp is uniquely defined,
we obtain inf{x:|x−qp|>ϵ}

F(qp)− F(x)
 > 0. By the definition of an (see Eq. (3)) and because τn → 0 as n → 0, there exists

an integer N such that
+∞
k=2

k−1a−1
k

xk−1 − qp
 F(xk−1)− F(qp)− τk

 ≥ ϵ/(2ν) inf
{x:|x−qp|>ϵ}

F(qp)− F(x)
 
n≥N

(n ln(1 + n))−1
= ∞,

which contradicts (5), and the first part of Theorem 1(a) follows. To show that limn→∞ |an −∆| = 0 a.s., define

vn = n−1
n

k=1

1
hk

E

Khk (xk−1) |Fk−1


,

therefore, we have

fn − vn =
1
n

n
k=1

1
hk


Khk (xk−1)− E


Khk (xk−1) |Fk−1


=

1
n

n
k=1

Uk

hk
, with Uk = Khk (xk−1)− E


Khk (xk−1) |Fk−1


.

Because Var(Uk) < ∞, using (A3), we obtain


k≥1 Var


Uk
khk


≤ c


k≥1

1
k2h2k

< ∞. Using the stability theorem (see Loève,

1978, p. 53), fn − vn → 0 a.s. Next, we have

vn = n−1
n

k=1


R
K(z) [f (xk−1 − hkz)− f (xk−1)] dz + n−1

n
k=1

f (xk−1) (6)

and because f is continuous, the first term on the right-hand side of (6) tends to zero almost surely, which ensures that
vn → f (qp) a.s., thus completing the proof of (a). Concerning (b), from (3), we can write

xn − qp = xn−1 − qp + n−1a−1
n


F(xn−1)− Hbn(xn−1)


+ n−1a−1

n [p − F(xn−1)] .

Taylor’s expansion of F in the neighborhood of qp yields F(xn−1)− p = (xn−1 − qp)

f (qp)+ o(1)


. It follows that

xn − qp = (xn−1 − qp)

1 − n−1a−1

n


f (qp)+ o(1)


+ n−1a−1

n


F(xn−1)− Hbn(xn−1)


. (7)

Obviously, nδ = (n − 1)δ

1 +

1
n−1

δ
= (n − 1)δ


1 + n−1

[δ + o(1)]

, and thus, one may write

nδ

xn − qp


= (n − 1)δ(xn−1 − qp)


1 −

f (qp)+ o(1)
nan

 
1 +

δ + o(1)
n


+

F(xn−1)− Hbn(xn−1)

n1−δan

= (n − 1)δ(xn−1 − qp)

1 −

f (qp)+ o(1)
nan

+
δ + o(1)

n


+


F(xn−1)− Hbn(xn−1)

n1−δan


:= (n − 1)δ(xn−1 − qp) (1 − Un)+

Vn

n1−δan
.

From Lemma 4 (see the Appendix), the second part of Theorem 1 will be proven if we show that

Un ≥ 0,

n≥1

Un = ∞ and

n≥1

nδ−1a−1
n Vn < ∞.

To this end, note that limn→∞ an = f (qp); therefore, we have a−1
n f (qp) ≥ δ for sufficiently large n, which implies that

n≥1 Un = ∞ is obvious.
Now, let us show that


n≥1 n

δ−1a−1
n Vn < ∞. Set Sn =

n
k=1 k

δ−1a−1
k Vk. Clearly, Sn = Sn1 + Sn2, where

Sn1 =

n
k=1

kδ−1a−1
k


F(xk−1)− E(Hbk(xk−1))


and

Sn2 =

n
k=1

kδ−1a−1
k Wk where Wk = E(Hbk(xk−1))− Hbk(xk−1).
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Because Var(Hbk(xk−1)) < ∞, we obtain

+∞
k=1

k2δ−2a−2
k Var(Wk) ≤ c

+∞
k

k2δ−2a−2
k ≤ c

+∞
k

k2δ−2 < ∞

as soon as δ < 1/2. Because Wk is a martingale difference sequence, Theorem 2.8.7 in Stout (1974, p. 65), ensures that Sn2
converges. On the other hand, using integration by parts, we can write

E

Hbk(xk−1)


− F(xk−1) =


R
[F(xk−1 − bku)− F(xk−1)] K(u)du.

A second-order Taylor expansion of F(xk−1 − bku) provides that

E

Hbk(xk−1)


− F(xk−1) =

F ′′(qp)
2

b2k


R
u2K(u)du [1 + o(1)] .

Therefore, Assumption (A4) ensures that Sn1 converges, which concludes the proof of Theorem 1. �

5.2. Proof of Theorem 2

From (7), one may write xn − qp = (xn−1 − qp)

1 − n−1Γn


+ n−1a−1

n Vn, with

Γn = a−1
n


f (qp)+ o(1)


and Vn =


F(xn−1)− Hbn(xn−1)


.

Because a−1
n → (f (qp))−1, using Lemma 5 (see the Appendix), we can obtain (a) if we show that

(i) E

V 2
n |Fn−1


→ p(1 − p) and (ii) E


V 2
n 1{V2

n ≥rn}


→ 0 as n → ∞ for every r > 0.

For (i), let us write

E

V 2
n |Fn−1


=


F(xn−1)− E(Hbn(xn−1))

2
+ Var


Hbn(xn−1)


.

From Theorem 1(a), it is obvious that E

Hbn(xn−1)


= F(xn−1)+ o(1) = p + o(1). Moreover, by integration by parts and a

change of variables, and with the help of the definition of H , we obtain

E

H2

bn(xn−1)


=
2
bn


R
K


xn−1 − t

bn


H


xn−1 − t

bn


F(t)dt

= 2


R
K(u)H(u)F(xn−1 − bnu)du = p + o(1).

We deduce that E

V 2
n | Fn−1


= p(1− p) [1 + o(1)]. Because Vn is bounded, (ii) is trivially satisfied, which proves (a). Now,

for (b), consider the following decomposition

fn − f (qp) = (1 − n−1)

fn−1 − f (qp)


+ n−(1+β)/2V ∗

n + n−1−β/2Tn,

where

V ∗

n =
1

√
n1−βhn


Khn (xn−1)− hnf (xn−1)− hnBn(xn−1)


and Tn = nβ/2


f (xn−1)+ Bn(xn−1)− f (qp)


,

with Bn(x) =


R K(z) [f (x − hnz)− f (x)] dz. Following the same lines of the proof of (a), by applying Lemma 5 once more,
it suffices to show that

E

V ∗

n
2
|Fn−1


→ Σ :=

f (qp)
c2


R
K 2(z)dz, (8)

E

V ∗

n
2
1

{V∗
n
2
≥rn}


→ 0 as n → ∞ for every r > 0, (9)

Tn → T :=


c1
c2

f ′′(qp)
2


R
z2K(z)dz as n → ∞. (10)

For (10), Taylor’s formula and Assumptions (A1) and (A2) ensure that there exists t ∈]0, 1[ such that

Bn(xn−1) =
h2
n

2


R
z2K(z)f ′′(xn−1 − thnz)dz.
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Therefore, because nh5
n → c1 ≥ 0 and n1−βhn → c2, using Theorem 1(b), we obtain limn→∞ Tn = T , and (10) follows.

Concerning (8), we have

E

V ∗

n
2
|Fn−1


=

1
n1−βh2

n


R
K 2


xn−1 − u

hn


f (u)du + o(1)

=
f (xn−1)

n1−βhn


R
K 2(z)dz +

1
n1−βhn


R
K 2(z) [f (xn−1 − hnz)− f (xn−1)] dz + o(1)

=
f (qp)
c2


R
K 2(z)dz [1 + o(1)] = Σ [1 + o(1)] .

Let us now prove the Lindeberg condition (9). Because E

V ∗
n
2 < ∞ and V ∗

n
2

≤ ch−1
n , then for any r > 0,

E

V ∗

n
2
1

{V∗
n
2
≥rn}


≤ ch−1

n E

1

{V∗
n
2
≥rn}


≤ ch−1

n P

V ∗

n
2

≥ rn


≤ cr−1(nhn)
−1E


V ∗

n
2

,

and we can deduce (9). With the notations of Lemma 5, we have Γn = Φn = 1, α = 1. Therefore,

nβ/2

fn − f (qp)

 D
−→ N


(1 − β/2)−1 T , (2 − β)−1Σ


,

whereΣ and T are respectively defined in (8) and (10). The decomposition
nhn


fn − f (qp)


=


n1−βhnnβ/2


fn − f (qp)


and the condition n1−βhn → c2 with c2 > 0 allow for the conclusion of the proof of Theorem 2. �
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Appendix

In this section, we present technical lemmas used in our proofs. In their paper, Robbins and Siegmund (1971) proved the
following lemma.

Lemma 3. Let (Ω,F , P) be a probability space and F1 ⊆ F2 ⊆ . . . be a sequence of sub σ -fields of F . Let Un, βn, ξn and ζn,
n ∈ N∗ be nonnegative Fn-measurable random variables such that

E [Un+1|Fn] ≤ (1 + βn)Un + ξn − ζn.

Therefore, on the set {


n βn < ∞,


n ξn < ∞}, Un converges a.s. to a random variable and


n ζn < ∞ a.s.

Moreover, the following lemma is stated in Venter (1976).

Lemma 4. If ξn is a real sequence satisfying ξn+1 = (1− an)ξn + bn where an ≥ 0, an → 0,


n an = ∞ and


n bn converges,
then ξn → 0 as n → ∞.

Finally, we present the lemma of Fabian (1968) which is adapted to our context.

Lemma 5. Let Fn ⊂ F . Suppose Un, Vn, Tn, T , Γn, Φn,Σ,Φ ∈ R and Γ > 0. Suppose Γn, Φn−1, Vn−1 are Fn-measurable, 0 <
α ≤ 1, β ≥ 0, β+ =


β if α = 1
0 if α ≠ 1 and

Γn → Γ , Φn → Φ, Tn → T or E |Tn − T | → 0
E [Vn|Fn] = 0, E


V 2
n |Fn


→ Σ and

for every r > 0, lim
j→∞

E

Vj

2
1

{Vj2≥rjα}


= 0 or α = 1, lim

n→∞

1
n

n
j=1

E

Vj

2
1

{Vj2≥rjα}


= 0.

Suppose that β+ < 2Γ and Un+1 =

1 − n−αΓn


Un + n−(α+β)/2ΦnVn + n−α−β/2Tn. Then

nβ/2Un
D

−→ N

(Γ − β+/2)−1T , (2Γ − β+)

−1Σ

.
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