
 

Exploring the spectrum of the hidden charm strange pentaquark
in the SU(4) version of the flavor-spin model
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We study the spectrum of the isoscalar pentaquark udscc̄, of either positive or negative parity, in a
constituent quark model with linear confinement and a flavor-spin hyperfine interaction previously
extended to SU(4) and used to describe the spectrum of the uudcc̄ pentaquarks observed at LHCb in 2019.
For positive parity we make a distinction between the case where one unit of angular momentum is located
in the subsystem of four quarks and the case where the angular momentum is located in the relative motion
between a ground-state four-quark subsystem and the antiquark. The novelty is that we introduce
the coupling between different flavor states, due to the breaking of exact SU(4)-flavor symmetry of the
Hamiltonian model, both for positive- and negative-parity states. An important consequence is that the
lowest state, located at 4404 MeV, has quantum numbers JP ¼ 1=2− while without coupling the lowest
state has JP ¼ 1=2þ or 3=2þ.
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I. INTRODUCTION

The 2019 LHCb observation of the narrow structures
Pþ
c ð4312Þ, Pþ

c ð4440Þ and Pþ
c ð4457Þ in the Λ0

b → J=ψK−p
decay [1] has given a new impetus to the study of hidden
charm pentaquarks. The J=ψp component suggested that
the pentaquark wave functions should have the flavor
content uudcc̄.
Although observed in the J=ψp channel, the proximity

of the mass of the Pþ
c ð4312Þ to the Σþ

c D̄0 threshold
(4318 MeV) and of the masses of Pþ

c ð4440Þ and
Pþ
c ð4457Þ to the Σþ

c D̄�0 threshold (4460 MeV), favored a
molecular S-wave interpretation of the Σþ

c þD̄0 and
Σþ
c þ D̄�0 systems respectively [2–15]. In such an inter-

pretation, the binding arises via meson exchanges between
point particles and in the elastic channel all resonances
acquire a negative parity. However, if one introduces
the coupling of the Σþ

c D̄�0 and the Λcð2595ÞD̄ channels,
due to the very close proximity of their thresholds,
one obtains JPð4440Þ ¼ 3=2− and JPð4457Þ ¼ 1=2þ
respectively [16].
A more general point of view has been adopted in

Ref. [17] where the Pcð4312Þ signal was analyzed by using
some general principles of the S-matrix theory. In this way

it was concluded that Pcð4312Þ is more likely a virtual
(unbound) molecular state.
The 2019 LHCb pentaquarks have also been analyzed in

compact pentaquark models based on the chromomagnetic
interaction of the one-gluon-exchange model, with quark/
antiquark correlations [18] or without correlations [19,20].
In both cases the lowest state has negative parity.
Presently, the spin and parity of the narrow structures

Pþ
c ð4312Þ, Pþ

c ð4440Þ and Pþ
c ð4457Þ remain to be estab-

lished experimentally.
Anticipating new experiments, the 2019LHCb successful

observation stimulated interest in the theoretical study of
analogue pentaquarks in particular of the hidden charm
pentaquarks with strangeness: the udscc̄ system. For exam-
ple, in Ref. [21] it has been analyzed in the framework of a
molecular scenario with heavy quark symmetry constraints
and in Ref. [22] within the chiral effective theory where the
short-range contact interaction, the long-range one-pion-
exchange interaction and the intermediate-range two-pion-
exchange interaction were included. In Ref. [23] the hidden
charm pentaquarks with strangeness have been considered
in the hadrocharmonium model.
Predictions for the isoscalar udscc̄ pentaquark have

already been made. In Ref. [24] the spectrum of the
udscc̄ pentaquark was studied in the compact pentaquark
picture in a quark model with either the chromomagnetic,
the flavor-spin or the instanton-induced interaction. In all
cases it was found that the lowest state has the spin parity
JP ¼ 1=2−. In Ref. [25] the stability of several pentaquark
systems has been analyzed in a constituent quark model
with a simple chromomagnetic interaction, and the udscc̄
pentaquark has been found among the most stable ones.

*fstancu@ulg.ac.be

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 094007 (2020)

2470-0010=2020=101(9)=094007(11) 094007-1 Published by the American Physical Society

https://orcid.org/0000-0002-7543-7181
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.094007&domain=pdf&date_stamp=2020-05-12
https://doi.org/10.1103/PhysRevD.101.094007
https://doi.org/10.1103/PhysRevD.101.094007
https://doi.org/10.1103/PhysRevD.101.094007
https://doi.org/10.1103/PhysRevD.101.094007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In an SU(4) classification of pentaquarks and its decom-
position in SU(3) submultiplets, by selecting those with the
charm quantum number C ¼ 0, one finds the udscc̄
pentaquark as a member of either an octet with isospin
I ¼ 0, 1 or as a member of a decuplet with isospin I ¼ 1.
These SU(3) submultiplets belong to the ½421� irreducible
representation of SU(4) of dimension 140. The members of
the irreducible representation denoted by 140 can have a
spin value of either 1=2 or 3=2 [26,27].
The hidden charm pentaquarks that have a strange quark

are presently unknown. In principle they can be produced
and observed, for example, in the study of the Ξ−

b →
J=ψΛK− reaction [21] or in the decay of Λb into J=ψΛK0

[28]. Their discovery would require much more data
relative to the nonstrange hidden charm pentaquarks
observed at LHCb [29]. If discovered they may possibly
distinguish between the various theoretical pictures.
Here we explore the spectrum of the pentaquark udscc̄

within a quark model [30], which has a flavor-dependent
hyperfine interaction. The hyperfine splitting in hadrons is
due to the short-range part of the Goldstone-boson-
exchange interaction between quarks. The merit of the
flavor-spin (FS) model is that it reproduces the correct
ordering of positive- and negative-parity states of both
nonstrange and strange baryons [30–32] in contrast to the
one-gluon-exchange model. However, it cannot explain the
hyperfine splitting in mesons, because it does not explicitly
contain a quark-antiquark interaction.
It is therefore useful to compare the spectrum of hidden

charm nonstrange and hidden charm strange pentaquarks
within the same model.
In a previous work [33] the model of Ref. [30] has been

generalized from SU(3) to SU(4) in order to incorporate the
charm quark. The extension has been made in the spirit of
the phenomenological approach of Ref. [34] where, in
addition to Goldstone bosons of the hidden approximate
chiral symmetry of QCD, the flavor-exchange interaction
was augmented by an additional exchange of D mesons
between u, d and c quarks and ofDs mesons between s and
c quarks. The model provided a satisfactory description of
the heavy flavor baryons.
The extended SU(4) flavor-spin model has been applied

to the study of uudcc̄ pentaquarks. Presently we study the
pentaquarks of structure udscc̄ in the same framework
considering both positive and negative parities.
The parity of the pentaquark is given by P ¼ ð−Þlþ1,

where l is the orbital angular momentum. As shown in
Ref. [33], there are two ways to introduce orbital excita-
tions. For the lowest positive-parity states one way is to
introduce an angular momentum l ¼ 1 in the internal
motion of the four-quark subsystem and the other is to
introduce a unit of angular momentum in the relative
motion between a ground-state four-quark subsystem
and the antiquark. According to the Pauli principle, in
the first case the four-quark subsystem must be in a state of

orbital symmetry ½31�O. In the second case the four-quark
subsystem is in the ground state ½4�O.
In Ref. [33], in the context of a schematic flavor-spin

interaction, i.e., exact SU(4) symmetry, it was shown that the
lowest pentaquark state has a positive parity with the orbital
excitation in the internal motion of the four-quark subsys-
tem. Although the kinetic energy of such a state is higher
than that of the totally symmetric ½4�O state of negative
parity, the flavor-spin interaction overcomes this excess and
generates a lower eigenvalue for the ½31�O state with an s3p
configuration than for ½4�O with an s4 configuration.
In the exact SU(4) limit the strength of the interaction is

the same for all pairs, independent of the quark masses, and
it is a constant as a function of the relative distance between
the interacting quarks. The model Hamiltonian introduced
in the next section breaks the SU(4)-flavor symmetry
through the quark masses and the radial dependence of
the interaction potential. We calculate the masses of the
lowest positive- and negative-parity states of the penta-
quarks of structure udscc̄ considering states with flavor
symmetry ½22�F, ½31�F and ½211�F. The SU(4)-flavor
symmetry breaking implies the mixing of wave functions
containing ½31�F and ½211�F parts. It is shown that this
mixing affects the ordering of positive- and negative-parity
states and that the lowest-state udscc̄ pentaquark has
quantum numbers JP ¼ 1=2−.
The paper is organized as follows. In Sec. II we introduce

the model Hamiltonian and the two-body matrix elements
of the FS interaction corresponding to SU(4). Section III
describes the orbital part of the four-quark subsystem
constructed to be translationally invariant both for positive-
and negative-parity states. Sections IV,Vand VI summarize
analytic formulas. Section VII contains the numerical
results for the spectrum and a comparison with relevant
previous studies of hidden charm strange pentaquarks. The
last section is devoted to conclusions. Appendix A is a
reminder of useful group theory formulas for SUðnÞ.
Appendix B exhibits a variational solution for the baryon
masses relevant for the present study. In Appendix C we
present explicit forms of the flavor states of content udsc in
the Young-Yamanouchi-Rutherford basis, for specific irre-
ducible representations ½f�F.

II. THE HAMILTONIAN

Here we closely follow the description of the model as
presented in Ref. [33]. The parameters required by the
incorporation of the strange quark were added.
The FS model Hamiltonian has the general form [30]

H ¼
X
i

mi þ
X
i

p⃗2
i

2mi
−
ðPip⃗iÞ2
2
P

imi
þ
X
i<j

VconfðrijÞ

þ
X
i<j

VχðrijÞ; ð1Þ
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with mi and p⃗i denoting the quark masses and momenta
respectively and rij is the distance between the interacting
quarks i and j. The Hamiltonian contains the internal
kinetic energy and the linear confining interaction

VconfðrijÞ ¼ −
3

8
λci · λ

c
jCrij: ð2Þ

The hyperfine part VχðrijÞ has a flavor-spin structure that
was extended to SU(4) in Ref. [33]. One has

VχðrijÞ ¼
�X3

F¼1

VπðrijÞλFi λFj þ
X7
F¼4

VKðrijÞλFi λFj

þ VηðrijÞλ8i λ8j þ Vη0 ðrijÞλ0i λ0j

þ
X12
F¼9

VDðrijÞλFi λFj þ
X14
F¼13

VDs
ðrijÞλFi λFj

þ VηcðrijÞλ15i λ15j

�
σ⃗i · σ⃗j; ð3Þ

with the SU(4) generators λFi (F ¼ 1; 2;…; 15) and
λ0i ¼

ffiffiffiffiffiffiffiffi
2=3

p
1, where 1 is the 4 × 4 unit matrix.

In the SU(4) version the interaction (3) contains
γ ¼ π; K; η; D;Ds; ηc and η0 meson-exchange terms.
Every VγðrijÞ is a sum of two distinct contributions:
a Yukawa-type potential containing the mass of the
exchanged meson and a short-range contribution of oppo-
site sign, the role of which is crucial in baryon spectros-
copy. For a given meson γ the meson-exchange potential is

VγðrÞ ¼
g2γ
4π

1

12mimj

�
θðr − r0Þμ2γ

e−μγr

r

−
4ffiffiffi
π

p α3 expð−α2ðr − r0Þ2Þ
�
: ð4Þ

In the present calculations we use the parameters of
Ref. [31] to which we add the μD and μDs

masses and

the coupling constants
g2Dq

4π and
g2Dsq

4π . These are

g2πq
4π

¼ g2ηq
4π

¼ g2Dq

4π
¼ g2Dsq

4π
¼ 0.67;

g2η0q
4π

¼ 1.206;

r0 ¼ 0.43 fm; α ¼ 2.91 fm−1; C ¼ 0.474 fm−2;

μπ ¼ 139 MeV; μη ¼ 547 MeV;

μη0 ¼ 958 MeV; μK ¼ 495 MeV;

μD ¼ 1867 MeV; μDs
¼ 1968 MeV:

The meson masses correspond to the experimental values
from the Particle Data Group [35]. As discussed in the
following, we ignore the ηc exchange.

The model of Ref. [31] has previously been used to
study the stability of open-flavor tetraquarks [36] and
open-flavor pentaquarks [37,38]. Accordingly, for the
quark masses we take the values determined variationally
in Refs. [36,37]

mu;d ¼ 340 MeV; ms ¼ 440 MeV;

mc ¼ 1350 MeV: ð5Þ

They were adjusted to satisfactorily reproduce the average
mass M̄ ¼ ðM þ 3M�Þ=4 ¼ 2008 MeV of the D mesons
and the mass 2.087 MeV of Ds.
After integration in the flavor space, the two-body matrix

elements containing contributions due to light, strange and
charm quarks are [33]

Vij ¼ σ⃗i · σ⃗j

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Vπ þ 1
3
Vuu
η þ 1

6
Vuu
ηc ; ½2�F; I¼ 1

2VK − 2
3
Vus
η ; 2Vuc

D − 1
2
Vuc
ηc ½2�F; I¼ 1

2

2Vsc
Ds
− 1

2
Vsc
ηc ½2�F; I¼ 0

4
3
Vss
η þ 3

2
Vcc
ηc ½2�F; I¼ 0

−2Vsc
Ds
− 1

2
Vsc
ηc ½11�F; I¼ 0

−2VK − 2
3
Vus
η ; −2Vuc

D − 1
2
Vuc
ηc ½11�F; I¼ 1

2

−3Vπ þ 1
3
Vuu
η þ 1

6
Vuu
ηc ; ½11�F; I¼ 0

ð6Þ

In Eq. (6) the pair of quarks ij is either in a symmetric
½2�F or an antisymmetric ½11�F flavor state and the
isospin I is defined by the quark content. The upper
index of V exhibits the flavor of the two quarks inter-
changing a meson specified by the lower index. In order to
keep close to the notations of Ref. [30] the upper index
of π and K is not indicated. Obviously, in every sum/
difference of Eq. (6) the upper index is the same for all
terms.
To calculate the matrix elements of the hyperfine

interaction (3) between quarks the first step is to decouple
the flavor and spin parts of the wave function of partition
½f�FS by using Clebsch-Gordan coefficients of the permu-
tation group S4 [39]. With the usual spin wave functions
and the flavor wave functions given in Appendix C,
one can reduce the calculation of four-body matrix ele-
ments to that of two-body matrix elements. Implementing
the expressions (6) one obtains the matrix elements
of the flavor-spin interaction (3) for four-quark states in
the flavor-spin space. The diagonal matrix elements are
presented in Table I.
In the case of udscc̄ pentaquarks there are also non-

vanishing off-diagonal matrix elements. These are
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h3jVχ j30i ¼
ffiffiffi
2

p

9

�
−3Vπ þ

1

3
Vuu
η þ 1

6
Vuu
ηc þ

2

3
Vuu
η0

þ 2VK þ 2

3
Vus
η −

2

3
Vus
η0 þ 10Vuc

D þ 5

2
Vuc
ηc −

2

3
Vuc
η0

− 10Vsc
Ds

−
5

2
Vsc
ηc þ

2

3
Vsc
η0

�
; ð7Þ

h3jVχ j4i ¼
1

2

�
−6Vπ þ

2

3
Vuu
η þ 1

3
Vuu
ηc þ 4

3
Vuu
η0

− 8VK þ Vus
η þ 4

3
Vus
η0 − 4Vuc

D − 2Vuc
ηc −

4

3
Vuc
η0

þ 4Vsc
Ds

− Vsc
ηc þ

4

3
Vsc
η0

�
; ð8Þ

and

h30jVχ j4i ¼
ffiffiffi
2

p �
−3Vπ þ

1

3
Vuu
η þ 1

6
Vuu
ηc þ

2

3
Vuu
η0

þ 2VK þ 2

3
Vus
η −

2

3
Vus
η0 − 2Vuc

D þ 1

2
Vuc
ηc −

2

3
Vuc
η0

þ 2Vsc
Ds

−
1

2
Vsc
ηc þ

2

3
Vsc
η0

�
: ð9Þ

Note that the integration in the orbital space is not yet
performed in the diagonal and off-diagonal matrix elements
presented above.
To reproduce the exact SU(4) limit one has to take

Vπ ¼ Vuu
η ¼ Vuu

ηc ¼ Vuc
D ¼ Vuc

ηc ¼ VK ¼ Vsc
Ds

¼ Vsc
ηc ¼ −Cχ ,

Vus
η ¼ −3=4Cχ and Vuu

η0 ¼ Vuc
η0 ¼ Vus

η0 ¼ Vsc
η0 ¼ 0. Then, in

the exact SU(4) limit, the flavor-spin interaction takes the
following form [33]:

Vχ ¼ −Cχ

X
i<j

λFi · λFj σ⃗i · σ⃗j; ð10Þ

where Cχ is an equal-strength constant for all pairs. Using
Appendix A, one can check that the diagonal matrix
elements of Table I are −27Cχ , −21Cχ , −15Cχ , −15Cχ

and −7Cχ respectively. In the exact SU(4) limit the off-
diagonal matrix elements of Vχ vanish identically. Thus the
lowest state of Table I is j1i because it acquires the largest

attraction due to the FS interaction in the exact SU(4) limit.
This implies that the lowest state has positive parity, a
conclusion which sometimes still holds for broken sym-
metry, as for example for the uuddc̄ pentaquarks [38].

III. ORBITAL SPACE

The orbital wave functions are defined in terms of four
internal Jacobi coordinates for pentaquarks chosen as

x⃗ ¼ r⃗1 − r⃗2;

y⃗ ¼ ðr⃗1 þ r⃗2 − 2r⃗3Þ=
ffiffiffi
3

p
;

z⃗ ¼ ðr⃗1 þ r⃗2 þ r⃗3 − 3r⃗4Þ=
ffiffiffi
6

p
;

⃗t ¼ ðr⃗1 þ r⃗2 þ r⃗3 þ r⃗4 − 4r⃗5Þ=
ffiffiffiffiffi
10

p
; ð11Þ

where 1, 2, 3 and 4 are the quarks and 5 is the antiquark so
that t gives the distance between the antiquark and the
center-of-mass coordinate of the four-quark subsystem.
For the lowest positive-parity states having l ¼ 1, there

are two ways to introduce orbital excitations [33]. One is to
excite the four-quark subsystem, and the other is to include
the angular momentum in the relative motion between the
four-quark subsystem and the antiquark. Both imply trans-
lationally invariant states (no center-of-mass motion).

A. Excited four-quark subsystem, P= + 1

In this case one has to express the orbital wave functions
of the four-quark subsystem of structure s3p in terms of the
internal coordinates x⃗, y⃗, z⃗ for the specific permutation
symmetry ½31�O. The method of constructing translationally
invariant states of definite permutation symmetry contain-
ing a unit of angular momentum was first given in Ref. [38]
and recently revised in Ref. [33]. The three independent
states denoted below by ψ i, which define the basis vectors
of the irreducible representation ½31�O in terms of shell
model states hr⃗jnlmi where n ¼ 0, l ¼ 1, are

ψ1 ¼ hx⃗j000ihy⃗j000ihz⃗j010i; ð12Þ
ψ2 ¼ hx⃗j000ihy⃗j010ihz⃗j000i; ð13Þ
ψ3 ¼ hx⃗j010ihy⃗j000ihz⃗j000i: ð14Þ

TABLE I. The hyperfine interaction Vχ , Eq. (3), integrated in the flavor-spin space, for the quark subsystem udscwith I ¼ 0. Vqaqb
γ are

defined in Eq. (6) where the upper index qaqb indicates the flavor of the interacting quark pair.

State Vχ

j1i ¼ j½31�O½22�F½22�S½4�FSi 9 Vπ − Vuu
η − 2Vuu

η0 − 1
2
Vuu
ηc þ 6VK þ 6Vuc

D þ 6Vsc
Ds

þ 3
2
Vsc
ηc − 2Vsc

η0

j2i ¼ j½31�O½31�F½31�S½4�FSi 9 Vπ − Vuu
η − 2Vuu

η0 − 1
2
Vuu
ηc þ 6VK þ 6Vuc

D þ 2Vsc
Ds

− 1
2
Vsc
ηc þ 2

3
Vsc
η0

j3i ¼ j½4�O½211�F½22�S½31�FSi 14
3
Vπ−14

27
Vuu
η −28

27
Vuu
η0 −

7
27
Vuu
ηc þ14

9
VKþ14

27
Vus
η −14

27
Vus
η0 þ46

9
Vuc
D þ23

18
Vuc
ηc −

46
27
Vuc
η0 þ20

9
Vsc
Ds
þ5

9
Vsc
ηc −

20
27
Vsc
η0

j30i ¼ j½4�O½211�0F½22�S½31�FSi 13
3
Vπ−13

27
Vuu
η −13

54
Vuu
ηc −

26
27
Vuu
η0 þ20

9
Vuc
D þ5

9
Vuc
ηc −

20
27
Vuc
η0 þ52

9
VKþ52

27
Vus
η −52

27
Vus
η0 þ10

9
Vsc
Ds
þ 5

18
Vsc
ηc −

20
54
Vsc
η0

j4i ¼ j½4�O½31�F½22�S½31�FSi 6Vπ − 2
3
Vuu
η − 4

3
Vuu
η0 − 1

3
Vuu
ηc þ 2

3
Vuc
D þ 5

6
Vuc
ηc −

10
9
Vuc
η0 þ 2

3
VK þ 10

9
Vus
η − 10

9
Vus
η0 −

4
3
Vsc
Ds

þ 1
3
Vsc
ηc −

4
9
Vsc
η0
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In this picture there is no excitation in the relative motion
between the cluster of four quarks and the antiquark defined
by the coordinate ⃗t. Then the pentaquark orbital wave
functions ψ5

i are obtained by multiplying each ψ i from
above by the wave function h⃗tj000i which describes the
relative motion between the four-quark subsystem and the
antiquark c̄. Assuming an exponential behavior we intro-
duce two variational parameters: a for the internal motion
of the four-quark subsystem and b for the relative motion
between the subsystem qqqc and c̄. We explicitly have

ψ5
1 ¼ N exp

�
−
a
2
ðx2 þ y2 þ z2Þ − b

2
t2
�
zY10ðẑÞ; ð15Þ

ψ5
2 ¼ N exp

�
−
a
2
ðx2 þ y2 þ z2Þ − b

2
t2
�
yY10ðŷÞ; ð16Þ

ψ5
3 ¼ N exp

�
−
a
2
ðx2 þ y2 þ z2Þ − b

2
t2
�
xY10ðx̂Þ; ð17Þ

where

N ¼ 23=2a11=4b3=4

31=2π5=2
: ð18Þ

B. Excitation between the four-quark subsystem
and the antiquark, P= + 1

The authors of Ref. [24] have studied the qqqcc̄ and the
qqscc̄ pentaquarks, in three different models, including
the FS model. The orbital wave function of the four-quark
subsystem has the symmetry ½4�O for both parities.
Although the radial wave function was not specified,
one can infer that the positive-parity states of Ref. [24]
were obtained by including a unit of orbital angular
momentum in the relative motion between the four-quark
subsystem and the antiquark. The states remain transla-
tionally invariant. In this case the orbital wave function
takes the form

ψ5
4 ¼ N4 exp

�
−
a
2
ðx2 þ y2 þ z2Þ − b

2
t2
�
tY10ðt̂Þ; ð19Þ

where

N4 ¼
81=2a9=4b5=4

31=2π5=2
: ð20Þ

C. Negative-parity states, P= − 1
We also need the orbital wave function of the lowest

negative-parity state described by the s4 configuration of
the symmetry ½4�O which is

ϕ0 ¼ N0 exp

�
−
a
2
ðx2 þ y2 þ z2Þ − b

2
t2
�
; ð21Þ

with

N0 ¼
�
a
π

�
9=4

�
b
π

�
3=4

: ð22Þ

IV. KINETIC ENERGY

The kinetic energy T of the Hamiltonian (1) can be
calculated analytically. Below we present the expression of
its expectation value for the three cases introduced above.
Case A. In this case the expectation value of the kinetic

energy is defined by the average over the three wave
functions defined by Eqs. (15)–(17). One obtains

hTi ¼ 1

3
½hψ5

1jTjψ5
1i þ hψ5

2jTjψ5
2i þ hψ5

3jTjψ5
3i�

¼ ℏ2

�
11

2μ1
aþ 3

2μ2
b

�
; ð23Þ

with

4

μ1
¼ 2

mq
þ 1

ms
þ 1

mQ
; ð24Þ

which is the generalization of Eq. (22) of Ref. [33] to
include strange quarks and

5

μ2
¼ 1

μ1
þ 4

mQ
; ð25Þ

where q ¼ u, d andQ ¼ c. Here, we havemq ¼ 340 MeV,
ms ¼ 440 MeV and mc ¼ 1350 MeV, as defined by
Eq. (5). Taking mu ¼ md ¼ ms ¼ mQ ¼ m and setting
a ¼ b, one can recover the identical-particle limit hTi ¼
7
2
ℏω with ℏω ¼ 2aℏ2=m.
Case B. In this case there is only one orbital wave

function because we deal with the symmetric state ½4�O. The
orbital excitation is located in the relative motion of the
four-quark system and the antiquark. One obtains

hTi ¼ ℏ2

�
9

2μ1
aþ 5

2μ2
b

�
; ð26Þ

where μ1 and μ2 are the same as above. Again one can
recover the identical-particle limit when a ¼ b but the
contributions of the two terms are different because the
coefficients 11=2 and 3=2 now become 9=2 and 5=2
respectively, which is natural because the unit of orbital
excitation is no longer located in the four-quark subsystem
but in the relative motion between the four-quark sub-
system and c̄.
Case C. One deals with the symmetric state ½4�O and no

orbital excitation. The only orbital state has negative parity
and Eq. (21) gives
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hTi ¼ ℏ2

�
9

2μ1
aþ 3

2μ2
b

�
; ð27Þ

with μ1 and μ2 as above.

V. CONFINEMENT

By integrating in the color space, the expectation value of
the confinement interaction (2) has the same form as that of
the uudcc̄ system [33]

hVconfi ¼
C
2
ð6hr12i þ 4hr45iÞ ð28Þ

where hriji is the interquark distance and the coefficients 6
and 4 account for the number of quark-quark and quark-
antiquark pairs, respectively, for all cases A, B and C, but
with different expressions for hriji in each case.
Case A. Here one has

hriji ¼
1

3
½hψ5

1jrijjψ5
1i þ hψ5

2jrijjψ5
2i þ hψ5

3jrijjψ5
3i�; ð29Þ

where i, j ¼ 1; 2; 3; 4; 5 (i ≠ j). An analytic evaluation
gives

hr12i ¼
20

9

ffiffiffiffiffiffi
1

πa

r
; ð30Þ

and

hr45i ¼
1

3
ffiffiffiffiffiffi
2π

p
�
2

ffiffiffiffiffiffiffiffiffiffiffiffi
3

a
þ 5

b

r
þ

ffiffiffiffiffiffi
5b

p �
1

2a
þ 1

b

��
: ð31Þ

Case B. The expectation value of the confinement
interaction is given by Eq. (28) with

hr12i ¼
ffiffiffiffiffiffi
4

πa

r
; ð32Þ

and

hr45i ¼
2

3

ffiffiffiffiffiffi
2b
5π

r �
3

4a
þ 5

b

�
: ð33Þ

Case C. In this case the four quarks are in the s4

configuration described by the states j3i, j30i or j4i and
there is no orbital excitation at all. The expectation value of
the confinement interaction is given by Eq. (28) as well,
with

hr12i ¼
ffiffiffiffiffiffi
4

πa

r
; ð34Þ

and

hr45i ¼
1ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffi
3

a
þ 5

b

r
: ð35Þ

VI. FLAVOR-SPIN INTERACTION

In order to integrate the expressions of Table I and
Eqs. (7)–(9) in the orbital space one has to decouple the
orbital part of the wave function ½f�O from the part con-
taining the other degrees of freedom by using Clebsch-
Gordan coefficients of the permutation group S4 [39]. The
next step is to reduce the matrix elements of the hyperfine
interaction Vχ of Eq. (3) of the four-quark system to matrix
elements of two quarks. Table I gives the diagonal matrix
elements and Eqs. (7)–(9) gives the off-diagonal ones. As
there are six pairs, the contribution of one pair is one sixth
of the above expressions.
For states of type A with one unit of orbital excitation

the result is a linear combination of orbital two-body
matrix elements of type hssjVqaqb

γ jssi; hspjVqaqb
γ jspi and

hspjVqaqb
γ jpsi. For states of type B or C there are two-body

matrix elements between single-particle s states, namely
hssjVqaqb

γ jssi. In every term qaqb is a pair of quarks
from Eq. (6).

VII. RESULTS AND DISCUSSION

We have looked for variational solutions of the
Hamiltonian of Sec. II using the orbital part of the wave
functions as described in Sec. III, which contain the
parameters a and b. The wave functions are the product
of the four-quark subsystem states of flavor-spin structure
defined in Table I and the charm antiquark wave function
denoted by jc̄i. The total angular momentum is
J⃗ ¼ L⃗þ S⃗þ s⃗Q, where L⃗ and S⃗ are the angular momentum
and spin of the four-quark cluster and s⃗Q is the spin of the
heavy antiquark.
We have neglected the contributions of Vuu

ηc , V
uc
ηc and V

sc
ηc

because little uū, dd̄ and ss̄ are expected in ηc. We have
also neglected Vuc

η0 and Vsc
η0 by assuming a little cc̄

component in η0. Thus, in the expressions of Table I we
took

Vuu
ηc ¼ Vuc

ηc ¼ Vuc
η0 ¼ Vsc

ηc ¼ Vsc
η0 ¼ 0: ð36Þ

For Case A the numerical results are presented in
Table II. The eigenvalues of j1ijc̄i and j2ijc̄i states are
degenerate for the allowed values of J in each case. For
j2ijc̄i the states with JP ¼ 1=2þ and 3=2þ have multiplic-
ity 2. The optimal values found for the parameters a and b
are the same for both states. We found that the ratio of the
matrix elements of the K- and π-meson exchange is about
0.74, close to the quark mass ratio mu;d=ms and the matrix
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elements of the K- and D-meson exchange is about 0.34
close to the ratio ms=mc.
For Case B the masses and the mixing coefficients of the

1=2þ and 3=2þ states, obtained from the combination of
the basis vectors j3ijc̄i, j30ijc̄i and j4ijc̄i are presented in
Table III. The optimal variational parameters are the same
as in Table II. The mixing coefficients all turn out to be
large for the lowest state of 4493 MeV. The next state at
4614 MeV is dominantly a j30ijc̄i state and the last
eigenstate at 5075 MeV is mostly a combination of
j3ijc̄i and j4ijc̄i due to the large off-diagonal matrix
element (9) where the dominant π- andK-meson exchanges
contribute with the same sign.
Case C corresponding to the negative-parity 1=2− state is

shown in Table IV. The mixing coefficients are the same as
those of Table III, because they result from the diagonal-
ization of a hyperfine interaction identical to that of Case B.
The difference between these cases appears only in the

kinetic and the confinement matrices, which are diagonal.
Hence, in Case C the masses can be obtained from those of
Table III by lowering each of them by 89 MeV which is
precisely the difference in the kinetic energy plus the
confinement energy between Case B and Case C. The
largest mixing is between the states j3ijc̄i and j4ijc̄i.
The diagonal matrix element of the Hamiltonian h3c̄jHj3c̄i
is lowered from 4612 to 4404 MeV and the value of
h4c̄jHj4c̄i is increased from 4786 to 4986 MeV.
Looking at Tables II, III and IV one can see that the

lowest mass is 4404 MeV. Thus the lowest pentaquark
udscc̄ has quantum numbers JP ¼ 1=2−, in contrast to the
lowest pentaquark uudcc̄ for which it was found that JP ¼
1=2þ in Ref. [33].
The mixing of states j3ijc̄i, j30ijc̄i and j4ijc̄i was first

discussed in Ref. [24] with the corresponding notation
j3i → j1i, j30i → j10i and j4i → j2iwhere the quark model
of Ref. [34] with a harmonic oscillator confinement and a
simplified hyperfine interaction were used. The mixing was
introduced for JP ¼ 1=2− only, Case C. There the JP ¼
1=2− state appears at 4084 MeVand the JP ¼ 1=2þ state at
4291 MeV, i.e., about 200 MeVabove the lowest negative-
parity state. Thus the lowest JP ¼ 1=2− state of Ref. [24] is
about 300 MeV lower than in the present case.
The JP ¼ 1=2− states found in this study are located

within the energy range of the JP ¼ 1=2− resonances
predicted in Ref. [21]. There only s-wave meson-baryon
interactions were considered so that only negative-parity
states were discussed. Their coupling to the J=ψΛ channel
was found to be small, but large enough to provide
convenient production rates. The masses of hidden charm
strange pentaquarks with JP ¼ 1=2− found in Ref. [22]
within a chiral effective field theory are located as well in the
energy range predicted in the present work. A similar mass
range was found in Ref. [23] in a hadrocharmonium picture,
with the difference that the lowest state has positive parity.

VIII. CONCLUSIONS

We have calculated a few of the lowest masses of the
hidden charm strange pentaquarks udscc̄, in the SU(4)
version of the flavor-spin model introduced in Ref. [33]
where it was applied to uudcc̄ pentaquarks. The model
provides an isospin dependence and an internal structure of
pentaquarks. For positive parity the angular momentum can
be located in the internal motion of the four-quark sub-
system, Case A, or in the relative motion between the four-
quark subsystem and the antiquark, Case B.
According to the discussion presented in Ref. [33] for

exact SU(4) symmetry the lowest positive pentaquark state
has positive parity when the orbital excitation is located in
the internal motion of the four-quark subsystem. For
broken SU(4) such a result remained valid for the uudcc̄
pentaquark. In the present analysis it was found that the
lowest state of the udscc̄ pentaquark has negative parity.

TABLE II. Lowest positive -parity udscc̄ pentaquarks of
quantum numbers S and JP and symmetry structure j1i and
j2i defined in Table I. Column 1 gives the state, column 2 gives
the spin, column 3 gives the parity and total angular momentum,
column 4 gives the optimal variational parameters associated to
the wave functions defined in Sec. III, and column 5 gives the
calculated mass.

Variational parameters Mass
State S JP a (fm−2) b (fm−2) (GeV)

j1ijc̄i 1

2

1

2

þ
,
3

2

þ 1.798 1.053 4442

j2ijc̄i 1

2

1

2

þ
,
3

2

þ
,
5

2

þ 1.798 1.053 4495

TABLE III. The mass and the mixing coefficients of states of
positive parity j3ijc̄i, j30ijc̄i and j4ijc̄i defined in Table I with
L ¼ 1, S ¼ 0, JP ¼ 1=2þ, 3=2þ obtained from the orbital wave
function of Case B with a ¼ 1.798 fm−2 and b ¼ 1.053 fm−2.

Mass (MeV) j3ijc̄i j30ijc̄i j4ijc̄i
4493 0.748 0.324 −0.579
4614 0.326 −0.939 −0.104
5075 −0.578 −0.111 −0.808

TABLE IV. The mass and the mixing coefficients of states of
negative parity, Case C, diagonalized in the basis j3i, j30i and j4i
defined in Table I with L ¼ 0, S ¼ 0, JP ¼ 1=2−. The variational
parameters of the orbital wave function are a ¼ 1.798 fm−2 and
b ¼ 1.053 fm−2.

Mass (MeV) j3i j30i j4i
4404 0.748 0.324 −0.579
4525 0.326 −0.939 −0.104
4986 −0.578 −0.111 −0.808
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This is due to the breaking of SU(4)-flavor symmetry which
implies the coupling of states of different flavor symmetries
½f�F. This coupling considerably lowers the negative-parity
state and not so much the positive-parity ones. As a
consequence, the negative-parity state JP ¼ 1=2−, without
any orbital excitation, Case C, was found to have the lowest
mass of 4404 MeV, followed by the lowest positive-parity
states JP ¼ 1=2þ or 3=2þ with a mass of 4442 MeV.
There is an important difference between udscc̄ and

uudcc̄ pentaquarks due to the presence of the quark s. The
udscc̄ pentaquark has two Weyl tableaux associated to the
irreducible representation ½211� of the four-quark subsys-
tem at I ¼ 0, as shown in Appendix C. Due to the Pauli
principle the uudcc̄ pentaquark has only one Weyl tableau
associated to the irreducible representation ½211�.
Accordingly, in the udscc̄ pentaquark there are three states
which can couple due to the SU(4) breaking, the j3i, j30i
and j4i, as shown in the present study. As mentioned above,
this coupling brings the lowest JP ¼ 1=2− state below the
lowest positive-parity states JP ¼ 1=2þ or 3=2þ.
In the uudcc̄ pentaquark, there are only two flavor states

which, in principle, can couple due to the breaking of
SU(4). They are of type j3i and j4i with appropriate Weyl
tableaux. We found that the coupling between the states
of symmetry j3i ¼ j½4�O½211�F½22�S½31�FSi and j4i ¼
j½4�O½31�F½22�S½31�FSi vanish identically for the uudcc̄
pentaquark. Therefore the lowest state in the uudcc̄
pentaquark has positive parity, as shown in Ref. [33].
This conclusion is at variance with the result of Ref. [24]
where j3i and j4i mix together. A possible reason for the
discrepancy is that the three flavor states of symmetry ½31�,
as defined by Eqs. (A.9)–(A.11) of Ref. [24] do not form a
proper Young-Yamanouchi basis for the irreducible repre-
sentation ½31� of the permutation group S4.
We recall that the parity sequence of the uudcc̄ penta-

quark studied in the hadrocharmonium model [40] was
similar to ours [33], namely that the lowest pentaquark state
has JP ¼ 1=2þ quantum numbers. In the hadrocharmo-
nium model description of Ref. [23] the lowest state of
the udscc̄ pentaquark has positive parity, contrary to the
present result.
Therefore, in the flavor-spin model the presence of the

strange quark brings more richness to the flavor structure
and changes the parity order of the lowest two states in the
udscc̄ pentaquark relative to the uudcc̄ pentaquark.
The JP quantum numbers of the 2019 LHCb resonances

are not yet known. Likewise, for possible future observa-
tions the spin and parity will be essential to discriminate
between the existing interpretations of pentaquarks, or
inspire new developments.

ACKNOWLEDGMENTS

This work has been supported by the Fonds de la
Recherche Scientifique—FNRS, Belgium, under the
Grant No. 4.4503.19.

APPENDIX A: EXACT SU(4) LIMIT

The exact SU(4) limit is useful in checking the integration
in the flavor space, made in Table I. In this limit every
expectation value of Table I reduces to the expectation value
of Eq. (10) and one can use the following formula [27]:

h
X
i<j

λFi · λFj σ⃗i · σ⃗ji ¼ 4CSUð2nÞ
2 − 2CSUðnÞ

2

−
4

k
CSUð2Þ
2 − k

3ðn2 − 1Þ
n

ðA1Þ

where n is the number of flavors and k is the number of

quarks; here n ¼ 4 and k ¼ 4. CSUðnÞ
2 are the Casimir

operator eigenvalues of SUðnÞ which can be derived from
the expression [41]

CSUðnÞ
2 ¼ 1

2
½f01ðf01 þ n − 1Þ þ f02ðf02 þ n − 3Þ

þ f03ðf03 þ n − 5Þ þ f04ðf04 þ n − 7Þ þ � � �

þ f0n−1ðf0n−1 − nþ 3Þ� − 1

2n

�Xn−1
i¼1

f0i

�
2

ðA2Þ

where f0i ¼ fi − fn, for an irreducible representation given
by the partition ½f1; f2;…; fn�. Equation (A1) has been
previously used for n ¼ 3 and k ¼ 6 in Ref. [41].

APPENDIX B: THE BARYONS

The masses of ground-state baryons relevant to the study
of udscc̄ pentaquarks with isospin I ¼ 0 were estimated
variationally by using a radial wave function of the form
ϕ ∝ exp½− a

2
ðx2 þ y2Þ� containing the variational parameter

a and the coordinates x and y defined by Eq. (11). The
results are indicated in Table V together with the exper-
imental masses. We took Vuc

ηc ¼Vuc
η0 ¼Vsc

ηc ¼Vsc
η0 ¼0. The

resulting charmed baryon masses are about 100 MeV lower
than the experimental values. By increasing the charmed
quark mass from mc ¼ 1.35 to mc ¼ 1.45 GeV the agree-
ment with the experiment would be much better. However,

TABLE V. Masses of ground-state baryons with the flavor-spin
interaction of Sec. II. Column 1 gives the baryon, column 2 gives
the isospin, column 3 gives the spin and parity, column 4 gives
the calculated mass, column 5 gives the variational parameter and
the last column gives the experimental mass.

Baryon I JP
Calculated
Mass (GeV) a (fm−2)

Experimental
mass (GeV)

Λ 0 1

2

þ 1.165 2.484 1.116

Λc 0 1

2

þ 2.180 2.055 2.283

Ξc 0 1

2

þ 2.304 1.797 2.469
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we prefer to use the same parameters as in Ref. [33] in order
to make a comparison with the uudcc̄ pentaquarks.

APPENDIX C: THE FLAVOR
WAVE FUNCTIONS

The four-quark flavor states with quark content udsc
defining the basis vectors of the irreducible representations
½31�F, ½22�F, ½211�F and ½1111�F have been given in Ref. [24]
for I ¼ 0. We have checked them with the method of
Ref. [42]. In Ref. [24] the flavor states were defined in
the Young-Yamanouchi basis. The order of particles is
always 1234 in every term.
In Table VI, except for ½1111�F, which is not needed

here, we give the correspondence between the Young-
Yamanouchi basis and the notation of Ref. [24] for each
Yamanouchi symbol which is a compact notation for a
Young tableau. For a tableau with n particles it is defined by
Y ¼ ðrn; rn−1;…; r1Þ where ri represents the row of the
particle i. The Weyl tableaux are indicated for each
irreducible representation.
Here we write the flavor states in terms of products of

symmetric ϕ½2�ðqaqbÞ ¼ ðqaqb þ qbqaÞ=
ffiffiffi
2

p
or antisym-

metric ϕ½11�ðqaqbÞ ¼ ðqaqb − qbqaÞ=
ffiffiffi
2

p
quark pair states

for the pairs 12 and 34. This allows a straightforward
calculation of the flavor-integrated matrix elements (6) and
in addition one can easily read off the isospin of the
corresponding wave function.
For the irrep ½22� there are two basis vectors and their

expressions are straightforward because the pairs 12 and 34
are always either in a symmetric or antisymmetric pair.
We have

j½22�F2211i¼
1

2
½ϕ½2�ðusÞϕ½2�ðcdÞþϕ½2�ðcdÞϕ½2�ðusÞ

−ϕ½2�ðsdÞϕ½2�ðucÞ−ϕ½2�ðucÞϕ½2�ðsdÞ� ðC1Þ

and

j½22�F2121i ¼
ffiffiffiffiffi
1

12

r
½2ϕ½11�ðudÞϕ½11�ðscÞ

þ 2ϕ½11�ðscÞϕ½11�ðudÞ þ ϕ½11�ðucÞϕ½11�ðsdÞ
þ ϕ½11�ðsdÞϕ½11�ðucÞ − ϕ½11�ðusÞϕ½11�ðcdÞ
− ϕ½11�ðcdÞϕ½11�ðusÞ� ðC2Þ

where Eq. (C2) obviously has isospin I ¼ 0 which means
that the pairs 12 and 34 in Eq. (C1) have to couple to the
same isospin as well.
For irrep ½31�F the vectors ½31�F1

and ½31�F2
have to be

combined in the so-called Young-Yamanouchi-Rutherford
basis first proposed in the context of nuclear physics
[43,44]. It is defined such that the last two particles are
either in a symmetric or antisymmetric state. The pair 12 is
also in a symmetric or antisymmetric state, which is very
advantageous. For more than four particles the problem is
more complicated. Here we have [42]

j½31�F1211i ¼
ffiffiffi
2

3

r
j½31�F1211i þ

ffiffiffi
1

3

r
j½31�F2111i ðC3Þ

where on the left-hand side both pairs 12 and 34 are in a
symmetric state and

j½31�Ff1211i ¼
ffiffiffi
1

3

r
j½31�F1211i −

ffiffiffi
2

3

r
j½31�F2111i ðC4Þ

where the pair 12 is in a symmetric state and 34 is in an
antisymmetric state. Using Eqs. (A.16) and (A.15) of
Ref. [24], defining ½31�F2

and ½31�F1
respectively, one obtains

j½31�F1211i¼
1

2
½ϕ½2�ðusÞϕ½2�ðcdÞ−ϕ½2�ðcdÞϕ½2�ðusÞ

þϕ½2�ðucÞϕ½2�ðdsÞ−ϕ½2�ðdsÞϕ½2�ðucÞ�; ðC5Þ

and

j½31�Ff1211i ¼
ffiffiffi
1

8

r
½ϕ½2�ðucÞϕ½11�ðdsÞ − ϕ½2�ðusÞϕ½11�ðcdÞ

− ϕ½2�ðcdÞϕ½11�ðusÞ − ϕ½2�ðdsÞϕ½11�ðucÞ
− 2ϕ½2�ðscÞϕ½11�ðudÞ�: ðC6Þ

The state (C6) obviously has I ¼ 0 and thus Eq. (C5) should
also have I ¼ 0.
The third basis vector ½31�F3

of Ref. [24] can simply be
rewritten as

TABLE VI. The I ¼ 0 udsc flavor states in two different
notations and the corresponding Weyl tableaux.

Young-Yamanouchi Ref. [24] Weyl tableau

½22�F2211 ½22�F1 u s
d c½22�F2121 ½22�F2

½31�F2111 ½31�F1 u s c
d½31�F1211 ½31�F2

½31�F1121 ½31�F3

½211�F3211 ½211�F1 u s
d
c

½211�F3121 ½211�F2

½211�F1321 ½211�F3

½211�0F3211 ½211�0F1 u c
d
s

½211�0F3121 ½211�0F2

½211�0F1321 ½211�0F3
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j½31�F1121i ¼
ffiffiffi
1

8

r
½2ϕ½11�ðudÞϕ½2�ðscÞ − ϕ½11�ðdsÞϕ½2�ðucÞ

þ ϕ½11�ðcdÞϕ½2�ðusÞ þ ϕ½11�ðusÞϕ½2�ðcdÞ
þ ϕ½11�ðucÞϕ½2�ðdsÞ�; ðC7Þ

where the pair 12 is in an antisymmetric state and 34 is in a
symmetric state. The state obviously has I ¼ 0.
For the irrep ½211�F the Young-Yamanouchi-Rutherford

basis vectors are

j½211�F1321i¼
ffiffiffi
2

3

r
j½211�F1321iþ

ffiffiffi
1

3

r
j½211�F3121i ðC8Þ

where the pair 12 is in an antisymmetric state and 34 is in a
symmetric state and

j½211�Ff1321i ¼
ffiffiffi
1

3

r
j½211�F1321i −

ffiffiffi
2

3

r
j½31�F3121i ðC9Þ

where both pairs 12 and 34 are in an antisymmetric state.
Using Eqs. (A.20) and (A.19) of Ref. [24] one obtains

j½211�F1321i ¼
ffiffiffiffiffi
1

24

r
½2ϕ½11�ðudÞϕ½2�ðscÞ

− 3ϕ½11�ðucÞϕ½2�ðdsÞ − 3ϕ½11�ðcdÞϕ½2�ðusÞ
þ ϕ½11�ðusÞϕ½2�ðcdÞ − ϕ½11�ðdsÞϕ½2�ðucÞ�

ðC10Þ

and

j½211�Ff1321i ¼
ffiffiffiffiffi
1

12

r
½−2ϕ½11�ðudÞϕ½11�ðscÞ

þ 2ϕ½11�ðscÞϕ½11�ðudÞ − ϕ½11�ðucÞϕ½11�ðdsÞ
− ϕ½11�ðcdÞϕ½11�ðusÞ þ ϕ½11�ðusÞϕ½11�ðcdÞ
þ ϕ½11�ðdsÞϕ½11�ðucÞ�: ðC11Þ

The vector ½211�F1
of Ref. [24] can be rewritten as

j½211�F3211i ¼
ffiffiffiffiffi
1

24

r
½ϕ½2�ðucÞϕ½11�ðsdÞ þ ϕ½2�ðcdÞϕ½11�ðusÞ

þ 2ϕ½2�ðcsÞϕ½11�ðudÞ − 3ϕ½2�ðsdÞϕ½11�ðucÞ
− 3ϕ½2�ðusÞϕ½11�ðcdÞ�: ðC12Þ

For the irrep ½211�0F the Young-Yamanouchi-Rutherford
basis vectors are defined like in Eqs. (C8) and (C9) but on
the right-hand side one must use the vectors ½211�0Fi

instead
of ½211�Fi

, i.e., Eqs. (A.23) and (A.22) of Ref. [24]. One
obtains

j½211�0F1321i ¼
ffiffiffi
1

3

r
½ϕ½11�ðudÞϕ½2�ðscÞ − ϕ½11�ðusÞϕ½2�ðcdÞ

þ ϕ½11�ðdsÞϕ½2�ðucÞ�; ðC13Þ

and

j½211�0Ff1321i ¼
ffiffiffi
1

6

r
½ϕ½11�ðudÞϕ½11�ðscÞ þ ϕ½11�ðusÞϕ½11�ðcdÞ

þ ϕ½11�ðdsÞϕ½11�ðucÞ − ϕ½11�ðcdÞϕ½11�ðusÞ
− ϕ½11�ðscÞϕ½11�ðudÞ − ϕ½11�ðucÞϕ½11�ðdsÞ�:

ðC14Þ

They obviously have I ¼ 0. The third basis vector ½211�0F1

can be rewritten in the convenient form

j½211�0F3211i ¼
ffiffiffi
1

3

r
½ϕ½2�ðscÞϕ½11�ðudÞ − ϕ½2�ðcdÞϕ½11�ðusÞ

− ϕ½2�ðucÞϕ½11�ðsdÞ� ðC15Þ

which also has I ¼ 0.
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