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Abstract: Standardization, data mining techniques, and comparison to normality are changing the
landscape of multiparameter flow cytometry in clinical hematology. On the basis of these principles,
a strategy was developed for measurable residual disease (MRD) assessment. Herein, suspicious
cell clusters are first identified at diagnosis using a clustering algorithm. Subsequently, automated
multidimensional spaces, named “Clouds”, are created around these clusters on the basis of density
calculations. This step identifies the immunophenotypic pattern of the suspicious cell clusters.
Thereafter, using reference samples, the “Abnormality Ratio” (AR) of each Cloud is calculated, and
major malignant Clouds are retained, known as “Leukemic Clouds” (L-Clouds). In follow-up samples,
MRD is identified when more cells fall into a patient’s L-Cloud compared to reference samples (AR
concept). This workflow was applied on simulated data and real-life leukemia flow cytometry data.
On simulated data, strong patient-dependent positive correlation (R2 = 1) was observed between
the AR and spiked-in leukemia cells. On real patient data, AR kinetics was in line with the clinical
evolution for five out of six patients. In conclusion, we present a convenient flow cytometry data
analysis approach for the follow-up of hematological malignancies. Further evaluation and validation
on more patient samples and different flow cytometry panels is required before implementation in
clinical practice.

Keywords: acute myeloid leukemia (AML); flow cytometry; multiparametric data analysis; clustering;
kernel density estimation; personalized medicine

1. Introduction

Multiparameter flow cytometry (MFC) is a powerful technology for cell phenotyping, capable of
analyzing multiple parameters on millions of single cells in a short period of time [1]. This technique
is helpful for the diagnosis of hematological malignancies, and its use for disease monitoring has
gained a large amount of interest in the last decades through the evaluation of minimal/measurable
residual disease (MRD). However, the pitfalls of current MRD assessment strategies by MFC are still
numerous, with pre-analytical, analytical, and post-analytical issues. It has now become obvious
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that the use of MFC for this purpose requires some degree of standardization/harmonization and less
subjectivity [2–5].

The immunophenotypic follow-up of acute myeloid leukemia (AML) is a difficult topic, mainly
given the important heterogeneity of the disease [6–8]. Multiple approaches such as the follow-up
of leukemia-associated immunophenotypes (LAIP) and “different from normal” (DfN) strategies
have been proposed [9,10]. The European LeukemiaNet (ELN) working party published a consensus
document on AML MRD combining the two strategies into a “LAIP-based DfN approach” [11].
Nevertheless, no data of this combined approach have yet been published [12].

In this study, we aimed to propose an original and more reproducible analysis strategy for the
development of promising MFC biomarkers for disease-based MRD assessment. This strategy was
applied to data from AML patients for creating patient-specific MRD models.

For creating good models, the performance of a model must be optimized in regard to its objective.
The objective of the present approach was to obtain a strategy that confers a very high positive
predictive value (PPV) for relapse. Importantly, the interest of a model with high PPV would take the
position of a first-line classification tool for MRD—positive tests would not require further testing for
evaluating disease persistence, whereas negative tests would require further investigations.

2. Experimental Section

2.1. Study Material

This study received the approval of the ethics committee of the University Hospital, CHU UCL
Namur, Belgium (CE-164/2018)). Retrospective bone marrow MFC data from 6 AML patients at
diagnosis (6 FCS (flow cytometry standard) files) and follow-up (46 FCS files) were used, as well as
20 reference patients (control group), thus yielding a total of 72 FCS files, from which an additional
36 simulated MRD FCS files were generated. All FCS files are available in open source in the
Supplementary Materials section. Patient characteristics and flow diagram are given in Table 1 and
Figure 1. The reference samples included nine bone marrows of immune/idiopathic thrombocytopenic
purpura (ITP) patients, eight “normal bone marrows”, and three bone marrows from patients with
underlying solid cancer without bone marrow infiltration. The “normal bone marrows” were drawn
from patients with unexplained mild cytopenia. Follow-up of these patients always concluded on
transient or constitutive mild cytopenia without clear explanation and without malignant evolution.
For all samples, the same in-house standardized 10-parameter MFC assay was performed using a
FACS Canto II (BD Biosciences, Erembodegem, Belgium). The panel used comprised antibodies to
CD45, CD3, CD13, CD19, CD33, CD34, CD117 and HLA-DR. Forward and side scatter features (FSC
and SSC, respectively) were also taken into account for analyses. For this algorithm, every recorded
cytometry event was considered as a cell, in order to avoid potential subjectivity through the manual
elimination of debris or doublets. In this specific study, this was considered acceptable because there
was no evidence of major differences in the amount of debris/doublets in the patient cohort compared
to the reference sample cohort.

2.2. Study Methods

The algorithm presented in this study was developed using the Infinicyt software (Cytognos,
Salamanca, Spain, V2.0.1.c.100). Two data analysis methods were used consecutively: clustering
and contour gating. In the Infinicyt software, clustering is based on cell density and a
k-nearest neighbor (KNN)-based algorithm using the Euclidean distances of transformed raw data
(patent no. US10133962B2). For contour gating, kernel density estimation is used through the use of
the “reference image” tool of the Infinicyt software. It allows delineating the position of a clustered cell
population in two-dimensional spaces on the basis of density calculations. In this study, the largest
possible kernel density estimation functions available were used (probability model with a resolution
of 64 bins) according to the Infinicyt software.
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Table 1. Clinical, cytogenetical, and molecular characteristics of six acute myeloid leukemia (AML) patients.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6

Age at diagnosis 47 years 66 years 65 years 59 years 62 years 71 years

Sex Male Male Male Female Male Female

WBC/µL at diagnosis <100,000 <100,000 <100,000 <100,000 <100,000 >100,000

WHO classification (2016)
AML–NOS (Acute
myelomonocytic

leukemia)

AML with MDS-related
changes NPM1-mutated AML AML–NOS (AML

with maturation)
AML with

MDS-related changes Therapy-related AML

2017 ELN risk
classification Adverse Adverse Favorable Adverse Intermediate Favorable

Initial chemotherapy aracytin–idarubicin–
lenalidomide

aracytin–daunorubicin–
selinexor aracytin–daunorubicin aracytin–idarubicin aracytin–idarubicin cytarabine–daunoubicin–

midostaurin

Consolidation therapy ASCT ASCT Anti-WT1 vaccination ASCT ASCT Aracytin–midostaurin

Cytogenetic at diagnosis
t(6;11), t(11,14),

partial tetrazomy of
11q

Hyperdiploidy–trisomy 8 Normal karyotype Hyperdiploidy–t(2;12),
trisomy 4 Normal karyotype Normal karyotype

Mutations at diagnosis FLT3 and partial MLL
tandem duplication CEBPA–ASLX1–STAG2 NPM1–WT1 WT1–ASLX1–GATA2 / NPM1–FLT3

WBC: white blood cells; WHO: World Health Organization; AML: acute myeloid leukemia; NOS: not otherwise specified; NPM1: nucleophosmin 1; MDS: myelodysplastic syndrome;
ELN: European LeukemiaNet; ASCT: allogeneic stem cell transplantation; t: translocation; FLT3: Fms-like tyrosine kinase 3 gene; MLL: mixed lineage leukemia 1 gene; CEBPA:
CCAAT/enhancer-binding protein alpha gene; ASXL1: ASXL transcriptional regulator 1 gene; STAG2: stromal antigen 2 gene; WT1: Wilm’s tumor 1 gene; GATA2: GATA binding protein
2 gene.
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Figure 1. Flow diagram of acute myeloid leukemia patients and reference patients. Figure 1. Flow diagram of acute myeloid leukemia patients and reference patients.

On the basis of the consecutive use of these two data analysis methods, three new concepts were
described: the “Cloud”, the “Leukemic Cloud” or “L-Cloud”, and the “Abnormality Ratio” or “AR”
(Figure 2). Briefly, a Cloud represents a model describing the position of a cell cluster (obtained by
a clustering algorithm) in the multidimensional space. The L-Cloud is a Cloud for which the cell
cluster is predominantly malignant; it is identified at diagnosis of a hematological malignancy. Of note,
multiple L-Clouds may be identified at diagnosis. Both Clouds and L-Clouds are assay-specific and
patient-specific. The AR is a calculated parameter obtained by dividing the percentage of patient cells
falling into an (L-)Cloud by the percentage of cells from a control group (reference samples) falling into
the same (L-)Cloud.

The following workflow (AR/L-Cloud workflow) was then designed (Figure 2):

(a) From a diagnostic AML sample, clustering is used on MFC data to obtain cell clusters.
(b) Suspicious cell cluster(s) are then identified on the basis of their aberrant immunophenotypic

profile. These are usually CD45 low, with low SSC [13], and are often CD34-positive and form in
most cases a unique cluster of >10% of total cells. However, given the important heterogeneity of
AML, a suspicious cell cluster should always be identified by experienced cytometrists on the
basis of their scientific knowledge of the disease.

(c) Once suspicious cell clusters are identified, “Cloud(s)” are created. A “Cloud” is created by
the Boolean intersection of the contour gates of 45 bi-parametric plots (each parameter vs. each
parameter, using logicle transformation for fluorescence parameters and linear transformation for
FSC and SSC).

(d) Once a Cloud is created at diagnosis, its Abnormality Ratio (AR) can be calculated. The AR is
calculated as follows: AR = ((Cloud cells/total cells) of patient sample)/((Cloud cells/total cells) of
control group sample). Note: If # Cloud cells = 0, use 1.
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(e) The Cloud with the highest AR, formed by a cell cluster of at least 1 × 104 cells (arbitrary value)
at diagnosis will define a “Leukemic Cloud” or “L-Cloud”. Of note, if multiple Clouds of at least
5 × 103 cells have an AR of >1000 (arbitrary value), all should be considered as L-Clouds. The
Cloud with the highest AR and at least 1 × 104 cells will be considered the “the major L-Cloud”.
MRD assessment at follow-up will be done through the AR calculation at follow-up of L-Clouds.
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Figure 2. The principle of the “Cloud”, “L-Cloud”, and “Abnormality Ratio” concepts; AR: Abnormality
Ratio. Infinicyt software (Cytognos, Salamanca, Spain) was used for flow cytometry data
representation, automated clustering (k-nearest neighbor-based clustering), and automated contour
gating (two-dimensional kernel density estimation).

2.2.1. Endpoint 1: Theoretical Evaluation of the AR/L-Cloud Concept

For the theoretical evaluation, the “L-Cloud specificity” was defined by the number of cells of the
reference samples falling outside an L-Cloud divided by the number of cells of the reference samples
analyzed. “L-Cloud sensitivity” was defined by the number of cells from the “L-Cloud cell cluster”*
falling into the L-Cloud divided by the number of cells contained into this same cluster.(* Cell cluster
used to define the L-Cloud).

Global Evaluation of the AR/L-Cloud Concept

For this endpoint, simulated MRD MFC data were created by computationally spiking AML cells
into 1 × 106 cells of reference samples.

Obtaining AML cells

Using the diagnostic FCS files of the six AML patients and the AR/L-Cloud workflow detailed
above, 1 × 104 cells were sampled (by bootstrapping in R (R-3.5.2)) out of the cell cluster defining the
major L-Cloud of each AML patient. We thus obtained six FCS files, each containing 1 × 104 cells from
the “major L-Cloud cell cluster”* (AML-FCS). (*Cell cluster used to define the major L-Cloud).

Simulation of MRD samples
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First, the FCS files of the 20 reference samples were merged, and then 1 × 106 cells were sampled
(by bootstrapping in R (R-3.5.2)) and saved in a separate FCS file. We thus obtained one FCS file
with a mixture of 1 million normal cells (NORM-FCS). Thereafter, simulated MRD was created by
computationally spiking a decreasing number of randomly selected cells from the “major L-Cloud cell
cluster”* (5000, 1000, 500, 100, 50, 10 cells) to the NORM-FCS file, that is, ≈0.5%, 0.1%, 0.05%, 0.01%,
0.005%, and 0.001% simulated MRD. All these simulated follow-up data were saved into separate FCS
files, thus obtaining 36 FCS files. (*These cells were different than the cells of the AML-FCS files).

Evaluation procedure

• L-Clouds were created using the AML-FCS files.
• Performance characteristics (specificity and sensitivity) of the different L-Clouds were calculated

using the AML-FCS files and the NORM-FCS file.
• The AR was calculated for each of the 36 simulated follow-up data and compared to the expected

theoretical results for each patient.

Evaluation of the Influence of Each Measured Parameter on the Intrinsic Performance of the L-Cloud

For this endpoint, the AML-FCS files and the NORM-FCS file were used.

Evaluation procedure

Using the Infinicyt software and the L-Clouds (based on the AML-FCS files), a forward selection
was performed on the basis of the specificity value (using the NORM-FCS file) for all steps except the
first one. First, the contour gate of the bi-parametric FSC-A/SSC-A graph was selected; the contour
gates related to the other parameters were then introduced one at a time. At each step, the improvement
in specificity was calculated for each remaining parameter and the one giving the highest improvement
was selected. The process was repeated until all parameters were introduced. At this stage, the L-Cloud
was not optimized in terms of sensitivity/specificity—no criteria were used to limit the inclusion of
parameters and no backwards deletion was performed.

2.2.2. Endpoint 2: Clinical Evaluation of the AR/L-Cloud Concept

For this endpoint, the diagnostic and follow-up MFC data of the 6 AML patients were used, as
well as all the data from the 20 reference patients. Using the proposed AR/L-Cloud workflow, AR was
calculated at diagnosis and for each follow-up time point. AR results were also evaluated with regard
to clinical aspects (treatments) and compared with morphological (remission/blast percentage) and
molecular information when available.

3. Results

Results related to the theoretical evaluation of the AR/Cloud concepts (endpoint 1) are given
in Table 2 and Figure 3. Table 2 provides the results with regard to the in silico simulated MRD
data (endpoint 1a) with all AR and the number of cells falling into the L-Cloud for each simulation.
Correlation coefficients between AR and expected theoretical results showed a perfect correlation for
each patient (R2 = 1). The mean sensitivity for the L-Clouds was 66.28%, whereas the specificity ranged
from 99.9502% (patient 5) to 99.9999% (patient 4). The specificity had a major impact on AR outcome,
ranging for example from 2.38 (patient 5) to 720.28 (patient 4) for the 0.1% MRD simulation.



Diagnostics 2020, 10, 317 7 of 14

Table 2. Global theoretical validation of the L-Cloud and Abnormality ratio concepts. Six L-Clouds were established on the basis of 10ˆ4 cells from the major malignant
cell cluster of six AML patients at diagnosis (patients 1–6). Multiple measurable residual disease (MRD) levels were simulated by bootstrapping (from ≈0.5% MRD to
≈0.001%), using a mixture of normal cells (1 × 106 cells) sampled from 20 reference patients (control group) and adding cells from each patient’s major malignant cell
cluster (5000 (≈0.5%), 1000 (≈0.1%), 500 (≈0.05%), 100 (≈0.01%), 50 (≈0.005%), or 10 cells (≈0.001%)). The number of cells retrieved into the patient-specific L-Cloud
for the control group and each MRD simulation were determined, and AR was calculated for the MRD simulations. AR: Abnormality Ratio; MRD: measurable
residual disease.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6

L-Cloud sensitivity ‡ 65.75% 66.25% 64.63% 66.76% 68.28% 65.99%

L-Cloud specificity § 99.9930% 99.9981% 99.9995% 99.9999% 99.9502% 99.9690%

1–(L-Cloud specificity) 0.0070% 0.0019% 0.0005% 0.0001% 0.0498% 0.0310%

Number of cells retrieved
into the L-Cloud *

Control group 70 19 5 1 498 310

0.5% MRD simulation 3234 3228 3791 3567 3948 4037

0.1% MRD simulation 707 680 773 721 1185 1066

0.05% MRD simulation 391 345 385 361 841 685

0.01% MRD simulation 122 85 81 83 566 373

0.005% MRD simulation 101 48 41 35 531 344

0.001% MRD simulation 78 26 12 6 506 317

Abnormality Ratio (AR) †

0.5% MRD simulation 45.97 169.05 754.43 3549.25 7.89 12.96

0.1% MRD simulation 10.09 35.75 154.45 720.28 2.38 3.44

0.05% MRD simulation 5.58 18.15 76.96 360.82 1.69 2.21

0.01% MRD simulation 1.74 4.47 16.20 82.99 1.14 1.20

0.005% MRD simulation 1.44 2.53 8.20 35.00 1.07 1.11

0.001% MRD simulation 1.11 1.37 2.40 6.00 1.02 1.02

* The L-Cloud represents a model describing a multidimensional space where malignant cells are found. This region is patient-specific and is established following a well-defined algorithm
at diagnosis (see Section 2.2). † The AR is a calculated parameter obtained by following formula: AR = ((L-Cloud cells per total cells) of simulated sample)/((L-Cloud cells per total cells) of
control group sample). ‡ The L-Cloud sensitivity is defined by the number of cells from the “L-Cloud cell cluster” falling into the L-Cloud divided by the number of cells contained into this
same cluster (= 104 cells) as a percentage. § The L-Cloud specificity is defined by the number of cells of the control group falling outside the L-Cloud divided by the number of cells of the
control group analyzed (= 106 cells) as a percentage.
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Figure 3. Influence of the parameters on the sensitivity and specificity of each patient-specific L-Cloud.
The abscissa (1-specificty %) indicates the false positive rate of the L-Cloud (%); the ordinate indicates
the L-Cloud sensitivity (%). Using Infinicyt software and patient-specific L-Clouds, established on
the basis of 104 cells from the major malignant cell cluster of six AML patients at diagnosis (patients
1–6), a forward selection based on the L-Cloud specificity (using a mixture 1 × 106 of normal cells
from reference samples) was performed for each patient (1–6). In a first step, the FSC-A and SSC-A
parameters were selected. In the following steps, the other parameters were introduced one at a time.
At each step, the improvement in specificity was determined for each remaining parameter and the
one with the highest improvement was added. The process was repeated until all parameters were
introduced. The L-Cloud represents a model describing a multidimensional space where malignant
cells are found. This region is patient-specific and is established following a well-defined algorithm
at diagnosis (see Section 2.2). The L-Cloud sensitivity is defined by the number of cells from the
“L-Cloud cell cluster” falling into the L-Cloud divided by the number of cells contained into this same
cluster (= 104 cells) as a percentage. The L-Cloud specificity is defined by the number of cells of the
control group falling outside the L-Cloud divided by the number of cells of the control group analyzed
(= 106 cells) as a percentage.

Figure 3 shows the evaluation of the influence of each measured parameter on the intrinsic
performance of each L-Cloud (endpoint 1b). This highlights between-patient differences with regard to
the added value of each parameter. Of note, for all patients in this study, the addition of CD19 and
CD3 reduced the L-Cloud sensitivity without impacting the L-Cloud specificity.

Figure 4 shows the results related to the clinical evaluation of the AR/L-Cloud concepts. It represents
real-life data. The total number of cells analyzed for each patient and reference patient are summarized
in Table S1 (supplemental data). Table S1 also includes the number of cells retrieved into the L-Clouds
for each study patient and reference patient.
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Figure 4. Comparison of the Abnormality Ratio (AR) with morphology and molecular biology results over time for six acute myeloid leukemia patients. Graphics:
abscissa = time (DD/MM/YY); ordinate = AR; ASCT: allogeneic stem cell transplantation; induction: induction therapy; consolidation: consolidation therapy; Blasts%:
percentage of blast cells among nucleated cells established on morphological basis on bone marrow aspirate; Morphology: bone marrow aspiration conclusion based
on morphological results; Mol. Biol.: bone marrow aspirate molecular biology results (follow-up columns) based on mutations at diagnosis (diagnosis column).
The presence of MLL at follow-up was evaluated by RT-PCR, with a limit of detection (LOD) of 5%. The presence of CEBPA mutation at follow-up results was
evaluated by PCR, followed by Sanger sequencing, with a LOD of 10%. The presence of NPM1 at follow-up was evaluated by RT-PCR with a limit of detection
of 1:10,000 cells. NPM1 results are expressed in terms of percentage ratio (NPM1/ABL1); the presence of WT1 expression at follow-up was evaluated by RT-PCR
(+ = WT1 overexpression; − = no WT1 overexpression). RT-PCR: reverse transcriptase–polymerase chain reaction; NPM1: nucleophosmin 1; MLL: partial tandem
duplication of KMT2A gene; CEBPA: CCAAT enhancer binding protein alpha gene; WT1: Wilm’s tumor 1 gene; AR: Abnormality Ratio. AR1 and AR2 for patient 2
were defined because two cell clusters of at least 5 × 103 cells had an AR > 1000 at diagnosis (two different L-Clouds).
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For patient 1, a decrease of AR was observed after induction therapy, yet remained >5, although
morphological remission was obtained and MLL fusion transcripts became undetectable. At follow-up
6, 2 months after allogeneic stem cell transplantation (ASCT), the AR was 15, which can be considered
quite high after curative therapy. At follow-up 7, relapse was characterized by 35% of blasts in
morphological assessment and an AR of 463.2.

For patient 2, AR also declined after therapy. The 1 log reduction of AR between follow-ups 3 and
4 while the patient was off-treatment may have represented long-lasting effects of chemotherapy or
recovered anti-tumor immunity, although none of this was demonstrated. After ASCT, an AR < 1 was
observed for the two major malignant cell clusters identified at diagnosis in this patient (L-Cloud 1:
AR1, and L-Cloud 2: AR2).

For patient 3, a sharp decrease in AR was observed after induction therapy. AR was < 1 at the
second follow-up. An increase of AR was, however, observed at follow-ups 3 and 4, before decreasing
again after the initiation of anti-Wilm’s tumor 1 (WT1) vaccination.

For patient 4, a decline in AR until follow-up 4 was observed. After ASCT, the AR fluctuated. For
patients 3 and 4, the AR increase before consolidation therapy (AR > 20) may have contributed to the
hypothesis that consolidation therapy (anti-WT1 vaccination for patient 3 and ASCT for patient 4) was
essential to the patients’ respective treatments.

For patient 5, the AR decreased after the first induction therapy and became <1 after the second
induction therapy. The AR << 1 could be explained by the aplastic status of the bone marrow as
assessed by morphological examination.

For patient 6, a decrease in AR was observed and became < 1 at follow-up 3, although, again,
the patient was off-therapy between follow-ups 2 and 3. AR increased to 14 at follow-up 6 in spite
of 2 induction cures, which appeared quite high. Molecular relapse was objectivized at follow-up 7
through an increase of nucleophosmin 1 (NPM1) transcripts. At follow-up 8, morphological relapse
was frank, with 96% of blasts. However, AR remained low, suggesting the emergence of a different
clone (from an immunophenotypical point of view) than that of the initial diagnosis. This observation
may question the involvement of the consolidation therapy in this “immunophenotypic shift”.

4. Discussion

MRD monitoring through MFC is challenging, especially in AML, and obtaining consensus about
how to proceed is difficult [5,8,11,14,15]. In this proof of concept pilot study, we validated an original
data analysis strategy for the development of future MFC MRD biomarkers.

The strategy presented in this study began with an unsupervised data analysis approach
(clustering), thereby identifying cell clusters. The position of these clusters in the multidimensional
space could then be modeled. We chose a non-parametric approach based on a combination of
two-dimensional kernel density estimation models. This choice was made to avoid the use of
10-dimensional black box data analysis approaches (deep learning, neural networks, etc.), as these
latter approaches do not allow easy expert supervision. The created models were dubbed as “Clouds”.
In order to avoid time-consuming efforts, not every cell cluster needed to be modeled as a Cloud
(although possible), but only suspicious cell clusters, chosen on the basis of expert selection. From
these models/Clouds, the most interesting for MRD assessment were selected (L-Clouds). The AR
concept that we developed was obtained by dividing the number of patient cells (as percentage of total
patient cells) falling into a Cloud, by the number of cells from a control group/reference samples (as
percentage of total control group cells) falling into the same Cloud. Departing from diagnostic patient
samples, Clouds with the highest AR and formed by cell clusters of at least 1 × 104 cells were tagged
as “Leukemic Clouds” or “L-Clouds” (see Section 2.2). This cut-off of 1 × 104 cells was set arbitrarily
and may be optimized in future studies, as well as the AR cut-off of 5 × 103 cells for secondary
L-Clouds with AR > 1000. The AR follow-up of L-Clouds was then proposed as methodology for MRD
assessment. In this regard, proposals for AR interpretation at diagnosis could be made—a very high
AR (> 10,000–100,000) at diagnosis indicates that the AR could be very useful for MRD assessment.
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A moderate AR (1000–10,000) indicates that the AR could be moderately useful for follow-up, whereas
low AR (< 1000) indicates that the AR will be of limited use for follow-up.

A first point highlighted by the AR is that the higher the AR at diagnosis, the higher the specificity
of the L-Cloud, and the lower the amount of normal (= non-malignant) cells into this L-Cloud.
In this study, important differences in the L-Cloud specificities were observed. This means that some
L-Clouds define a multidimensional region where almost no normal cells were found (patients 3 and 4),
whereas other L-Clouds are barely specific and identify a region where many normal cells are found
(patients 5 and 6). Specificity in this regard is synonymous of “the degree of aberrancy in regard
to normality”, with high specificity meaning high degree of aberrancy. The AR is the “clinically
user-friendly” translation of this specificity. It can be rapidly and easily quantified at diagnosis.
A lack of specificity of an L-Cloud could be improved by using more immunological markers in
extended mutliparametric flow cytometry assays to identify more aberrations. However, over-extended
multiparametric flow cytometry assays (> 10/12 colors) would probably be counterproductive with
regard to standardization (for the moment). For future application, we could therefore recommend
performing multiple well-developed standardized multiparametric assays at diagnosis and selecting
the one for follow-up that highlights malignant cell clusters with high specificity on the basis of the
AR concept. On the basis of these elements, the “perfect L-Cloud” would correspond to an “empty
space” for all reference control samples (= 100% specificity) and would encompass all malignant cells
for a given patient. However, according to the results of this study, “perfect L-Clouds” do not exist,
which is in line with the theory of leukemia-associated immunophenotypes (LAIPs) showing variable
specificities and sensitivities with respect to normality for each LAIP [14].

The second notable element about the AR is that an AR of 1 means that there are, proportionally, as
many cells falling into the L-Cloud from a patient sample as the mean of reference samples. An AR of 2
means that there are two times more cells from a patient sample falling into the L-Cloud than the mean
of reference samples. Given the interindividual variability among reference samples (see Table S1), an
AR above 1 does not mean necessarily that there is disease persistence. Although this pilot study did
not allow for the identification of guidelines for AR interpretation at follow-up to obtain a very high
positive predictive value for relapse (the main objective of this approach), this should be determined in
future studies. Two main strategies can be investigated for AR interpretation. Firstly, AR cut-offs as
clinical trigger can be studied. In this regard, cut-offs may be subdivided with regard to different AR
categories at diagnosis. Secondly, an increase in AR as clinical trigger can be studied. If AR increases
significantly over a defined period of time, this would mean there is disease evolution with higher risk
for relapse. However, in our opinion, the use of multivariate statistics (multiple logistic regressions)
or artificial intelligence-based algorithms (e.g., random forest) on multiple standardized biomarkers
would probably be the best approach to eventually better define the risk of relapse.

The comparison of the AR/L-Cloud approach with other already published flow cytometry MRD
approaches is summarized in Table 3. The AR/L-Cloud approach is the most similar to the LAIP
approach, as both are diagnostic-based. However, due to the well-known subjectivity linked to the
LAIP approach [14], it has been decided not to assess MRD in the AML patients through this approach.
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Table 3. Comparison of flow cytometry MRD approaches.

Flow Cytometry MRD Approach LAIP DfN AR/L-Cloud

Type of approach Diagnostic-based Reference-based Diagnostic-based and
reference-based

Foundations
Expert knowledge of

malignancy
(LAIP knowledge)

Knowledge of normality
Unsupervised data analysis

(clustering) and comparison to
reference samples $

Subjectivity Manual gating Methodology (unknown *) Cloud modeling (clustering and
contour gating algorithms)

Standardization Impossible Depends upon methodology Possible $

Automation Impossible Depends upon methodology Possible $

Reference samples Preferable Required Required

Diagnostic sample Required Not required Required

Data analysis tools Basics Depends upon methodology Advanced

LAIP: Leukemia-associated immunophenotype; DfN: different from normal; AR: Abnormality Ratio; L-Cloud:
Leukemic Cloud; * to the best of our knowledge; $ considered as an advantage.

4.1. Limitations of This Study

Regarding the limitations of the proposed strategy, the lack of sensitivity for detecting MRD
must be considered and will be linked to multiple well-known causes [8,12,16–18]. These major
causes are the lack of standardization, immunophenotypic shifts (clonal selection, therapy-related,
interference-related, etc.), and sometimes limited aberrancies of the malignant cell population identified
at diagnosis on the basis of the parameters studied. Although the lack of assay standardization must
be controlled, sensitivity issues linked to immunophenotypic shifts and low aberrancies are more
difficult to resolve and will need the development/use of complementary biomarkers to detect MRD,
as highlighted by the results of patient 6 in this study. For this patient, a gain of CD13 and HLA-DR
expression was observed for the malignant cell population at relapse (data not shown), which led
to a different L-Cloud than at diagnosis. Interestingly, discrepancies between AR results and other
biomarkers such as morphology and genetics should be considered and could be used to detect possible
clinically relevant immunophenotypic shifts at relapse [16,19,20].

Another limitation is the choice of the reference control samples, which is an important part
of the proposed strategy that impacts the specificity of the L-Cloud and thereby the sensitivity for
MRD detection. In this study, the reference samples were chosen on the basis of the absence of
evidence of underlying disease. Such reference samples should include “normal” and “regenerative”
bone marrow samples. Ideally, international guidelines regarding the use of “reference bone marrow
samples” should be established and/or commercial assays must be developed and validated using a
fixed “reference database” that is unique for each technically and clinically validated assay.

Finally, this study is a monocentric pilot study based on retrospective data, with all well-known
limitations associated with retrospective design. Further prospective, adequately powered studies are
required to better evaluate the potential of the proposed methodology.

4.2. Perspectives of This Study

This study is a pilot study underpowered for a validation of the concept. Additional
optimization work is still to be done. For example, we did not evaluate the variability among
experts for the identification of the suspicious cell clusters at diagnosis. Although this step remains
partly subjective among experts, improving objectivity in this field is possible. We used fixed
clustering and contour gating algorithms of the Infinicyt software and did not compare them to
other clustering and contour gating methods (e.g., three-dimensional kernel density estimation).
Moreover, the proposed classification algorithm has yet not been compared towards more conventional
classification algorithms (support vector machine, random forest, neural networks, ensemble
learning etc.). However, as mentioned before, such algorithms are often considered “black box
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algorithms”, hampering their use in clinical practice, as they do not allow easy biological supervision.
Continuous improvement in assay standardization and increasing the amount of cells to be acquired
needs to also be part of further evaluation.

Interestingly, the AR concept could also be developed for a “follow-up-based DfN approach”,
(in contrast to a diagnostic-based DfN approach) where clustering analysis is performed directly on
follow-up samples. Clouds may then be created for each suspicious cell cluster at follow-up. AR
of the Clouds can then be calculated, and analogically to L-Clouds, AR thresholds for these Clouds
could be defined as predictors of relapse in clinical studies. Although probably complementary to
diagnostic-based approaches, more difficulties will probably be linked to this kind of DfN approach:
(a) normality appears more difficult to define (than pathology); (b) a large amount of cells must be
acquired to obtain significant cell clusters, allowing the creation of significant Clouds; and (c) such an
approach would require more computational power.

5. Conclusions

This study highlighted the major interest of implementing new data analysis concepts and
tools in clinical hematology MFC [21–23]. The strategy developed here relies on the principles of
standardization, multiparametric data analysis, and personalized medicine. Further improvement
and evaluation of this strategy through method comparison, as well as retrospective and prospective
studies on multiple MFC panel designs is required to further explore its potential applicability in
clinical practice.

Supplementary Materials: The following are available online at 10.5281/zenodo.3828317, Table S1: Number of
cells analyzed and retrieved into the L-Clouds for each patient/control sample.
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