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Abstract: Inertial measurement units (IMUs) are now considered as an economical solution for long term assessment 

in real conditions. However, their use in running gait analysis is relatively new and limited. Detecting the 

timing at which the foot strikes the ground (initial contact, IC) and the timing at which the foot leaves the 

ground (terminal contact, TC) gives access to many relevant temporal parameters such as stance, swing or 

stride durations. In this paper, we present an original algorithm to extract IC and TC timings and associated 

parameters from running data. These data have been measured using a newly developed IMU-based 

hardware system in ten asymptotic participants who ran at three speeds (slow, normal, and fast) with 

different running patterns (natural, rearfoot strike, mid-foot strike, and forefoot strike). This algorithm has 

been validated against a 200 Hz video camera based on 7056 IC and TC timings and 6861 temporal 

parameters. This algorithm extracted ICs and TCs with an accuracy and precision of (median [1st quartile; 

3rd quartile]) 5 ms [-5 ms, 15 ms] and 0 ms [-5 ms, 5 ms], respectively. The relative errors in the extraction 

of stride and stance durations are -1.56 ± 3.00% and 0.00 ± 1.32%, respectively. 

1 INTRODUCTION 

Quantitative analysis of running is of critical interest 

to the sports science field. For example, this analysis 

can give insight into aetiology or treatment and 

recovery of running injuries. In the same manner, it 

can help sports coaches to improve the performances 

of their athletes. Initial contact (IC) and terminal 

contact (TC) are key timings in running: IC occurs at 

landing when the foot initiates contact with the 

ground while TC is when the foot ends contact. From 

these two key timings, it is possible to compute 

relevant temporal parameters, such as stance, swing or 

stride durations.  

The stance phase, also known as the ground-

contact phase, starts at the foot IC and ends at TC. 

The swing phase starts at TC and ends at the next IC. 

Finally, a stride phase is the duration between two 

ipsilateral ICs. Temporal parameters are related to 

running performances: for instance, a shorter contact 

time is linked to a good running economy and a faster 

speed (Weyand, 2000). 

Traditionally, timings are detected by using force 

platforms. Nevertheless, these systems can only be 

used in controlled laboratory environments where the 

capture volume could be limited to a few steps.  

The rapid technological advances in micro-

electro-mechanical systems have allowed the inertial 

measurement units (IMUs) to become light, small, 

and relatively cheap. Due to their portability and low 

power consumption, IMU-based systems allow 

obtaining real condition data. 

IMUs have shown to give accurate and reliable 

information on walking (Boutaayamou et al., 2015 

and 2016). However, running differs from walking. 

As the speed increases, the double support phase 

(both feet simultaneously touching the ground) of the 

walking gait cycle is replaced by a double swing 

phase, where both feet are in the air. Indeed, by 



 
 

definition, someone is running if both feet are never 

simultaneously touching the ground. Moreover, when 

walking, people are usually landing on their heel first. 

However, during running, there are three possible 

different landing strategies: rearfoot strike (RFS), 

mid-foot strike (MFS), and forefoot strike (FFS). 

Compared to walking, the biomechanics involved in 

running is also different: a wider range of motion of 

all the lower limb joints, higher impact forces, and 

higher eccentric muscle contraction (Nicola et al., 

2012).  

The use of IMU sensors in running gait analysis is 

relatively new. In the literature, different localisations 

for IMU sensors are considered such as trunk 

(Bergamini et al., 2012) or tibia (Purcell et al., 2006). 

Among all existing studies, only a few of them 

include a concurrent validation of their algorithm 

using a reference system. Both Chew et al. (2017) 

and Falbriard et al. (2018) used the signal of an IMU 

placed on the dorsal side of the foot to compute ICs 

and TCs. The first one used a threshold-based 

method, while the second one compared different 

algorithms. However, to the authors’ knowledge, 

there is no study available using foot-worn IMU 

sensors that take into account the different existing 

landing strategies.  

In this work, we present a newly developed 

algorithm to extract IC timing and TC timing 

extracted from IMU signals measured at the level of 

the foot (toe and heel). From these timings, the 

ipsilateral stance, swing, and stride durations are 

computed. This algorithm is tested on data obtained 

from ten healthy participants running at steady 

speeds on a treadmill. Furthermore, we validated this 

algorithm against synchronously recorded reference 

data obtained from a frame-by-frame analysis of 2D 

high-speed (200 Hz) videos. 

2 METHOD 

2.1 Participants and Treadmill 

Running Setting 

In total, ten asymptotic participants (7 men and 3 

women), who were regularly active at the time of the 

tests, were volunteered for this study. The set of 

participants includes both recreational and 

professional runners. They were all informed with the 

procedure and they have all signed an informed 

consent.  

Table 1 shows the anthropometric characteristics 

  

Table 1: Anthropometric characteristics of the participants 

measured at the time of the test. 

 Mean ± STD 

Age [years] 26.1 ± 3.9 

Height [cm] 179.3 ± 11.4 

Body mass [kg] 70.0 ± 12.3 

 

(mean ± standard deviation (STD)) of these 

participants. Among them, seven were naturally RFS 

while two were MFS, and one was FFS. Each 

participant was equipped with an IMU-based 

hardware system (Boutaayamou et al., 2019) 

integrating three-axis accelerometers (range: ±16 g) 

and three-axis gyroscopes (range: 2000 deg/s). This 

system includes an acquisition box (memory, micro-

controller, and battery) linked by wires to four small 

IMU sensors (2.1 × 1.0 × 0.8 cm, weight = 16 g). 

Consequently, it is portable with an autonomy of 

4h30. The IMU acquisition frequency is 200 Hz. No 

restrictions on the shoes were imposed, to enlarge the 

range of applications of the algorithm. 

The sensors were directly attached to the right 

shoe at the level of the first distal phalange (toe), 

calcaneus (heel), the fifth metatarsal, and dorsal side 

of the foot. In this work, only the toe and the heel 

sensors will be considered. The fixation procedure 

used has been validated in the case of walking 

(Boutaayamou et al., 2015) and shows satisfying 

results for running gait analysis. 

The three-dimensional linear acceleration signals 

[m/s2] are denoted by 𝑎𝑥, 𝑎𝑦 , and 𝑎𝑧, while the three-

dimensional angular velocity signals [deg/s] are 

denoted by 𝜔𝑥, 𝜔𝑦, and 𝜔𝑧 along sensitive axes 

represented schematically in Figure 1 . 

Each test began with a standardized time to warm 

up and to become familiar with the treadmill and 

instrumentation system (during approximately five 

minutes). At the same time, a preferential running 

speed (PRS) is selected with the participant, at which 

he should be able to run during ten minutes without 

loss of intensity. The PRS (mean ± STD) of the 

volunteers is 8.3 ± 1.3 km.h−1. During the tests, they 

were asked to run at three different speeds: slow 

(computed by PRS−0.25×PRS), normal (PRS), and 

fast (computed by PRS+0.25×PRS). At each speed, 

the participants performed six trials (in the following 

order): three with a natural foot strike pattern, one 

rearfoot strike (RFS), one mid-foot strike (MFS), and 

one forefoot strike (FFS). In total, the participants 

were asked to perform 18 trials of 60 s. The minimum 

total test duration was 69 minutes per participant, 

including 3 minutes of rest between each trial. All 

running tests were performed at the Laboratory of 

 



 

Human Motion Analysis (University of Liège, 

Belgium), on a treadmill (SportsArt T650). At the 

same time, all the trials were recorded using a 2D 

high-speed video camera (Basler Pilot) with a 

sampling frequency of 200 Hz. This video camera 

will be used as the reference system. Signal and data 

processing were carried out using the software 

Matlab® (R2017a, Mathworks, Natick, MA, USA).  
 

2.2 Extraction algorithm of IC and TC 

Timings 

The proposed algorithm first computes an 

estimated IC based on the average stride duration. 

Then, an exact IC timing is obtained from the 

different linear accelerations. Subsequently, TCs are 

found between two successive ICs.  

The first step is to obtain an estimated average 

stride duration, 𝑑𝑠𝑡𝑟𝑖𝑑𝑒  [𝑠], based on the Fourier Fast 

Transform of the heel angular velocity signal (heel 

𝜔𝑦). The first peak, which is also the highest, 

corresponds to the stride frequency [Hz]. 𝑑𝑠𝑡𝑟𝑖𝑑𝑒 is, 

then, obtained from this stride frequency using the 

following formula  

𝑑𝑠𝑡𝑟𝑖𝑑𝑒 =
1

stride frequency 
.  (1) 

Alternatively, 𝑑𝑠𝑡𝑟𝑖𝑑𝑒 can be obtained from the 

auto-correlation of the same signal. In that case, the 

positive lag corresponding to the first positive local 

maxima after 0 is the average 𝑑𝑠𝑡𝑟𝑖𝑑𝑒 (available in 

Matlab® using the function xcorr).  

After computing 𝑑𝑠𝑡𝑟𝑖𝑑𝑒 , estimated ICs are 

obtained in the filtered heel 𝜔𝑦 signal. The filter 

used is a high pass Butterworth filter of order 4 with 

a cut-off frequency of 15 Hz. A high pass filter 

allows to remove the movement components of the 

signal and to keep only the shock parts. Estimated 

ICs can then be obtained by detecting a minimum in 

the filtered heel 𝜔𝑦. The distance between two 

successive minima is imposed to be of at least 85% 

of 𝑑𝑠𝑡𝑟𝑖𝑑𝑒 , allowing for small variations of 𝑑𝑠𝑡𝑟𝑖𝑑𝑒  at 

each stride. 

Potential exact ICs are obtained by looking for  

 

 
Figure 1: Schematic illustration of the position of the IMU 

sensors used in the proposed algorithm, including the three 

local axes (X-axis, Y-axis, and Z-axis). The two sensors are 

placed on the right shoe at the level of the first distal 

phalange (toe) and at the calcaneus (heel). 

 

local extrema, in a time window around the 

estimated IC, in different linear acceleration signals 

of both sensors. Namely, the algorithm is looking 

for: a local minimum in toe 𝑎𝑥, local minimum in 

toe 𝑎𝑧, local minimum in heel 𝑎𝑥, and local 

maximum in heel 𝑎𝑧, in the time window 

[-20 ms; 5 ms] around the estimated IC. 

Then, the exact IC corresponds to the first time 

instant among all these extrema. The acceleration 

signals in the transverse direction (Y-axis) are not 

considered since they are runner dependent. For 

instance, they can be influenced by foot movements 

like supination or pronation. 

As the tip is always the last part of the foot in 

contact with the treadmill, TCs will be detected 

using the toe sensor. The toe total acceleration in the 

sagittal plane, given by 

𝑎𝑠𝑎𝑔𝑖 =  √𝑎𝑥 + 𝑎𝑧 , (2) 

has shown the highest accuracy. 

TCs are determined based on the intuitive 

principle that there is always a TC between two 

successive ICs. Hence, for each stride i, a TC(i) will 

be searched in the time window between IC(i) and 

IC(i+1). This window can be further reduced to 

increase the accuracy of the event extraction 

method. The upper bound of the time interval can be 

obtained based on the definition of running: 

someone is running if there is a double float phase, 

where both legs are in the swing phase 

simultaneously. This is only possible if the stance 

phase lasts for less than 50% of the stride duration. 

 



 
Figure 2: Determination of TCs using the toe sagittal acceleration signal. TC is found between two successive ICs. An upper 

limit can be obtained using the definition of running: the stance duration must be less than 50% of the stride duration. This 

prevents to wrongly detect local maximum coming from the movement acceleration. The signal flat phase can be used as a 

lower limit, which can be detected using the entropy of the signal over a sliding window. 

 

 

 

 

 

Figure 3: Determination of IC and TC timings using the 2D high-speed video camera. IC (upper pictures) is the first 

frame where the pixels representing one shoe are directly in contact with those representing the belt of the treadmill. TC 

(lower pictures) corresponds to the last frame where the pixels of the shoe are in contact with those of the treadmill.  
 

 

Hence, the upper limit is defined as follows 

𝐿𝑖𝑚𝑠𝑢𝑝 = 𝐼𝐶(𝑖) +
𝐼𝐶(𝑖+1)−𝐼𝐶(𝑖)

2
.   (3) 

This limits the application of the algorithm to only 

running cases. However, this improves the accuracy. 

In fact, in some cases, the acceleration linked to the 

swing movement of the foot is higher than the shock 

corresponding to the TC (see Figure 2).  

Furthermore, the lower bound of the time 

window (𝐿𝑖𝑚𝑖𝑛𝑓) is obtained using the entropy of 

the signal. During the stance phase, the foot has a 

constant acceleration and this signal flat zone is 

characterized by a low entropy. Hence, the lower 

limit is obtained by computing the entropy over a 

sliding window. The size of the window has been 

determined empirically: on one side, it should be as 

small as possible to have good local information. On 

the other side, it must be large enough to not detect 

the flatter zone that appears for some runners after 

the toe-off peak. This was generally a problem for 

FFS running patterns. A window of 15 samples (i.e., 

75 ms) has shown good results for all participants.  

𝑇𝐶(𝑖) is then determined by finding a maximum 

in the toe sagittal acceleration signal over the time 

window : [𝐿𝑖𝑚𝑖𝑛𝑓(𝑖);  𝐿𝑖𝑚𝑠𝑢𝑝(𝑖)]. 

2.3 Concurrent Validation and 
Evaluation Methods 

The reference timings are obtained from a frame-by-

frame analysis of 2D high speed videos. A precise 

definition is used to select the frame corresponding 



 

to an IC and to a TC: IC is the first frame where the 

pixels representing one shoe are directly in contact 

with those representing the belt of the treadmill. In 

other words, it is the first frame where there are no 

white pixel (i.e., background pixel) in-between the 

shoe and the treadmill. 

Conversely, TC corresponds to the last frame 

where the pixels of the shoe are in contact with those 

of the treadmill (see Figure 3). 

Finally, the different temporal parameters are 

computed from IC and TC timings, as follows 
 

𝑑𝑠𝑡𝑎𝑛𝑐𝑒(𝑖) = 𝑇𝐶(𝑖) − 𝐼𝐶(𝑖), (4) 

𝑑𝑠𝑤𝑖𝑛𝑔(𝑖) = 𝐼𝐶(𝑖 + 1) − 𝑇𝐶(𝑖), (5) 

𝑑𝑠𝑡𝑟𝑖𝑑𝑒(𝑖) = 𝐼𝐶(𝑖 + 1) − 𝐼𝐶(𝑖). (6) 

The reference system has a maximum achievable 

resolution of 5 ms. Additionally, at some point in the 

video, there are two identical frames following each 

other. In that case, a 5 ms error can also occur.  

These reference timings are used to concurrently 

validate the events obtained using the proposed 

algorithm. For each stride, the results for (1) IC, (2) 

TC, (3) 𝑑𝑠𝑡𝑎𝑛𝑐𝑒 , and (4) 𝑑𝑠𝑡𝑟𝑖𝑑𝑒  are computed. The 

results for  𝑑𝑠𝑤𝑖𝑛𝑔 have been computed but are not 

shown in this paper  

Finally, the accuracy and precision of ICs and 

TCs extraction is quantified by the mean and STD or 

median and inter-quartile range (IQR) values (i.e., 1st 

quartile (Q1); 3rd quartile (Q3)) of the differences 

between these timings and the reference system, 

depending on the normality of data distributions. This 

is done for each participant separately and for all 

participants together. The normality of data 

distributions is tested using Jarque-Bera test (available 

in Matlab® using the function jbtest). Additionally, 

relative errors are computed as the mean of the stride-

by-stride differences between the IMU temporal 

parameter and the reference temporal parameter 

divided by the reference temporal parameter. These 

errors are only meaningful for temporal parameters 

and they will not be computed for timings.  

3 RESULTS 

This work focuses on running trials from the acquired 
data. In some trials, particularly at low speeds, some 
participants exhibited a double support phase. 
Consequently, as these trials are considered as walking 
trials, they have been excluded from this study. In 
total, 39 trials out of 183 were not considered. 
 

Table 2: Intra-participant differences between IMU 

timings/temporal parameters and reference data. It 

includes the median and the interquartile range values ([1st 

quartile Q1; 3rd quartile Q3]) as well as the number of 

observations (nbr. of obs.). 

Partici-

pants 

Running 

timings/ 

parameters 

Median 

[Q1; Q3]  

[ms] 

Nbr. 

of 

obs. 

1 IC 

TC 

𝑑𝑠𝑡𝑎𝑛𝑐𝑒  

𝑑𝑠𝑡𝑟𝑖𝑑𝑒  
 

0 [-10; 10] 

0 [-5; 5] 

5 [-5; 15] 

0 [-10; 10] 

211 

205 

205 

191 

2 IC 

TC 

𝑑𝑠𝑡𝑎𝑛𝑐𝑒  

𝑑𝑠𝑡𝑟𝑖𝑑𝑒  
 

  -10 [-20; 0] 

0 [-5; 5] 

    10 [-5; 25] 

0 [-10; 10] 

306 

306 

306 

291 

3 IC 

TC 

𝑑𝑠𝑡𝑎𝑛𝑐𝑒  

𝑑𝑠𝑡𝑟𝑖𝑑𝑒  
 

0 [-20; 20] 

0 [-5; 5] 

5 [-15; 25] 

0 [-10; 10] 

437 

437 

437 

403 

4 IC 

TC 

𝑑𝑠𝑡𝑎𝑛𝑐𝑒  

𝑑𝑠𝑡𝑟𝑖𝑑𝑒  
 

5 [0; 10] 

0 [0; 10] 

     -5 [-10; 0] 

0 [-10; 10] 

366 

366 

365 

348 

5 IC 

TC 

𝑑𝑠𝑡𝑎𝑛𝑐𝑒  

𝑑𝑠𝑡𝑟𝑖𝑑𝑒  
 
 

10 [5; 15] 

0 [-5; 5] 

   -10 [-15; -5] 

0 [-10; 10] 

484 

394 

385 

462 

6 IC 

TC 

𝑑𝑠𝑡𝑎𝑛𝑐𝑒  

𝑑𝑠𝑡𝑟𝑖𝑑𝑒  
 

    10 [5; 15] 

0 [-5; 5] 

   -10 [-15; -5] 

      0 [-5; 5] 

332 

332 

332 

314 

7 IC 

TC 

𝑑𝑠𝑡𝑎𝑛𝑐𝑒  

𝑑𝑠𝑡𝑟𝑖𝑑𝑒  
 

    15 [5; 25] 

0 [-5; 5] 

   -15 [-30; 0] 

0 [-10; 10] 

129 

129 

129 

125 

8 IC 

TC 

𝑑𝑠𝑡𝑎𝑛𝑐𝑒  

𝑑𝑠𝑡𝑟𝑖𝑑𝑒  
 

0 [-15; 15] 

0 [-5; 5] 

0 [-20; 20] 

0 [-15; 15] 

312 

213 

213 

303 

9 IC 

TC 

𝑑𝑠𝑡𝑎𝑛𝑐𝑒  

𝑑𝑠𝑡𝑟𝑖𝑑𝑒  
 

    10 [5; 15] 

0 [-5; 5] 

     -5 [-15; 5] 

0 [-10; 10] 

468 

450 

448 

451 

10 IC 

TC 

𝑑𝑠𝑡𝑎𝑛𝑐𝑒  

𝑑𝑠𝑡𝑟𝑖𝑑𝑒  
 

5 [-15; 25] 

0 [-5; 5] 

     -5 [-25; 15] 

0 [-10; 10] 

608 

571 

567 

586 

 



 
 

Additionally, some trials have been reclassified 

according to the real running pattern observed that, 

in some cases, was different from the supposed 

running pattern. Indeed, some participants had 

difficulties in voluntarily performing MFS or FFS. 

First of all, an intra-participant comparison between 

the IMU results and reference results is carried out. 

In this paper, the median is used as the data are not 

normality distributed. However, in general in this 

study, the mean and median values and STD values 

IQR ones were similar. The same conclusion can be 

drawn for STD values IQR ones. 

Table 2 summarizes the results for each 

participant, the values have been rounded to the 

sample period (i.e., 5 ms) of the hardware systems. 

This analysis includes all the valid trials (different 

speeds and different foot strikes) and at least 30 

valid strides per trial, when available. The number of 

observations depends on the number of valid events 

taken into account. In the case of ICs, the mean of 

the extraction accuracies is 5 ms. Consequently, the 

algorithm tends to detect the ICs one frame later 

than the reference system. The mean of the 

extraction precisions obtained in the case of IC is 10 

ms. The worst-case for the IC determination appears 

for participants 3 and 10, with an IQR of 20 ms 

away from the median value. The best case is for 

participant 4 with a median error of one sample (i.e., 

5 ms) and IQR of 5 ms around this median error. In 

that case, the precision obtained exactly corresponds 

to the maximum achievable precision. Indeed, the 

maximum precision depends on the sampling rate of 

both the IMU system and the high-speed video, as 

well as the 5 ms error than can be explained by 

errors in the reference system.  

In the case of TCs, the results obtained with IMU 

are similar to those obtained with the reference 

system. Indeed, the mean of median errors between 

the two systems is 0 ms and the mean of the IQRs is 

5 ms, for all participants. Therefore, the algorithm 

can detect TCs with the maximum possible 

accuracy. 

For the stance duration, the algorithm tends to 

underestimate the duration compared to the 

reference values. This can be explained by the fact 

that ICs are generally detected later with the 

algorithm. The mean of the median values is -3 ms, 

which is less than one sample of difference and less 

than the maximum accuracy. The mean of the 

variability values is 12.5 ms, this is slightly higher 

than the maximum precision expected. Indeed, IC(i) 

can be determined with a maximum precision of 5 ms 

and TC(i) can also be determined with a maximum  

  

Table 3: Inter-participant comparison including the 

extraction accuracies and precisions of 7 participants, 

running with their preferential running style at speeds 

ranging from 7.1 to 9 km.h-1. 

Running 

timings/ 

parameters 

Mean ± 

STD  

[ms] 

Median  

[Q1; Q3] 

[ms] 

Median 

[Q1; Q3]  

[%] 

  IC 5 ± 9  5 [-5; 15] / 

  TC 1 ± 4 0 [-5; 5] / 

  𝑑𝑠𝑡𝑎𝑛𝑐𝑒  -5 ± 15 -5 [-15; 5] 
-1.56 

[-4.56; 2.56] 

  𝑑𝑆𝑡𝑟𝑖𝑑𝑒 0 ± 10   0 [-10;10] 
0.00 

[-1.32; 1.32] 

 

precision of 5 ms. As the errors may cumulate, a 

maximum precision of 10 ms is expected for 

durations. However, the variability is of 5 ms for three 

participants out of ten. 

The accuracy for the stride duration is 0 ms for all 

participants, which is the best possible achievable 

accuracy. The precision obtained is on average 10 ms, 

which is the expected precision, as explained before. 

Note that, one participant out of the ten has a better 

precision (5 ms) and only one participant has a worst 

precision (15 ms) than the one expected. 

Finally, an inter-participant comparison is done, 

including only the natural foot strike trials at PRS 

condition (i.e., three trials per participant). We did 

not include the trials performed by three participants 

as at least one of the three above mentioned trials 

was not valid. The speed of the trials considered was 

between 7.1 and 9.0 km.h-1.  

Table 3 provides the mean ± STD as well as the 

median and IQR values of the differences between the 

extracted IMU values and the reference values. The 

mean errors and the median errors are similar for all 

timings and temporal parameters. The extraction 

precisions expressed in terms of STD are identical to 

those expressed in terms of IQR except for the stance 

duration, where the STD value is influenced by some 

outlier values.  

The extraction accuracy in the case of ICs is 5 ms. 

The algorithm tends, then, to detected ICs one sample 

later than those extracted by the reference system. 

This could be explained by the fact that IMUs will 

detect the interaction (shock) between the shoe and 

the belt of the treadmill while, in the video, the 

selected frame is the one when the shoe and the 

treadmill touch each other but have not yet interacted. 

The precision obtained for the ICs is 10 ms, which is 

one frame higher than the maximum achievable 

 



 

precision. On the other side, TCs are extracted with 

both the maximum achievable accuracy (i.e., 0 ms) 

and precision (i.e., 5 ms). 

The stance durations tend to be underestimated by 

the algorithm. On average, they are 5 ms shorter than 

those obtained with the reference system. Again, this 

is explained by the fact that ICs have a tendency to be 

detected 5 ms later with the IMUs. Finally, the stride 

duration, which only depends on successive ICs, are 

extracted with the best possible accuracy (i.e., 0 ms) 

and a precision equal to the maximum expected 

precision due to the accumulation of errors. Indeed, 

there could be 5 ms of error in the first IC (IC(i)) and 

5 ms of error for the successive IC (IC(i+1)). All in 

all, it can be seen that the inter-participants and intra-

participant comparison give similar results.  

It is also interesting to express the errors in both 

stance and stride duration estimates as a percentage of 

the total duration. The 𝑑𝑠𝑡𝑎𝑛𝑐𝑒  relative error is (median 

[Q1, Q3]) -1.56 % [-4.56 %; 2.56 %] and the maximum 

relative error is -9.52 %. The 𝑑𝑠𝑡𝑟𝑖𝑑𝑒 relative error is 

(median [Q1, Q3]): 0.00 % [-1.32 %; 1.32 %] and the 

maximum computed error is 4.49%. 

4 DISCUSSION 

This article presents an original algorithm to extract 

the two main timings (ICs and TCs) at different 

running speeds (slow, normal, and fast) and with 

different running styles (natural, RFS, MFS, and 

FFS). The data collected for this work are obtained 

using two IMU sensors placed on regular shoes at 

the level of the heel (calcaneus) and toe (first distal 

phalange). 

Only the right shoe has been used in this work. 

However, the algorithm is supposed to work in the 

same way for the left foot. Additionally, the IMU 

hardware system used here can record the data of up 

to four sensors at the same time. It is thus possible to 

record the data of both legs simultaneously. 

Therefore, it would be possible to obtain other 

parameters, such as the step duration. Besides, it 

would be possible to make a comparison between the 

two legs, which has a wide range of applications, 

including monitoring recovery after injury or surgery. 

The performance of the algorithm is determined 

by a concurrent validation with 2D high-speed 

videos, recorded simultaneously. The algorithm 

presented here has been concurrently validated using 

a total of 7056 timings and 6861 temporal 

parameters. This comparison has shown a good 

agreement between timings obtained using the IMU 

signals and timings detected on the 2D videos. The 

measures include running speeds ranging from 6.0 to 

11.3 km.h-1. The obtained global extraction accuracy 

and precision (median [Q1; Q3]) is 5 ms [-5 ms; 15 

ms] and 0 ms [-5 ms; 5 ms] for, respectively, ICs and 

TCs. Besides, the accuracy and precision for the 

stance durations and stride durations (median [Q1; 

Q3]) are -5 ms [-15 ms; 5 ms] and 0 ms [-10 ms; 10 

ms], respectively. This corresponds to a relative error 

of respectively -1.56 ± 3.00% and 0.00 ± 1.32%.  

The stride duration average error obtained here 

(i.e., 0 ms) is consistent with the one measured by 

Chew et al. (2018), which is between -0.44 ms and 

0.33 ms. However, Chew et al. (2018) used an 

algorithm based on a thresholding-method that relies 

on experimental values needed to determine the 

threshold. This is not the case for the algorithm 

presented here. Similarly, the stance duration errors 

are similar to those found by Purcell et al. (2006). 

They found an error (mean ± STD) of 0 ± 12 ms and 

−2 ± 3 ms, depending on the running speed, using a 

tibial accelerometer. However, they used a force 

platform with higher accuracy than the 2D video 

system used here. Falbriard et al. (2018) found better 

accuracy and precision (median [Q1, Q3]): 2 [1 ms, 3 

ms] for IC and only a better precision for TC (4 ms [2 

ms, 6 ms]). Nevertheless, this precision cannot be 

achieved here with the 200 Hz reference system used.  

The algorithm presented here is only valid for 

steady state running over a treadmill. Walking cases 

cannot be analysed using the present method, 

however, there exist algorithms to detect the type of 

activity (walking, running, and rest). Once the 

activity is appropriately determined, either a walking 

or a running algorithm can be selected to extract 

temporal events. 

5 CONCLUSION 

In this article, we presented an original algorithm to 

extract timings (IC and TC) in the case of steady-

state running over a treadmill, using IMU sensors. 

From these two timings, three temporal parameters 

can also be computed: stance, swing, and stride 

durations. The method developed here has the 

following advantages:  

- The sensors are placed on the shoes and not 

directly on the feet, which allows running in 

many different conditions.  

- The algorithm only uses two IMU sensors per 

foot: one at the level of the heel and the other at 

the level of the first distal phalange (toe). 

Additionally, only one sensor (i.e., toe sensor) is 

used to determine TCs with the maximum 

achievable precision and accuracy. 



 
 

- This method has been concurrently validated 

using a 2D high-speed video camera as the 

reference system.  

- The analysis is done over a large number of 

strikes including a wide range of running speeds 

(from 6 km.h-1 to 11.3 km.h-1) and different 

running styles (natural, RFS, MFS, and FFS).  

The results showed that it is possible to achieve 

acceptable accuracy and precision using a foot-worn 

IMU-based system. These results are encouraging for 

the use of IMU for daily and out-of-lab monitoring.  

They can be seen as a good trade-off between 

expensive and laboratory-limited measurement 

instruments like force platforms that show high 

accuracy and wearable systems that can be found in 

smartwatches or in smartphones. 

Future researches may focus on the use of a 

single IMU sensor to extract the timings and 

associated temporal parameters or on the detection 

of spatial parameters like the stride length. Further 

work could also focus on extracting the durations of 

the stride sub-phases.  
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