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Abstract—In operation planning, probabilistic reliability as-
sessment consists in evaluating, for various candidate planning
decisions, the induced probability of meeting a reliability target
and the expected operating cost over a certain future time period.
In this paper, we propose to exploit Monte-Carlo simulation and
machine learning to predict operation costs for various day-ahead
unit commitment and economic dispatch decisions and a range
of realisations of uncertain loads and renewable generations over
the next day. We describe how to generate a database, how to
apply supervised machine learning to it, and how to use the
learnt proxies to rank candidate day-ahead decisions in terms of
the expected operating cost they induce over the next day. We
illustrate the approach on the IEEE-RTS96 benchmark where we
use the DC power-flow approximation and the N-1 criterion to
simulate real-time operation and to generate generation schedules
in the day-ahead operation planning stage.

Index Terms—Machine learning, Monte Carlo simulation,
Operation planning, Probabilistic reliability assessment

I. INTRODUCTION

In operation planning, reliability management aims at taking
decisions ahead in time so that the system can be later
on operated according to its reliability targets. For example,
day-ahead decisions may be taken to adjust market clearing
outcomes, to postpone planned outages, etc, so as to enable the
operator to meet his reliability targets over the next day while
minimising the cost of operating the system. In general, this
reliability management problem is decomposed into reliability
assessment and reliability control [1].

In this paper we consider as ‘template’ the day-ahead
operation planning context, and we address the problem of
ranking various candidate day-ahead planning decisions in
terms of the expected next-day operating cost they induce,
while considering exogenous uncertainties such as load or
renewable generation. The final purpose of this would be
to help selecting a day-ahead decision among a given set
of candidate such decisions, while considering the impact of
uncertainties on operation. More specifically, we propose a
method to evaluate, for a list of candidate day-ahead decisions,
their corresponding expected cost of real-time operation and
then use this evaluation to rank the decisions to, in fine, ease
the identification of a ‘good’ day-ahead decision.

To state our problem, we model in a probabilistic way the
exogenous uncertainties about load and renewable generation
that would be faced by the operation planner. We also model
the behaviour of the real-time operator via a real-time decision

making simulator using the next-day information state to
compute next-day decisions and the different terms of next-day
operation cost.

To evaluate the expected cost of operation, a possible
solution would exploit a crude Monte-Carlo (CMC) approach
using the real-time decision making simulator, for many next-
day scenarios drawn by using the probabilistic model of
exogenous uncertainties. However, this approach is most of
the time impractical. Indeed, simulating real-time operation
consists often in running Security Constrained Optimal Power
Flow (SCOPF) types of problems with a very large number
of variables [2] especially for large-scale power systems. In
this regard, given that in day-ahead the operator has only a
few hours to select a day-ahead decision, running a very large
number of SCOPFs for each candidate day-ahead decision may
not be realistic from a practical point of view.

To reduce the computational burden of the CMC approach,
we proposed in [3] to replace the real-time decision making
simulator by a much faster proxy built with machine learning
algorithms, and we also leveraged variance reduction tech-
niques, such as control variates, to yield unbiased estimates
of the expected operating cost. In that work, the problem was
tackled in a set-up of assessing only one single already selected
day-ahead decision.

In the present paper, we propose a generalisation of the
approach presented in [3], to further help choosing among day-
ahead decisions. We thus address the problem of building a
proxy predicting operation costs with acceptable performances
for several candidate day-ahead decisions, even unseen ones.
This proxy could replace the real-time decision-making simu-
lator in the CMC approach, allowing one to much more rapidly
assess the expected cost of next-day operation for various
candidate day-ahead decisions. We propose a methodology to
automatically build a database combining different candidate
day-ahead decisions with a sample of scenarios representing
the expected range of possible next-day conditions, and show
how to exploit such a database to learn and validate a proxy
of real-time operation. In particular we investigate the use of
neural networks and multitask learning [4] to assess different
day-ahead decisions and to rank them in terms of their induced
next-day operating cost. We test this approach on the three-
area IEEE-RTS96 system, while using the DC power flow
model and the N-1 security criterion in order to simulate
real-time operation as the resolution of a sequence of DC-
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SCOPF problems. In our case study, we consider as candidate
day-ahead decisions several unit commitments and market
dispatches, as well as provisional wind curtailment, and we
focus on the estimation of the expected value of the real-time
preventive control costs.

The idea of exploiting machine learning in power system
security and reliability assessment dates back to the 1970s
[5]. More recently, due to the advances in the field of ma-
chine learning, an increasing number of papers exploiting this
approach have been published (see, for example [6]–[9]). We
refer the interested reader to [10] for a comprehensive survey
of recent works applying machine learning in the context of
reliability management. Closer to the subject of the present
work, several papers propose to use machine learning to learn
the outputs of a SCOPF. For instance, [11]–[13] exploit deep
learning to predict the generators set-points. Finally, several
other papers propose machine learning approaches to build
proxies of shorter-term decision-making contexts to be used
when solving longer-term reliability assessment problems, but
in other contexts than short-term operation. For example,
in [14], [15], the authors propose, in the context of outage
scheduling, to build proxies of short-term operation based on
the nearest neighbor algorithm.

Our approach also shares strong similarities with analytical
two-stage optimisation such as stochastic unit commitment
[16]. However, we see several differences. First, our approach
can be used to rank under uncertainties various sets of
candidate first-stage decisions, for which we do not need
to know how they have been chosen. In contrast, solving a
two-stage stochastic program returns a (locally or globally)
optimal candidate decision but no quantitative information on
the merit of this decision with respect to the other available
alternatives. Furthermore, our methodology relies essentially
only on massively parallel simulations of the operator’s real-
time behaviour and induced costs along different scenarios. On
the other hand, stochastic unit commitment approaches require
that the real-time operation strategy of the operator is explicitly
modelled in the form of a second-stage optimisation problem,
and typically impose strong restrictions on such second-stage
models in order to yield computationally tractable two-stage
stochastic formulations.

The rest of this paper is organised as follows. Section
II states the problem studied and presents methodologies
to generate automatically a database of real-time operation
trajectories, to build proxies with supervised learning and to
rank candidate day-ahead decisions with the help of these
proxies. Section III reports the case-study on the IEEE-RTS96
system, where we analyse the generalisation capability of the
proxies and we exploit them to rank candidate day-ahead
decisions. Section IV concludes and suggests future works.

II. PROBLEM STATEMENT AND PROPOSALS

A. Problem statement

In this work, we consider the standard setting wherein in
day-ahead (da) the operation planner seeks to ensure N-1
secure operation over every time period of the forthcoming

day, and subject to uncertainty on renewable power generation
and demand. In particular, the mission of the operation planner
is to select in advance (i) the commitment and dispatch of
generating units, and, (ii) provisional curtailment of wind
power generation. To help in his decision-making, we assume
that he has access to a simulator of real-time operation along
the next day (nd), modelling both the physical behaviour of
the power system and the decision-making of control room
operators in response to the resolution of uncertainties in real-
time. We use a sequence of 24 SCOPF computations following
the N-1 criterion while minimising the costs of real-time
operation to this end.

We also assume that the operation planner has at his disposal
a generative model of day-ahead uncertainties, allowing him to
sample scenarios of next-day load and renewable generations,
denoted {ξ1

nd, ξ
2
nd, ...}. For a given candidate decision δida and

a given scenario ξjnd, the application of the real-time operation
simulator allows the planner to anticipate real-time operation
along the next day and in particular to evaluate the costs
yi,j of real-time operation. Furthermore, we suppose that the
operation planner is interested in evaluating, for any given
day-ahead decision, the consequence over next-day operation
by the expected value of the cost of operating the system the
next day.

The problem addressed in this paper then amounts to
screening candidate day-ahead decisions to select a good
day-ahead decision in terms of its expected impact on next-
day operating costs, while exploiting the available generative
model and real-time operation simulator.

B. Generating a database of day-ahead decisions and next-
day scenarios

We extend the methodology described in [3] to generate
both a set of day-ahead decisions and a set of next-day scenar-
ios. In this approach, m next-day scenarios {ξ1

nd, ξ
2
nd, ..., ξ

m
nd}

are sampled with the generative model of day-ahead uncertain-
ties available to the operation planner. They are then combined
with k day-ahead decisions {δ1

da, δ
2
da, ..., δ

k
da} generated as

described in the following subsection.
1) Generating k day-ahead decisions: Here we assume

that the planner has a day-ahead decision-making support
software, e.g. in the form of a deterministic multi-period Unit
Commitment and Economic Dispatch (UCED) program.

To generate the k day-ahead decisions with such a tool, we
first generate a large sample (n� k) of next-day scenarios by
using our generative model of uncertainties, and then apply to
them the k-means clustering algorithm [17].1 We then compute
k day-ahead decisions {δ1

da, δ
2
da, ..., δ

k
da} from these k next-

day scenarios {ξ1
nd, ξ

2
nd, ..., ξ

k
nd} by applying to each scenario

the available day-ahead decision-making support software.
2) Simulating real-time operation: For a given pair

(δida, ξ
j
nd) combining a day-ahead decision and a next-day

scenario (we call this combination the trajectory τ i,j), we

1If n is sufficiently large, the resulting k real-time scenarios will cover as
well as possible the uncertainty space, for a given budget k.
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apply the real-time operation simulator to compute the cor-
responding next-day operation costs, denoted by yi,j . This
gives us a database {(τ i,j , yi,j)}N of size N = k ×m, with
features describing day-ahead decisions and next-day scenarios
as inputs and real-time operation costs as outputs, that we can
exploit to learn proxies of the real-time operation simulator.

C. Learning and generalising the proxies

A proxy is a simplified model of real-time operation,
allowing to predict the real-time operation costs yi,j for a given
day-ahead decision δida and a given next-day scenario ξjnd. We
propose to build proxies with supervised learning, which is a
branch of machine learning that consists in finding a function
h(·) that maps some vector of inputs x to (a vector) of outputs
y, given a database {(xi, yi)}Ni=1 of input-output pairs [17].

1) Splitting the database in training and test sets: We
are interested in evaluating the accuracy of our proxies to
unseen day-ahead decisions, to unseen next-day scenarios,
and to combinations of both. For that, we need to split the
database into a learning set L and a validation set V used both
to train the proxies, and three test sets T used to evaluate
their generation capabilities. Figure 1 shows this database
decomposition in a graphical way.

T∆s,Ξu
T∆u,Ξu

T∆u,Ξs

L∆s,Ξs

V∆s,Ξs

day-ahead decisions δ

ne
xt

-d
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en
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io

s
ξ
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decisions δs

unseen
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seen
scenarios

ξ
s

unseen
scenarios

ξ
u

Fig. 1. Schematic representation of the database partition between train (L, in
white), validation (V , in green) and test (T , in blue) sets. Rows and columns
respectively represent scenarios and decisions.

2) Assessing the accuracy of proxies: In order to assess the
accuracy of a proxy hp(·) based on a sample S of size |S|,
we consider the square-loss `(ŷ, y) = (ŷ − y)2 and compute
the empirical loss by

L(hp,S) =
1

|S|
∑

(xi,yi)∈S

(
hp(x

i)− yi
)2
.

From there, we say that hp(·) generalises well to unseen day-
ahead decisions if L(hp, T∆u,Ξu

) ≈ L(hp, T∆s,Ξu
).

D. Using the proxies for ranking day-ahead decisions

Once one has shown that the proxies generalise well to
unseen decisions, one could use them in order to identify a

good day-ahead decision. To do so, we propose to first select
(randomly) a subset ∆s of candidate day-ahead decisions
that will be used to build a proxy of the real-time operation
simulator. This subset should be large enough for the proxy
to be able to generalise well to unseen decisions but small
enough to avoid as much as possible the computational burden
stemming from the use of the heavy real-time simulator. For
all δida ∈ ∆s and ξjnd ∈ {ξ1

nd, ξ
2
nd, ..., ξ

m
nd}, we compute the

next-day operation costs yi,j with the real-time simulator and
then we build the proxy as described in section II-C. Then
we apply the proxy to predict the next-day operation cost yi,j

for all δida ∈ ∆u and ξjnd ∈ {ξ1
nd, ξ

2
nd, ..., ξ

l
nd}2. After that we

average the predictions over the l scenarios to have an estimate
ȳip of the expected next-day operation cost for each decision in
δida ∈ ∆u and we average the yi,j over the m scenarios to have
an estimate ȳi for each decision in δida ∈ ∆s. Finally, these
estimates are used to rank the candidate decisions according
to their expected next-day operation cost.

III. CASE-STUDY ON THE IEEE-RTS96 BENCHMARK

In order to test our proposed methodology, we place our-
selves in the context of day-ahead operation planning, when
the operation planner has to select a unit commitment and
economic dispatch for the next day.

Our real-time operation simulator as well as the scenario
generator are implemented in JULIA. We use Python for
learning: scikit-learn for the clustering algorithms and Pytorch
as the deep learning framework.

A. Test system, uncertainties, day-ahead decision-making and
real-time operation simulator

1) Test system: We consider as test system the 3-area IEEE-
RTS96 benchmark [18], where 19 wind farms have been
added, as was proposed in [19]. We consider as initial scenario
the demand and wind generation of the first day of the year,
for a peak demand of 3135 MW per area, and favourable wind.

2) Day-ahead decision-making: A day-ahead decision cor-
responds to the commitment status and economic dispatch
of all dispatchable generators as well as the provisional
curtailment of wind power generation. To simulate day-ahead
decision-making, we apply to the forecasted scenarios a multi-
period SCOPF, under the DC-approximation. We consider that
the market dispatch should satisfy the N-1 security criterion on
transmission system elements, using provisional wind curtail-
ment as a measure of last resort. We also impose a minimum
upward and downward spinning reserve capacity constraint of
300 MW in each area of the system. The full formulation can
be found in the appendix of [3].

3) Uncertainties and next-day scenarios: We place our-
selves at noon, the day ahead. We consider uncertainties
coming from errors in demand and wind generation forecast,
modelled by Gaussian distributions. In particular, for each
element (load or wind farm) we consider two terms of error,
a local one and a global one (see [3]). We exploit this model

2Note that that these l scenarios can be different from the m scenarios
generated for learning the proxy.
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coupled with Monte-Carlo simulation to generate plausible
next-day scenarios of realized demand and wind generation.
Since we chose a one-hour time step, each next-day scenario
corresponds to 24 snapshots of one day. The precise method-
ology is described in our previous work [20].

4) Real-time operation simulator: The real-time opera-
tion simulator is modelled as a sequence of 24 SCOPF
computations (using as well the N-1 criterion and the DC-
approximation), to adapt to the realization of uncertainties via
preventive and corrective generator redispatch, load shedding
and wind curtailment. These recourse decisions are chosen so
that it is always possible to come back to the market dispatch
decided for the next hour, given the ramping constraints of
generating units, and with an emphasis on the preventive
control cost so as to favour corrective actions whenever they
can help. We refer the reader to the appendix of [3] for the
mathematical formulation of this SCOPF.

B. Description of the database

For our study, we generated k = 20 candidate day-ahead
decisions, applying the methodology of Section II-B with n =
20, 000 next-day scenarios. We combined further m = 600
next-day scenarios with each one of these k = 20 day-ahead
decisions to yield 12, 000 trajectories of 24 hourly time-steps.

In our database, the input-features per hourly snapshot of
each trajectory are the following:
• demand realisations for each load,
• wind generation realisations for each wind farm,
• difference between the real-time scenario and the forecast

scenario used to generate the corresponding day-ahead
decision (in MW and in %),

• total demand, total wind generation and net load,
• maximum and minimum generation capacity,
• hour of the day.
Concerning the outputs of the database, we focus here

on the total cost of preventive actions, which is the sum of
the preventive generation redispatch cost, the preventive load
shedding cost and the preventive wind curtailment cost along
a next-day scenario.

C. Analysis of the 20 candidate day-ahead decisions

We begin our analysis with the comparison of the unit com-
mitments (on-off statuses) and economic dispatches (active
power levels) of the 20 candidate day-ahead decisions. For
that, we represent each decision as a vector containing as
elements either the unit commitment or day-ahead dispatch
of each one of the 96 generating units for each one of the 24
hours of the day. To compare the vectors pairwise, we use the
Hamming distance, expressed as the number of components
for which the two vectors differ. The results are presented in
the form of heat maps and can be seen in Figure 2.

We observe that the decisions are different, and that the
distances between them are of same order of magnitude,
both in the unit-commitment space and the space of eco-
nomic dispatches. On average, the Hamming distance for unit

(a) Day-ahead unit commitment (b) Day-ahead economic dispatch
Fig. 2. Hamming distance between each candidate day-ahead decision for
respectively the unit commitment and day-ahead dispatch.

TABLE I
MEAN, STANDARD ERROR, MINIMUM AND MAXIMUM VALUE OF THE

TOTAL PREVENTIVE COST FOR THE k = 20 STUDIED DAY-AHEAD
DECISIONS COMPUTED OVER m = 600 NEXT-DAY SCENARIOS.

SORTED IN INCREASING ORDER OF MEAN.

δida
Mean Standard err Min Max
(×106) (×104) (×105) (×106)

2 1.641 3.439 5.278 6.339
19 1.656 3.163 4.912 7.024
1 1.661 3.350 5.072 6.672
3 1.676 3.263 5.382 7.404

11 1.689 3.384 5.136 7.466
8 1.691 3.411 5.970 7.091
6 1.692 3.150 5.546 8.139
7 1.719 3.741 5.151 7.680

10 1.728 3.615 5.153 7.664
9 1.731 3.705 4.788 7.182
4 1.732 3.264 6.359 6.215

20 1.740 3.560 5.835 7.119
16 1.746 3.412 5.270 6.781
14 1.748 3.518 5.944 7.608
18 1.788 3.700 5.061 7.287
12 1.797 4.046 5.248 8.192
5 1.798 3.485 6.345 6.317

13 1.855 3.631 5.928 6.293
15 1.872 3.793 5.412 7.547
17 1.917 3.962 6.546 7.912

commitments is equal to 3% of the vector components. This
proportion rises to 12% for the economic dispatches.

Another analysis we can make to compare candidate day-
ahead decisions is to look at their impact on next-day operation
costs. Since we used the same 600 next-day scenarios with
each candidate day-ahead decision, the results are directly
comparable. We look at some statistics of the total preventive
cost over the 600 scenarios, such as the average value ȳi, the
standard error which is defined as σ√

m
, with m = 600 and

σ the standard deviation of yi,j over the 600 scenarios, and
the minimum and maximum values of yi,j . The results can
be seen in Table I, which is sorted in increasing order of the
mean total preventive cost.

When analysing the mean total preventive cost, we see
that there is clear difference between decisions. For instance
decision 17, the most costly decision, is in average 300,000e
more expensive in real-time than decision 2. If one analyses
the components of the total preventive cost, it can be seen
that this decision leads to the largest load shedding cost in
average over next day. Note that given the standard error
values, we cannot guarantee that decision 2 is effectively
the candidate decision with the smallest expected next-day
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preventive control cost, but the less expensive decision on
average should nevertheless be among the first few decisions
of Table I.

D. Machine learning protocol

To predict the total preventive cost along a next-day trajec-
tory we divide this trajectory in 24 hourly snapshots, predict
the total preventive cost for each hour (denoted as hourly
prediction in [3]) and then sum the 24 predictions. Note that
we provide information about the hour of the day in two ways,
one using one single input with values ranging from 1 to
24 and another one using 24 binary inputs with a one-hot-
encoding. This leaves us with 240 hourly input features and
one single output variable.

As supervised learning algorithm, we chose the neural
network algorithm [17]. A neural network has many meta-
parameters that need to be selected. We used a gridsearch
to find a suitable configuration of meta-parameters among
the following candidate values: 3, 4, 5 or 6 layers and 50,
100 and 200 neurons per layer. Furthermore, we tested 5
different initializations of the networks’ weights. The other
meta-parameters were kept constant. In particular, we used a
batch size of 200, a learning rate of 10−3, the Adam optimizer
[21] and a weight decay of 10−4. The maximum number of
epochs is 200, and we keep the model corresponding to the
epoch minimising the loss on the validation set.

In reference to Figure 1, 100 next-day scenarios are always
kept out in order to yield the test sets. As concerns the splitting
along the day-ahead decisions, we investigate different settings
in the sequel. In any case, the validation set V corresponds to
5% of the trajectories not used in the test sets; it is used to
select the meta-parameters of the learning algorithms3, while
the remaining 95% provide the learning set L used only to
tune the parameters of the neural network predictors.

To evaluate the proxies, we always use the R2-score, which
is computed on the basis of a sample S by [22]:

R2(hp,S) = 1−
∑

(xi,yi)∈S(yi − hp(xi))2∑
(xi,yi)∈S(yi − ȳS)2

,

where ȳS is the mean of the targets yi over S. The best
possible R2-score is 1 and corresponds to a proxy hp that
perfectly predicts the target values yi over S. The best constant
model would systematically predict the sample-mean ȳS and
obtain an R2-score of 0.

E. Generalisation over day-ahead decisions

1) Leave-one-decision-out: For this experiment, we use
samples from k − 1 decisions to learn a proxy and we test
it with data from the kth (unseen) decision applied on unseen
scenarios. We redo this experiment k times, with each time a
different unseen decision in the test set. We then average the
k test scores obtained. If this score is high, the proxy is able
to well generalise to unseen decisions. Figure 3 illustrates the
principle of the leave-one-decision-out experiment.

3We keep the combination of meta-parameters minimising the loss on the
validation set.

k folds

L1
∆s,Ξs

1

L2
∆s,Ξs

2

Lk∆s,Ξs

k

· · ·

T k∆u,Ξu
with only the left-out decision δk

Fig. 3. Principle of the leave-one-decision-out experiment (unused data are
in grey).

TABLE II
STATISTICS OF THE HOURLY (H.) AND TRAJECTORY-WISE (T.)

R2-SCORES OBTAINED OVER THE 20 FOLDS OF THE
LEAVE-ONE-DECISION-OUT EXPERIMENT.

H. train score H. test score H. test score H. test score
Seen dec. Seen dec. Unseen dec. Unseen dec.
Seen scen. Unseen scen. Unseen scen. Seen scen.

Mean 0.9876 0.9262 0.9207 0.9820
Std 0.0004 0.0074 0.0144 0.0062
Min 0.9863 0.9070 0.8984 0.9648
Max 0.9883 0.9360 0.9434 0.9889

T. train score T. test score T. test score T. test score
Seen dec. Seen dec. Unseen dec. Unseen dec.
Seen scen. Unseen scen. Unseen scen. Seen scen.

Mean 0.9852 0.9069 0.8987 0.9791
Std 0.0015 0.0101 0.0196 0.0057
Min 0.9813 0.8798 0.8703 0.9614
Max 0.9870 0.9200 0.9395 0.9866

To select the meta-parameters, we performed a gridsearch
and kept for each fold the model with the combination of meta-
parameters leading to the maximum score on the validation
set. We thus have 20 proxies, each with a different day-ahead
decision left out. The statistics of the test scores of these 20
proxies on the different test sets can be seen in Table II.

We observe that the scores of unseen decisions are almost
equal to those of seen decisions. Therefore the proxy is able
to generalise to unseen decisions. Furthermore, the scores are
quite good, meaning that the proxy is able to predict the total
preventive cost with acceptable performances. The trajectory
scores are generally a bit smaller than the hourly scores but are
still good. We also see that when the scenarios have already
been seen by the neural network, the score is close to 1, even
for unseen decisions.

2) Machine learning improvement: multitask learning:
Instead of predicting only the target output with a proxy,
we can try to simultaneously predict a vector of outputs;
this corresponds to multitask learning [4]. In our case, this
means predicting at the same time the target (total preventive
cost) and auxiliary outputs as the preventive redispatch cost,
the preventive load shedding cost and the preventive wind
curtailment cost. The main advantage of this method is that
the model can benefit from extra knowledge brought by the
additional auxiliary outputs, so as to improve the performances
of the proxy on the main target output.

We repeated the leave-one-decision-out experiment while
exploiting this multitask learning approach. We performed
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TABLE III
STATISTICS OF THE HOURLY (H.) AND TRAJECTORY-WISE (T.)

R2-SCORES OBTAINED OVER THE 20 FOLDS OF THE
LEAVE-ONE-DECISION-OUT EXPERIMENT, WITH MULTITASK LEARNING.

H. train score H. test score H. test score H. test score
Seen dec. Seen dec. Unseen dec. Unseen dec.
Seen scen. Unseen scen. Unseen scen. Seen scen.

Mean 0.9868 0.9444 0.9387 0.9817
Std 0.0005 0.0057 0.0134 0.0052
Min 0.9860 0.9286 0.9049 0.9704
Max 0.9874 0.9523 0.9595 0.9884

T. train score T. test score T. test score T. test score
Seen dec. Seen dec. Unseen dec. Unseen dec.
Seen scen. Unseen scen. Unseen scen. Seen scen.

Mean 0.9845 0.9257 0.9157 0.9784
Std 0.0017 0.0080 0.0240 0.0066
Min 0.9797 0.9021 0.8634 0.9620
Max 0.9861 0.9351 0.9519 0.9864

again a gridsearch analysis with the same meta-parameters as
before, but this time predicting a vector of outputs. We keep
the network configuration maximising the validation score for
the total preventive cost, since it is the target of interest,
for each fold. Looking only at the predictions of the total
preventive cost, we obtain the results presented in Table III.

We see that with multitask learning, we can improve the test
scores of the proxy by 2%, which is quite interesting given
that the scores were already close to the maximum score.

3) Impact of the number of training day-ahead decisions:
In this experiment, we first selected randomly l < k candidate
decisions that we consider as our test decisions. Then we learn
k−l times a proxy, each time adding a new decision (different
from the l test decisions) in the training set. At the end, we
compare the k − l test scores obtained both on the test set
with seen decisions and unseen scenarios and the test set with
unseen decisions and unseen scenarios and check when the
test score corresponding to unseen decisions is similar to the
one corresponding to seen decisions. This would indicate that
enough decisions have been taken into account for a proxy
to be able to generalise well to unseen decisions. Figure 4
illustrates the principle of this experiment.

k − l cases

unused decisions train decisions test decisions

· · ·

Fig. 4. Principle of the gradual increase of the learning set L size experiment.

Here we report the results obtained with l = 5. We use
the best configuration of neural network on average on the
validation score from the previous experiment (5 layers and 50
neurons per layer) and we repeated each experiment 5 times,
with a different initialisation of the neural network weights.
The results for the best initialisation (based on the validation
score) are presented in Table IV. We see that the proxy is able

to generalise well with only 5 decisions and that the scores
are already quite good. With 10 decisions we get scores close
to those reported for 19 decisions in Table II.

F. Using the proxies for ranking day-ahead decisions

In this subsection we consider the use of the learnt proxies
in order to rank a set of unseen candidate decisions according
to the expected next-day operating cost they would induce.
Since we have seen that the proxies generalise well to unseen
decisions, we conjecture that they could be used in order to
identify a good day-ahead decision, while avoiding as much
as possible to resort to heavy SCOPF computations over large
samples of next-day scenarios combined with each candidate
day-ahead decision.

We compare two methods exploiting the proxies to estimate
the expected total preventive cost ȳi associated to a day-ahead
decision δida. For each method, we first select a subset ∆s

of candidate day-ahead decisions that we exploit to build a
proxy. Since we noticed in Table IV that only 5 decisions are
needed in the learning set for the proxies to generalise well
on unseen decisions, we selected randomly 5 decisions and
assigned them to the learning set. We performed this operation
5 times, each time with a different set ∆s of size 5. We also
realised this experiment with 10 decisions in the learning set,
for comparison.

1) Method 1: For this method, we first generate 2000
next-day scenarios. We then apply the proxy to predict the
total preventive cost yi,j for all δida ∈ ∆u and ξjnd ∈
{ξ1
nd, ξ

2
nd, ..., ξ

2000
nd }. Finally we average the predictions over

the 2000 scenarios to have an estimate ȳip of the expected total
preventive cost for each decision in δida ∈ ∆u.

2) Method 2: This method extends the previous one by
using the control variates approach presented in [3] to correct
a possible bias in the estimation ȳip performed with the proxies.
For that, we compute the estimated total preventive cost ȳicv
of decision δida ∈ ∆u as follows:

ȳicv = ȳip +

100∑
j=1

(yi,j − yi,jp ),

where the 100 scenarios belongs to the set Ξu.
3) Results: We consider as ground truth the average value

of y presented in Table I and computed with 600 scenarios per
decision. Note that with both methods, for each δida ∈ ∆s, the
estimated expected value of total preventive cost is the one
presented in Table I, given that the SCOPF calls had to be
made to build the proxy.

To analyse the quality of the ranking, we use the Kendall’s
tau coefficient and the Spearman’s rank correlation coefficient.
The Kendall’s tau coefficient τ is defined as τ = C−D

C+D , where
C is the number of concordant pairs and D the number of
discordant pairs. The Spearman’s rank correlation coefficient
ρ is defined as ρ = cov(rgX ,rgY )

σrgX
σrgY

, where cov(rgX , rgY ) is the
covariance of the rank variables and σrgX and σrgY are the
standard deviations of the rank variables.
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TABLE IV
MEAN HOURLY (H.) AND TRAJECTORY (T.) R2-SCORES AS A FUNCTION OF THE NUMBER OF DAY-AHEAD (DA) DECISIONS IN THE LEARNING SET.

Nb of DA decisions H. test score H. test score H. test score T. test score T. test score T. test score
in the training set Seen decision Unseen decision Unseen decision Seen decision Unseen decision Unseen decision

Unseen scenario Unseen scenario Seen scenario Unseen scenario Unseen scenario Seen scenario
1 0.7329 0.6621 0.8234 0.6413 0.6272 0.7961
2 0.7888 0.7140 0.9001 0.7323 0.6840 0.8860
3 0.8241 0.8045 0.9426 0.7903 0.7582 0.9366
4 0.8611 0.8447 0.9603 0.8352 0.8131 0.9546
5 0.8620 0.8668 0.9703 0.8321 0.8384 0.9651
6 0.8861 0.8824 0.9739 0.8636 0.8581 0.9703
7 0.8969 0.8814 0.9745 0.8720 0.8544 0.9709
8 0.9046 0.8964 0.9776 0.8870 0.8737 0.9741
9 0.9103 0.9045 0.9797 0.8993 0.8829 0.9782

10 0.9120 0.9091 0.9801 0.8942 0.8881 0.9779
11 0.9239 0.9243 0.9805 0.9045 0.9015 0.9782
12 0.9241 0.9225 0.9820 0.9100 0.9073 0.9798
13 0.9265 0.9307 0.9821 0.9094 0.9049 0.9807
14 0.9257 0.9245 0.9824 0.9057 0.8963 0.9816
15 0.9257 0.9244 0.9818 0.9143 0.9099 0.9804

TABLE V
MINIMUM AND MAXIMUM KENDAL’S TAU COEFFICIENT AND

SPEARMAN’S CORRELATION COEFFICIENT FOR BOTH ESTIMATION
METHODS, WITH 5 OR 10 DECISIONS IN THE LEARNING SET.

ȳp ȳcv
Min Max Min Max

5 decisions τ 0.5158 0.8421 0.8211 0.9263
ρ 0.7038 0.9534 0.9338 0.9835

10 decisions τ 0.6211 0.8632 0.8211 0.9159
ρ 0.7624 0.9654 0.9353 0.9820

Both metrics minimum and maximum values can be found
in Table V for the different estimations. One can see that with
the control variates approach, these metrics are closer to 1,
meaning that there is a stronger relationship between the true
ranking and the estimated one. One can also notice that the
ranking is better when there is 10 decisions in the learning
set, but at the cost of more SCOPF calls.

Table VI presents the different estimations of the real-
time operating costs associated to a decision as well as the
corresponding ranking for the best case experiment when
there is only 5 decisions in the learning set. One can directly
notice that the control variates approach allows to improve the
estimation of the preventive total cost and thus the ranking,
but it has a larger computational burden (50% more SCOPF
calls) than method 1. Note that, even if the first decision in
both estimated rankings is not the correct decision, one can
see that the good decisions (small expected total preventive
cost) are identified with both methods.

IV. CONCLUSIONS AND FUTURE WORK

With respect to the methodology proposed in [3], we took
here the additional steps of (i) studying how to generalise over
‘unseen’ day-ahead decisions, and (ii) testing the usefulness of
the learnt proxies for ranking candidate day-ahead decisions.
To do so, we proposed a methodology to build automatically
a database of candidate day-ahead decisions and next-day
scenarios, to each combination of which we can apply a real-
time operation simulator in order to compute the resulting
next-day operating costs. We also proposed a methodology
to build and validate proxies, exploiting such a database.

TABLE VI
TRUE AND ESTIMATED EXPECTED TOTAL PREVENTIVE COST PER

DECISION AND THE ASSOCIATED RANKING r(·). THE DECISIONS USED TO
LEARN THE PROXIES ARE COLORED IN RED.

δi
ȳi ȳip ȳicv r(ȳi) r(ȳip) r(ȳicv)

(×106) (×106) (×106)

2 1.642 1.639 − 1.635 − 2 19 ∧1 19 ∧1

19 1.656 1.626 − 1.626 − 19 2 ∨1 2 ∨1

1 1.661 1.681 + 1.646 − 1 11 ∧2 1 =

3 1.676 1.664 − 1.664 − 3 8 ∧2 3 =

11 1.689 1.643 − 1.672 − 11 3 ∨1 11 =

8 1.691 1.663 − 1.706 + 8 1 ∨3 6 ∧1

6 1.692 1.692 ◦ 1.692 ◦ 6 6 = 8 ∨1

7 1.719 1.700 − 1.716 − 7 7 = 7 =

10 1.728 1.725 − 1.742 + 10 4 ∧2 9 ∧1

9 1.731 1.731 ◦ 1.731 ◦ 9 14 ∧4 10 ∨1

4 1.732 1.711 − 1.761 + 4 10 ∨2 4 =

20 1.740 1.728 − 1.788 + 20 20 = 20 =

16 1.746 1.728 − 1.796 + 16 16 = 16 =

14 1.748 1.716 − 1.807 + 14 9 ∨4 12 ∧2

18 1.788 1.750 − 1.810 + 18 18 = 5 ∧2

12 1.797 1.797 ◦ 1.797 ◦ 12 12 = 14 ∨2

5 1.798 1.798 ◦ 1.798 ◦ 5 5 = 18 ∨2

13 1.855 1.855 ◦ 1.855 ◦ 13 15 ∧1 13 =

15 1.872 1.816 − 1.871 − 15 13 ∨1 15 =

17 1.918 1.857 − 1.905 − 17 17 = 17 =

We showed with a case-study on the three-area IEEE-RTS96
benchmark that our proxies of real-time operation, predicting
the next-day preventive costs, are able to generalise well to
unseen decisions. We also showed that they can be exploited
to identify candidate decisions with smallest expected induced
costs in real-time operation.

There are many possible future directions of research fol-
lowing this work. We highlight the following ones:
• how to improve the ranking methodology;
• how to adapt the proposed methodology to evaluate,

instead of the expected real-time operation costs for a
given decision, the probability to meet the reliability
target in real-time and in particular be able to evaluate
the probability of rare events;

• how to exploit the presented methodology to reverse the
problem and find hints for the operation planner about
what forecast scenarios could lead him to a ‘good’ day-
ahead decision.
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APPENDIX

COMPUTING TIMES

The average computing times of the experiments presented
in this paper, with a MacBookPro (2.2GHz Intel Core i7, 16GB
RAM), are presented in Table VII.

In the upper part of the Table, we highlight the CPU times
needed to assess a single scenario and day-ahead decision,
composed of first sampling the scenario, and then computing
the costs induced by the decision either via the detailed
SCOPF-wise simulation or via applying the learnt proxy. We
observe a gain of a factor 10,000 with the ML proxy.

TABLE VII
AVERAGE COMPUTING TIMES

Average time (s)

Sampling of one scenario 0.002
Real-time SCOPF simulation for one scenario 303.600

Using the ML proxy for one scenario 0.027

Learning/validation/test dataset generation 3,643,200.000
Learning one proxy 5,660.000

Optimising the meta-parameters of the proxy 169,813.000

The CPU times in the lower part of the Table correspond to
the off-line learning stage based on the leave-one-decision-out
experiment. We observe that the bulk of the computations are
about the dataset generation (corresponding in our simulations
to 12,000 trajectories (i.e. 600 scenarios combined with 20
day-ahead decisions) times 24 hours, while optimising the
meta-parameters of the machine learning method corresponded
in our case to tuning 30 different proxy models. It is important
to realise that the computing times of both the dataset gener-
ation and the meta-parameters’ optimisation parts could be
reduced by using massive parallel computations, respectively
to about 303 seconds and 5,660 seconds.
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