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Abstract 

The hydro-mechanical behaviour of a high-density bentonite pellet, potential candidate for engineered barriers 

in high-level radioactive waste disposal, is investigated through laboratory tests. Water content and volumetric 

strain are first determined at various suctions (ranging from 9 MPa to 89 MPa) during partial hydration from its 

initial state. Afterward, compression tests allow the Young modulus and strength to be determined at various 

suctions. The experimental results are then interpreted by using an existing model describing the hydro-

mechanical behaviour of an aggregate in compacted expansive clay. The analyses show that a single set of 

parameters is sufficient to predict the suction dependency of volumetric strain, Young modulus and compressive 

strengths. These findings would be helpful for further numerical investigations on the hydro-mechanical 

behaviour of granular bentonite-based engineered barriers by using both finite element and discrete element 

methods. 
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Introduction 

Bentonite-based materials are considered as candidate materials for engineered barriers in 

radioactive waste disposal due to their low permeability, good radionuclides retention 

capacity, and ability to swell upon hydration, which is an important property to fill the 

technological voids. While many studies on the hydro-mechanical behaviour of bentonite-

based engineered barriers have focused on compacted blocks of bentonite, bentonite 

pellets/powder mixtures have also been considered as an interesting alternative (Volckaert et 

al., 1996; van Geet et al., 2005; Imbert and Villar, 2006; Hoffman et al., 2007; Alonso et al., 

2011; Gens et al., 2011; Molinero-Guerra et al., 2017). 

After Kröhn (2005), vapour diffusion plays a significant – if not dominant – role in the 

resaturation process of bentonite-based engineered barriers. In order to study the hydro-

mechanical behaviour of bentonite pellets mixtures upon hydration by vapour transfer, 

accounting for the granular nature of the material (Molinera-Guerra et al., 2018a,b), 

numerical simulations based on the discrete element method (DEM) (Cundall and Strack, 

1979; Roux and Chevoir, 2005; Agnolin and Roux, 2007; Than et al., 2017) could be an 

interesting way of assessing the influence of pellets swelling on the mixtures behaviour. In 

DEM simulations, each particle is modelled individually. A model describing the hydro-

mechanical behaviour of a single pellet is therefore required. As this approach is valid for 

granular materials, the model has to focus on hydration state at which a pellet has not lost its 

initial structure. 

For this purpose, the present study focuses on the hydro-mechanical behaviour of a single 

pellet upon partial hydration. The vapour equilibrium technique is used to hydrate the pellet. 

At equilibrium, the pellet volume and water content are determined, which allows 

determining the relationship between volumetric strain and suction. Afterward, a compression 

test is performed on the pellet to determine its stiffness and strength. Finally, the results are 

interpreted through the conceptual framework proposed by Alonso et al. (1999). 

2. Material 

The material characterised in this study are sub-spherical MX80 bentonite pellets. MX80 is a 

Na-bentonite from Wyoming, with high smectite contents, which main physical properties 

are summarised in Table 1. Pellets are obtained through compaction of bentonite powder. 

They are composed of a cylinder-shaped part and two spherical ends (Figure 1). Their initial 

properties are shown in Table 2. 

3. Experimental methods 

Suction-controlled hydration is performed through the vapour equilibrium technique (Tang 

and Cui, 2005; Delage et al., 2006). Pellets are placed within a desiccator containing a 

saturated salt solution. When equilibrium is reached (verified by pellet mass), the pellets 

dimensions are measured using a camera (one picture is taken from the side, Figure 1a, and 

pellet’s height and diameter are measured with an accuracy of 0.01 mm). Axial strain εa and 

radial strain εr are determined by comparison of height and diameter with their initial values. 

Volumetric strain εV is calculated as follows: 

  
2

(1 ) 1 1V a r       (1) 

Compression tests are carried out by using a load frame (Figure 2). The displacement rate is 

imposed at 0.1 mm/min. Displacements are recorded by a displacement transducer and the 
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contact force between the pellet and the frame is recorded by a force transducer (with an 

accuracy of 0.1 N). 

Compression tests are performed in both axial and radial directions (Figure 3). In axial 

compression tests (Figure 3a), contact between the load frame and the pellet is sub-punctual. 

Assuming isotropic linear elastic behaviour, the Hertz law is adapted to obtain Young 

modulus (Johnson, 1985): 

  
1/2 3/2

2

1
  2

3 1
c n

E
N R 





 (2) 

Where N is the axial load; E and ν are Young modulus and Poisson’s ratio, respectively; δn is 

the normal displacement. 

In radial compression test (Figure 3b), the contact is assumed to be linear. Johnson (1985)’s 

elasticity law, relating normal displacement to normal force for a contact between an infinite 

plate and a cylinder, is applied to determine E.   
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 (3) 

Figure 4 presents the results corresponding to s = 89 MPa. Several tests are performed and 

one curve is chosen to show the method for determination of E. For axial compression tests 

(Figure 4a), N increases with increasing displacement until failure. At failure, N decreases 

abruptly. The Hertz law (equation 2) is then used to fit experimental data from the start to the 

failure to determine E. In the present work, ν = 0.3 for the sake of simplicity. For radial 

compression tests (Figure 4b), N increases with increasing displacement in two distinct 

phases: first, a slow increase; second, a more significant and sub-linear increase. The first 

phase is interpreted as the consequence of an imperfect contact between the frame and the 

pellet at the beginning of the test. As displacement increases, the contact becomes linear and 

the force-displacement relationship is significantly modified. Considering this hypothesis, 

equation (3) is used to fit experimental data only from the start of the second phase to the 

failure. 

In the present work, beside the initial suction, eight suctions (ranging from 9 MPa to 82 MPa) 

are considered. For each one, several pellets are analysed to assess the repeatability of the 

experimental data. 

4. Experimental results 

Figure 5 presents w versus elapsed time during the suction equilibrium phase. From its initial 

value (12.2%), w increases quickly during the first days and equilibrium is reached after 10 

days, except for the lowest suction (9 MPa) where 30 days were necessary. The values 

obtained at equilibrium (Figure 5) are then plotted versus imposed suction in Figure 6a. 

Along the hydration path (decrease of suction from 89 MPa to 9 MPa) w increases from 12.2 

% to 24.3 %. Results obtained on the same materials (MX80) in other studies are also plotted. 

Within the investigated suction range, w - s relationships are similar and do not depend on the 

initial dry density or hydration conditions. Figure 6b presents the degree of saturation (Sr) 

versus suction which shows that Sr does not change significantly during this hydration phase. 

Figure 7 presents the strains versus suction during this hydration phase. εa is generally higher 

than εr. The mean values of εv, obtained from the mean values of εa and εr, are plotted. As 

expected, εv keeps increasing upon hydration. 
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The mechanical properties (E and strength) are plotted versus suction in Figure 8. Moduli 

obtained for both axial and radial compression tests are similar (Figure 8a) and a single mean 

value is retained for both compression directions. These results confirm that the assumptions 

used to interpret the compression tests (isotropic linear elastic behaviour, equations 2 & 3) 

are appropriate. Upon hydration, the pellet modulus and strength decrease significantly. 

Finally, the relationship between compressive strengths and modulus is presented in Figure 9. 

A linear relationship is suggested for both axial and radial directions. 

5. Model 

In the present work, the pellet initial dry density is high and its behaviour is assumed to be 

similar to that of an aggregate (i.e. the microstructural level) in compacted expansive clay 

following the model proposed by Alonso et al. (1999). 

Microstructural volumetric strain is written: 

 vm

d   d
d  

ˆ

m m

p s

K K
    (4) 

 

 
 

1
 exp(   )m m

m

K s s


  (5) 

Where Km is the microstructural bulk modulus, p̂  is the effective mean stress (equal to s in 

the present study), αm and βm are material parameters. 

From compression tests results, αm = 0.024 MPa
-1

 and βm = 0.016 MPa
-1

 are obtained through 

basic exponential regression (Figure 8a). 

Integrating (5) from initial suction s0 to a given suction s leads to: 

 
   0exp   exp  m

vm m m

m

s s


  


       (6) 

Where αm and βm values, determined from compression tests results, are found to 

satisfactorily model the volumetric strain upon hydration (Figure 7). 

From Figure 9, it seems convenient to propose a linear relationship between pellet strengths 

and modulus. The following relationships are proposed: 

  A AR C E  (7) 

 

  R RR C E  (8) 

where CA and CR are material parameters relating the strength to the modulus for axial and 

radial compression tests, respectively. CA = 1.20610
-7

 m
-2

 and CR = 1.81610
-7

 m
-2

 

following the fitting (Figure 9). 

From (5), (7) and (8), the evolution of pellet strength upon hydration can be written: 
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1
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Model predictions are presented in dash lines in Figure 9, along experimental results for 

comparison. 
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6. Discussion 

The experimental results show that partial hydration induces an increase in water content and 

pellet volume and a decrease in Young modulus and strength. These trends agree with 

existing results on bentonite-based materials (Wiebe et al., 1998; Blatz et al., 2002; Lloret et 

al., 2003; Tang and Cui, 2009; Carrier et al., 2016). However, the volumetric strain obtained 

in the present work (50% for hydration from 89 MPa to 9 MPa) is higher than that observed 

on a single MX80 bentonite aggregate (25%, after Tang and Cui 2009). In addition, the 

Young modulus measured in the present work is generally one order of magnitude smaller 

than that measured by Carrier et al. (2016) on MX80 bentonite clay film over the same 

suction range. It means that the mechanical behaviour of the material is strongly dependent 

on the dimensions of the specimen. 

In addition, it is interesting to note that the results obtained by compression tests (Figure 8a) 

can be used to predict the results obtained by hydration (Figure 7). The role of total stress is 

thus similar to that of suction as suggested by Alonso et al. (1999) for microstructural level. 

The present work contributes to a more comprehensive approach to model the behaviour of a 

single pellet. These results would be helpful for further numerical investigations on the 

hydro-mechanical behaviour of granular bentonite using the finite element method with 

double-porosity models (i.e. Alonso et al., 2011) where a single pellet corresponds to the 

micro-structural level. Actually, Molinero Guerra et al. (2017) performed mercury intrusion 

porosimetry on a similar bentonite pellet and found that the volume of macro-pores is 

negligible at high suction. Besides, for numerical investigations using discrete element 

modelling, these results can be directly used to describe the behaviour of a single pellet under 

hydro-mechanical loading. 

However, it is worthy to mention that the behaviour of the pellet observed in the present work 

doesn’t correspond to all the assumptions proposed for an aggregate in the model of Alonso 

et al. (1999): (i) the pellet is not fully-saturated; (ii) its behaviour is not reversible; (iii) the 

volumetric behaviour of the pellet is not isotropic. In spite of these disagreements, the model 

would correctly predict the hydro-mechanical behaviour of a pellet during this partial 

hydration path (up to 9 MPa of suction). At suction lower than this value, the model would no 

longer be valid as the pellet would disaggregate (as suggested by Saiyouri et al. 2004 for 

bentonite particles, Koliji et al., 2010 and Cardoso et al., 2013 for clay aggregates less 

reactive than bentonite). 

In addition to the volumetric behaviour, the strengths of the pellet under compression can be 

also predicted by using the same values of αm and βm. These results can be explained by the 

linear correlation between the strengths and the modulus. Actually, correlations between 

these two properties were observed on various compacted clayey soils (Lee et al., 2005; Zeh 

and Witt, 2007). 

7. Conclusions 

The behaviour of a single high-density bentonite pellet under hydration from 82 to 9 MPa of 

suction and the variation of its mechanical properties during this path are investigated in this 

study by laboratory tests. The results show an increase of pellet’s volume and water content 

upon suction decrease. At the same time, its mechanical properties (Young modulus and 

strengths) decrease during hydration. When analysing the experimental result with an existing 

model for compacted expansive soil and assuming that the pellet behaviour is similar to that 

of an aggregate, a single set of parameters (αm and βm) can be used to predict the suction 

dependency of volumetric strain, Young modulus and strengths. 
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The results from this work would be helpful for further numerical investigations (finite 

element and discrete element methods) on the hydro-mechanical behaviour of granular 

bentonite-based engineered barrier for geological radioactive waste disposal during the first 

years following the installation. 

 

List of notations 

ρs particle density 

ρd dry density 

e void ratio 

w water content 

D pellet’s diameter 

H pellet’s total height 

h pellet’s cylinder-shaped part height 

Rc pellet’s curvature radius 

s0 initial suction 

εa axial strain 

εr radial strain 

εV volumetric strain 

N axial load 

E Young modulus 

ν Poisson ratio 

δn normal displacement 

Sr degree of saturation 

RR normal force at failure during radial compression 

RA normal force at failure during axial compression 

Km microstructural bulk modulus 

p̂  effective mean stress 

αm material parameter 

βm material parameter 

CA material parameter relating axial strength to modulus 

CR material parameter relating radial strength to modulus 
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Table captions 

Table 1. Physical properties of MX80 bentonite 

Table 2. Initial properties of the pellets 

 

Table 1 Physical properties of MX80 bentonite 

Property Value 

Particle density, ρs (Mg/m3) 2.77 

Smectite content (%) 80 

Liquid limit (%) 560 

Plastic limit (%) 53 

CEC (meq/g) 98/100 
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Table 2 Initial properties of the pellets 

Property Value 

Dry density, ρd (Mg/m3) 1.90 

Void ratio, e (-) 0.46 

Water content, w (%) 12.2 

Diameter, D (mm) 7.0 

Height, H (mm) 7.0 

Height of the cylinder-shaped part, h (mm) 5.0 

Curvature radius, Rc (mm) 6.5 

Suction, s0 (MPa) 89 

 

Figure captions 

Figure 1. Schematic views of a single pellet. Radial view (a) and axial view (b). 

Figure 2. Load frame used to perform compression test. (a) Picture; (b) description 

Figure 3. Schematic view of the compression tests: (a) axial compression; (b) radial 

compression. 

Figure 4. Typical results of compression tests: (a) axial compression; (b) radial compression. 

Figure 5. Water content versus elapsed time during the suction equilibrium phase. 

Figure 6. (a) Water content versus suction; (b) Degree of saturation versus suction. 

Figure 7. Axial, radial and volumetric strains versus suction. 

Figure 8: (a) Modulus versus suction for axial and radial compression tests; (b) Strength 

versus suction for axial and radial compression tests. 

Figure 9: Strength versus modulus for both axial and radial compression tests. 
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