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Abstract. We identify the structure of the lexicographically least word avoid-

ing 5/4-powers on the alphabet of nonnegative integers. Specifically, we show
that this word has the form p τ(ϕ(z)ϕ2(z) · · · ) where p, z are finite words, ϕ is

a 6-uniform morphism, and τ is a coding. This description yields a recurrence

for the ith letter, which we use to prove that the sequence of letters is 6-regular
with rank 188. More generally, we prove k-regularity for a sequence satisfying

a recurrence of the same type.

1. Introduction

Avoidance of patterns is a major area of study in combinatorics on words [6],
which finds its origins in the work of Thue [5, 13, 14]. In particular, lexicographically
least words avoiding some patterns have gained interest over the years. Often, words
of interest that avoid a pattern can be described by a morphism. A morphism on
an alphabet Σ is a map µ : Σ→ Σ∗. (Here Σ∗ denotes the set of finite words on Σ.)
A morphism extends naturally to finite and infinite words by concatenation. We
say that a morphism µ on Σ is k-uniform if |µ(c)| = k for all c ∈ Σ. A 1-uniform
morphism is also called a coding. If there exists a letter c ∈ Σ such that µ(c)
starts with c, then iterating µ on c gives a word µω(c), which is a fixed point of µ
beginning with c. In this paper we index letters in finite and infinite words starting
with 0.

An overlap is a word of the form cxcxc where c is a letter. On a binary al-
phabet, the lexicographically least overlap-free word is 001001ϕω(1), where ϕ(0) =
01, ϕ(1) = 10 is the morphism generating the Thue–Morse word ϕω(0) [1].

In the context of combinatorics on words, fractional powers were first studied by
Dejean [7]. Such a power is a partial repetition, defined as follows.

Definition 1. Let a and b be relatively prime positive integers. If v = v0v1 · · · v`−1
is a nonempty word whose length ` is divisible by b, the a/b-power of v is the word

va/b := vba/bcv0v1 · · · v`·{a/b}−1,

where {a/b} = a/b− ba/bc is the fractional part of a/b.

Note that |va/b| = a
b |v|. If a/b > 1, then a word w is an a/b-power if and only if

w can be written veu where e is a positive integer, u is a prefix of v, and |w||v| = a
b .

Example 2. The 5/4-power of the word 0111 is (0111)5/4 = 01110.
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In general, a 5/4-power is a word of the form (xy)5/4 = xyx, where |xy| = 4`
and |xyx| = 5` for some ` ≥ 1. It follows that |x| = ` and |y| = 3`.

Elsewhere in the literature, researchers have been interested in words with no
α-power factors for all α ≥ a/b. In this paper, we consider a slightly different
notion, and we say that a word is a/b-power-free if none of its factors is an (exact)
a/b-power.

Notation. Let a and b be relatively prime positive integers such that a/b > 1.
Define wa/b to be the lexicographically least infinite word on Z≥0 avoiding a/b-
powers.

Guay-Paquet and Shallit [8] started the study of lexicographically least power-
free words on the alphabet of nonnegative integers. They identified the structure
of wa for each integer a ≥ 2. In particular, the lexicographically least 2-power-free
word [12, A007814]

w2 = 01020103010201040102010301020105 · · ·

is the fixed point of the 2-uniform morphism ϕ on the alphabet of nonnegative
integers defined by ϕ(n) = 0(n + 1) for all n ≥ 0. Additionally they identified the
structure of the lexicographically least overlap-free word. The first-named author
and Shallit [10] studied the structure of the lexicographically least 3/2-power-free
word [12, A269518]

w3/2 = 0011021001120011031001130011021001140011031 · · · ,

which is the image under a coding of a fixed point of a 6-uniform morphism. Let
Σ2 be the infinite alphabet {nj : n ∈ Z, 0 ≤ j ≤ 1} with 2 types of letters. For
example, 00 and 01 are the 2 different letters of the form 0j . Let ϕ : Σ∗2 → Σ∗2 be
the morphism defined by

ϕ(n0) = 0001101100(n+ 2)1

ϕ(n1) = 1001001110(n+ 2)1

for all n ∈ Z, where the subscript j determines the first five letters of ϕ(nj). Let
τ be the coding defined by τ(nj) = n for all nj ∈ Σ2. Then w3/2 = τ(ϕω(00)). A
prefix of this word appears on the left in Figure 1. The letter 0 is represented by
white cells, 1 by slightly darker cells, and so on. The first five columns are periodic,
and the sixth column satisfies w(6i + 5) = w(i) + 2 for all i ≥ 0 where w(i) is the
ith letter of w3/2.

Pudwell and Rowland [9] undertook a large study of wa/b for rational numbers in
the range 1 < a

b < 2, and identified many of these words as images under codings of
fixed points of morphisms. The number a

b in this range with smallest b for which the

structure of wa/b was not known is 5
4 . In this paper, we give a morphic description

for the lexicographically least 5/4-power-free word [12, A277144]

w5/4 = 00001111020210100101121200001311 · · · .

Let w(i) be the ith letter of w5/4. For the morphic description of w5/4, we need 8
letters, n0, n1, . . . , n7 for each integer n ∈ Z. The subscript j of the letter nj will
determine the first five letters of ϕ(nj), which correspond to the first five columns
on the right in Figure 1. The definition of ϕ below implies that these columns are
eventually periodic with period length 1 or 4.

http://oeis.org/A007814
http://oeis.org/A269518
http://oeis.org/A277144


AVOIDING 5/4-POWERS ON THE ALPHABET OF NONNEGATIVE INTEGERS 3

Figure 1. Portions of w3/2 (left) and w5/4 (middle and right),
partitioned into rows of width 6. The word w3/2 is shown from
the beginning. The word w5/4 = w(0)w(1) · · · is shown beginning
from w(i)i≥6756 (middle) and w(i)i≥6758 (right). In middle image,
we have chopped off the first 6756/6 = 1126 rows to show where
five columns become periodic. The term w(6759) (top row, second
column on the right) is the last entry in w(6i+ 3)i≥0 that is not 1.

Notation 3. Let Σ8 be the alphabet {nj : n ∈ Z, 0 ≤ j ≤ 7}. Let ϕ be the
6-uniform morphism defined on Σ8 by

ϕ(n0) = 0011020314(n+ 3)5

ϕ(n1) = 1617000102(n+ 2)3

ϕ(n2) = 1415160700(n+ 3)1

ϕ(n3) = 0213140516(n+ 2)7

ϕ(n4) = 0011020314(n+ 1)5

ϕ(n5) = 1617000102(n+ 2)3

ϕ(n6) = 1415160700(n+ 1)1

ϕ(n7) = 0213140516(n+ 2)7.

We suggest keeping a copy of the definition of ϕ handy, since we refer to it many
times in the rest of the paper.

The subscripts in each image ϕ(nj) increase by 1 modulo 8 from one letter to
the next and also from the end of each image to the beginning of the next. We
also define the coding τ(nj) = n for all nj ∈ Σ8. In the rest of the paper, we think
about the definitions of ϕ and τ ◦ϕ as 8×6 arrays of their letters. In particular, we
will refer to letters in images of ϕ and τ ◦ ϕ by their columns (first through sixth).

The following gives the structure of w5/4.
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Theorem 4. There exist a word p on N = {0, 1, . . . } of length 6764 and a word z
on Σ8 of length 20226 such that w5/4 = p τ(ϕ(z)ϕ2(z) · · · ).

In particular, we can show that w5/4 is a morphic word. Let 0′ be a letter not in

Σ8, and define ϕ(0′) = 0′z. Then ϕ has the fixed point ϕω(0′) = 0′zϕ(z)ϕ2(z) · · · .
Closure properties [3, Theorems 7.6.1 and 7.6.3] for morphic words imply that
chopping off the prefix τ(0′z) of τ(ϕω(0′)) and prepending p preserve the property
of being a morphic word. Therefore w5/4 is morphic.

Theorem 4 also implies that five of the six columns of w5/4 are eventually peri-
odic, and the last column satisfies the following recurrence.

Corollary 5. Let w(i) be the ith letter of the word w5/4. Then, for all i ≥ 0,

w(6i+ 123061) = w(i+ 5920) +


3 if i ≡ 0, 2 mod 8

1 if i ≡ 4, 6 mod 8

2 if i ≡ 1 mod 2.

There are 20510 transient rows before the self-similarity repeats, hence the value
123061 = 6·20510+1 in Corollary 5. We show that the sequence w(i)i≥0 is 6-regular
in the sense of Allouche and Shallit [2]. More generally, we prove the following.

Theorem 6. Let k ≥ 2 and ` ≥ 1. Let d(i)i≥0 and u(i)i≥0 be periodic integer
sequences with period lengths ` and k`, respectively. Let r, s be nonnegative integers
such that r − s + k − 1 ≥ 0. Let w(i)i≥0 be an integer sequence such that, for all
0 ≤ m ≤ k − 1 and all i ≥ 0,

w(ki+ r +m) =

{
u(ki+m) if 0 ≤ m ≤ k − 2

w(i+ s) + d(i) if m = k − 1.

Then w(i)i≥0 is k-regular.

To prove Theorem 4, we must show that

(1) p τ(ϕ(z)ϕ2(z) · · · ) is 5/4-power-free, and
(2) p τ(ϕ(z)ϕ2(z) · · · ) is lexicographically least (by showing that decreasing

any letter introduces a 5/4-power ending in that position).

The word w5/4 is more complicated than previously studied words wa/b in three
major ways. First, unlike all words wa/b whose structures were previously known,
the natural description of w5/4 is not as a morphic word, that is, as an image
under a coding of a fixed point of a morphism. This can be seen in Corollary 5.
Namely, when w(i)i≥0 reappears as a modified subsequence of w5/4, it does not
appear in its entirety; instead, only w(i)i≥5920 appears. In other words, there is a
second kind of transient, represented by 5920 6= 0, which had not been observed
before. Second, the value of d in the images ϕ(nj) = u (n+ d)i varies with j. The
sequence 3, 2, 3, 2, 1, 2, 1, 2, . . . of d values is periodic with period length 8, hence
the 8 types of letters. Third, the morphism ϕ does not preserve the property
of 5/4-power-freeness, as we discuss in Section 4. These features make the proofs
significantly more intricate. We use Mathematica to carry out several computations
required in the proofs. In particular, we explicitly use the length-331040 prefix of
w5/4. A notebook containing the computations is available from the websites1 of
the authors.

1 https://ericrowland.github.io/papers.html and https://sites.google.com/view/

manonstipulanti/research

https://ericrowland.github.io/papers.html
https://sites.google.com/view/manonstipulanti/research
https://sites.google.com/view/manonstipulanti/research
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Figure 2. A prefix of w5/4, partitioned into rows of width 72.

This paper is organized as follows. Section 2 gives some useful preliminary
properties of the words p and z from Theorem 4. In Section 3, we show that
5/4-powers in images under ϕ have specific lengths. As the morphism ϕ does not
preserve 5/4-power-freeness, we introduce the concept of pre-5/4-power-freeness in
Section 4 and we show that the word zϕ(z) · · · is pre-5/4-power-free. We prove
Theorem 4 in two steps. First, in Section 5, we show that pτ(ϕ(z)ϕ2(z) · · · ) is
5/4-power-free using the pre-5/4-power-freeness of zϕ(z) · · · . Second, in Section 6,
we show that pτ(ϕ(z)ϕ2(z) · · · ) is lexicographically least. In Section 7, we study
the regularity of words whose morphic structure is similar to that of w5/4, and
we prove Theorem 6. In particular, we prove that the sequence of letters in w5/4

is 6-regular, and we establish that its rank is 188. We finish up with some open
questions in Section 8, including conjectural recurrences for w7/6 and several other
words. An extended abstract of Sections 1–6 appeared as [11].

In the remainder of this section, we outline how the structure of w5/4 was dis-
covered.

1.1. Experimental discovery. If the previous words studied in [10] and [9] are
any indication, the structure of wa/b can be identified when the letters of wa/b

are partitioned into rows of width k such that exactly one column is not eventually
periodic. We then look for the letters of wa/b appearing self-similarly in this column.
For w5/4, the largest such k appears to be k = 72. Figure 2 shows the partition of
a prefix of w5/4 into rows of width 72.

A longer prefix reveals that the sought nonperiodic column is w(72i + 31)i≥0.
Figure 3 plots the first several thousand terms of the sequences w(72i+ 31)i≥0 and
w(i)i≥0. The peaks in these plots suggest that the occurrences of the letter 8 in
w(72i+31)i≥0 are related to the occurrences of the letter 6 in w(i)i≥0. Specifically,
the intervals between instances of 6 in w(i)i≥0 seem to be twelve times as long as
the corresponding intervals between instances of 8 in w(72i+ 31)i≥0. Lining up the
peaks suggests

(1) w(72i+ 163183) = w(12i+ 12607) + 2
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Figure 3. A plot of prefixes of the sequences w(72i+31)i≥0 (left)
and w5/4 = w(i)i≥0 (right).

for all i ≥ 0. If possible, we would like a conjecture of the form

(2) w(ki+ r′) = w(i+ s) + d

where the coefficient of i on the right side is 1, since such a recurrence would relate a
subsequence of the letters in w5/4 to a suffix of w5/4. Here r′ represents the “usual”
transient seen in other words wa/b (related to r in Theorem 6 by r′ = r+k−1), and
s represents a new kind of transient. If s 6= 0, the recurrence does not look back to
the beginning of w5/4. Toward Equation (2), we examine the termwise difference
of w(6i+ 163183)i≥0 and w(i+ 12607)i≥0, which is

2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, . . . .

This sequence is not constant, so the d in Equation (2) is in fact a function of
i; however, it appears to be periodic with period length 8. Moreover, although
we obtained this sequence by looking at positions of 8 and 6, in fact this periodic
difference begins 6687 terms earlier, before the first occurrences of 8 and 6. This
gives Corollary 5, which in turn suggests the definition of ϕ in Notation 3. The 8
residue classes in Corollary 5 correspond to the 8 types of letters. Note there is
some flexibility in the definition of ϕ. To parallel morphisms in [8, 9, 10], we have
chosen ϕ such that the last letter in ϕ(nj) depends on n.

2. Basic properties of the words p and z

The following definition is motivated by the morphism ϕ in Notation 3, where
the subscripts increase by 1 modulo 8.

Definition 7. A (finite or infinite) word w on Σ8 is subscript-increasing if the
subscripts of the letters of w increase by 1 modulo 8 from one letter to the next.

Note that if w is a subscript-increasing word on Σ8, then so is ϕ(w). For every
subscript-increasing word w on Σ8, it follows from Notation 3 that the subsequence
of letters with even subscripts in ϕ(w) is a factor of (00021416)ω.

Iterating ϕ on any nonempty word on Σ8 will eventually give a word containing
letters nj with arbitrarily larger n. Indeed, after one iteration, we see a letter with
subscript 3 or 7, so after two iterations we see a letter with subscript 7. Since ϕ(n7)
contains (n+ 2)7, the alphabet grows without bound.

Before position 6764, we cannot expect the prefix of w5/4 to be the image of
another word under the morphism ϕ because the five columns have not become
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periodic yet (recall Figure 1 where w(6759) is the last term of w(6i + 3) before a
periodic pattern appears).

Starting at position 6764, the suffix w(6764)w(6765) · · · of w5/4 is 111003011012 · · · .
By Notation 3, there is a unique way to assign subscripts to these letters to obtain
an image of a word under ϕ, namely 141516070031021314051627 · · · . There are two
subscript-increasing preimages of this word under ϕ, namely

w(6764)4w(6764)5 · · · = ϕ(020334051617(−10)2102232405 · · · )
= ϕ(26071001(−12)13142526270001 · · · ).

The preimage 260710 · · · appears to contain infinitely many letters of the form
−1j , whereas the preimage 020334 · · · does not. Since we would like to further de-
substitute a suffix of one of these preimages, we choose the preimage 020334 · · · in
the following definition. (In fact we will determine the structure of 020334 · · · , and
this will imply that the preimage 260710 · · · does contain infinitely many letters of
the form −1j .)

Definition 8. Let p denote the length-6764 prefix of w5/4. We define the word

z = 020334051617(−10)2102232405 · · · 001102031425162700010233

to be the length-20226 subscript-increasing word on Σ8 starting with 02 and satis-
fying

τ(ϕ(z)) = w(6764)w(6765) · · ·w(6764 + 6|z| − 1).

We also define s = zϕ(z)ϕ2(z) · · · , which is a subscript-increasing infinite word on
the alphabet Σ8.

The following lemma states several properties of p, z, and s.

Lemma 9. Let Γ ⊂ Σ8 be the finite alphabet

{−30,−32,−20,−21,−22,−23,−25,−27,−11,−13,−14,−15,−16,−17, 04, 06}.

We have the following properties.

(1) The length-844 suffixes of p and τ(z) are equal.
(2) The word z is a subscript-increasing finite word whose alphabet is the 32-

letter set

Alph(z) = {−10,−12, 00, 01, 02, 03, 05, 07, 10, 11, 12, 13, 14, 15, 16, 17,

21, 23, 24, 25, 26, 27, 31, 33, 34, 35, 36, 37, 41, 43, 45, 47}.

In particular, z is a word on the alphabet Σ8 \Γ. The last letter of the form
−1j in z appears in position 80.

(3) The word s is a subscript-increasing infinite word on Σ8 \Γ. Moreover, the
subsequence of letters in s with even subscripts starting at position 86 is
(00021416)ω.

(4) For all words w on Σ8, the set of letters with even subscripts in ϕ(w) is
a subset of {00, 02, 14, 16}. Moreover, if w is subscript-increasing, then the
subsequence of letters with even subscripts in ϕ(w) is a factor of (00021416)ω.

(5) For each nj ∈ Σ8 \ Γ, the last letter of ϕ(nj) is not of the form 0i or 1i.

Proof. Parts 1 and 2 follow from computing p and z. Part 4 follows from inspection
of ϕ. To see Part 5, for each j we set the last letter (n + d)i of ϕ(nj) equal to 0i
and 1i, solve each for n, and observe that nj ∈ Γ.
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For Part 3, recall that z is a prefix of s. First we prove that s is a subscript-
increasing infinite word on Σ8 \ Γ. The letters 53 and 63 arise from letters 31, 35,
41, and 45 in z. As previously mentioned, letters with subscript 7 appear when
iterating ϕ on any nonempty word. One checks by induction that these are the
only letters in s. Therefore the alphabet of s is Alph(z) ∪ {53, 63} ∪ {n7 : n ≥ 5}.
To show that s is subscript-increasing, note that z ends with 33 and ϕ(z) starts
with ϕ(02) = 14 · · · . The other boundaries follow inductively by applying ϕ.

Next we show that the subsequence of letters in s with even subscripts starting
at position 86 is (00021416)ω. We check that the subsequence of letters in z with
even subscripts starting at position 86 is a finite prefix of (00021416)ω. By Part 4,
the sequence of letters in ϕ(z)ϕ2(z) · · · = 1415 · · · with even subscripts is a factor
of (00021416)ω. Since z = · · · 0233, the claim follows. �

3. Lengths of 5/4-powers

Pudwell and Rowland introduced the notion of locating lengths as a tool to prove
that morphisms preserve the property of a/b-power-freeness [9]. We use this notion
in Section 4 to show that ϕ has a weaker property.

Definition 10. Let k ≥ 2 and ` ≥ 1. Let µ be a k-uniform morphism on an
alphabet Σ. We say that µ locates words of length ` if for each word u of length `
on Σ there exists an integer m such that, for all v ∈ Σ∗, every occurrence of the
factor u in µ(v) begins at a position congruent to m modulo k.

If µ locates words of length `, then µ also locates words of length ` + 1, since
if |u| = ` + 1 then the positions of the length-` prefix of u in an image under µ is
determined modulo k.

Lemma 11. The 6-uniform morphism ϕ : Σ∗8 → Σ∗8 locates words of length 6.

Proof. Let v be a word in Σ∗8. Note that v is not necessarily subscript-increasing.
We look at occurrences of length-6 factors in ϕ(v). There are eight cases, depending
on the subscript of the initial letter. We write out the details for the subscript 2.
There are four possible forms for the length-6 factor in this case. The other cases
are analogous, some of which involve five possible forms.

Consider a length-6 factor of ϕ(v) whose initial letter is of the form n2. Then
in fact the initial letter is 02, since this is the only letter in ϕ(v) with subscript 2.
There are four forms depending on which column the letter 02 is, namely

u = 02 03 14 (n+ 3)5 · · ·
ū = 02 03 14 (n̄+ 1)5 · · ·
¯̄u = 02 (¯̄n+ 2)3 · · ·
¯̄̄u = 02 13 14 05 16 (¯̄̄n+ 2)7.

If 02 appears in the third column, then the definition of ϕ implies that the factor is
of the form u or ū. If 02 appears in the fifth column, then it is of the form ¯̄u. If 02
appears in the first column, then it is of the form ¯̄̄u. For each pair of these factors,
we show that either they are unequal or they occur at positions that are equivalent
modulo 6.

If u = ū, then they only occur at positions that are equivalent modulo 6 because
they are in the same column.

We directly see that the letters with subscript 3 in u (resp., ū) and ¯̄̄u do not
match, so they are different length-6 factors.
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Next we compare u (resp., ū) with ¯̄u. For them to be equal, we have to attach,
in ¯̄u, a prefix of one of the length-6 images of ϕ starting with 14, namely ϕ(m2) or
ϕ(m6). Both cases give

u = 02 03 14 (n+ 3)5 · · ·
ū = 02 03 14 (n̄+ 1)5 · · ·
¯̄u = 02 (¯̄n+ 2)3 14 15 16 07.

For u or ū to be equal to ¯̄u, we must have

u = 02 03 14 (n+ 3)5 16 17
ū = 02 03 14 (n̄+ 1)5 16 17
¯̄u = 02 (¯̄n+ 2)3 14 15 16 07.

We now see that the letters with subscript 7 of u (resp., ū) and ¯̄u are not the same,
so they are different length-6 factors.

Finally we compare ¯̄u with ¯̄̄u. For them to be equal, the same argument shows

¯̄u = 02 (¯̄n+ 2)3 14 15 16 07
¯̄̄u = 02 13 14 05 16 (¯̄̄n+ 2)7.

The letters with subscript 5 of ¯̄u and ¯̄̄u do not match, so they are different length-6
factors. �

Lemma 12. Let ` ≥ 6 be an integer. Let w be a subscript-increasing word on Σ8.
If ϕ(w) contains a 5/4-power of length 5`, then ` is divisible by 6.

Proof. Assume that ϕ(w) contains a 5/4-power xyx with |x| = ` and |y| = 3`. Since
the first letters of the two occurrences of x are the same, their subscripts are equal.
Since w is subscript-increasing by assumption, then ϕ(w) is subscript-increasing,
so |xy| is divisible by 8. Since |xy| = 4`, this implies ` is even. Since |x| ≥ 6,
Lemma 11 implies that |xy| is also divisible by 6. Consequently, |xy| is divisible by
24, so ` is divisible by 6. �

4. Pre-5/4-power-freeness

A morphism µ on an alphabet Σ is a/b-power-free if µ preserves a/b-power-
freeness, that is, for all a/b-power-free words w on Σ, µ(w) is also a/b-power-free.
Previously studied words wa/b [8, 10, 9] have all been described by a/b-power-free
morphisms. However, the morphism ϕ defined in Notation 3 is not 5/4-power-free.
Indeed for any integers n, n̄ ∈ Z, the word 04n5n̄6 is 5/4-power-free, but ϕ(04n5n̄6)
contains the length-10 factor

14151617000102(n+ 2)31415,

which is a 5/4-power. Therefore, to prove that w5/4 is 5/4-power-free, we use a
different approach. We still need to guarantee that there are no 5/4-powers in
certain images ϕ(w). Specifically, we would like all factors xyx′ of w with |x| =
1
3 |y| = |x

′| to satisfy ϕ(x) 6= ϕ(x′). We use the following concept.

Definition 13. A word w on Σ8 is a pre-5/4-power if ϕ(w) is a 5/4-power.

A nonempty word w on Σ8 is a pre-5/4-power if and only if w = xyx′ for some
x, y, x′ with |x| = 1

3 |y| = |x
′| such that ϕ(x) = ϕ(x′). The next lemma follows from

the definition of ϕ.
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Lemma 14. Two letters ni, n̄j ∈ Σ8 satisfy ϕ(ni) = ϕ(n̄j) if and only if i − j ∈
{−4, 0, 4} and

n− n̄ =

{
1
2 (i− j) if i is even

0 if i is odd.

We have the following characterization of subscript-increasing pre-5/4-powers.

Lemma 15. A nonempty subscript-increasing word w on Σ8 is a pre-5/4-power if
and only if w = xyx′ for some x, y, x′ with |x| = 1

3 |y| = |x
′| such that

(1) if the sequences of subscripts in x and x′ are equal, then x = x′, and
(2) if the sequences of subscripts in x and x′ differ by 4, then the mth letters

x(m) and x′(m) satisfy

τ(x(m))− τ(x′(m)) ∈

{
{−2, 2} if the subscript of x(m) is even

{0} if the subscript of x(m) is odd

for all m ∈ {0, 1, . . . , |x| − 1}.

Proof. Let x, y, x′ be nonempty words on Σ8 such that xyx′ is subscript-increasing,
|x| = 1

3 |y| = |x
′|, and ϕ(x) = ϕ(x′). Since |xy| = 4|x|, the sequences of subscripts

in x and x′ are equal or differ by 4. By Lemma 14, xyx′ is a pre-5/4-power if and
only if, for each m ∈ {0, 1, . . . , |x| − 1}, we have

τ(x(m))− τ(x′(m)) ∈


{0} if their subscripts are equal

{−2, 2} if their subscripts are even and differ by 4

{0} if their subscripts are odd and differ by 4.

This is equivalent to Conditions 1 and 2 in the statement. �

For example, the word 00n1n̄2 ¯̄n324 is a pre-5/4-power because τ(00) − τ(24) =
0− 2 ∈ {2,−2}; indeed

ϕ(00n1n̄2 ¯̄n324) = 001102031435ϕ(n1n̄2 ¯̄n3)001102031435

is a 5/4-power of length 30. On the other hand, the word 00n1n̄2 ¯̄n304 is not a
pre-5/4-power because τ(00)− τ(04) = 0 /∈ {2,−2}; indeed

ϕ(00n1n̄2 ¯̄n304) = 001102031435ϕ(n1n̄2 ¯̄n3)001102031415

is not a 5/4-power. Similarly, 01n2n̄3 ¯̄n425 is not a pre-5/4-power, because τ(01)−
τ(25) = −2 /∈ {0}; indeed

ϕ(01n2n̄3 ¯̄n425) = 161700010223ϕ(n1n̄2 ¯̄n3)161700010243

is not a 5/4-power.
In addition to not being a pre-5/4-power, the word 00n1n̄2 ¯̄n304 is 5/4-power-free

since 00 and 04 are different letters.

Proposition 16. Every 5/4-power on Σ8 is a pre-5/4-power.

Proof. Let x, y be nonempty words on Σ8 with |x| = 1
3 |y|, so that xyx is a 5/4-

power. Then ϕ(xyx) = ϕ(x)ϕ(y)ϕ(x) is a 5/4-power, so xyx is a pre-5/4-power. �

Proposition 16 implies that if a word w is pre-5/4-power-free then w is 5/4-
power-free.

Let Γ be the alphabet in Lemma 9. For all subscript-increasing words w on Σ8\Γ,
the combination of Lemmas 17 and 18 shows that, if w is pre-5/4-power-free, then
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ϕ(w) is 5/4-power-free. (We include Lemma 18 because it complements Lemma 17,
even though we will not use it to prove that pτ(ϕ(s)) is 5/4-power-free.)

Lemma 17. If w is a pre-5/4-power-free subscript-increasing word on Σ8, then
ϕ(w) contains no 5/4-power of length greater than or equal to 30.

Proof. Proceed toward a contradiction and assume that there exists a 5/4-power
in ϕ(w) of the form xyx with |x| = ` and |y| = 3` and ` ≥ 6. Let j be the
initial position of xyx in ϕ(w). Write j = 6i1 + r with 0 ≤ r ≤ 5. Since w
is subscript-increasing, Lemma 12 implies that ` = |x| is divisible by 6. Then y
begins at position j+ |x| = 6i2+r and the second occurrence of x begins at position
j + |xy| = 6i3 + r for some i2, i3. Now we shift if necessary so that r = 0; let x′y′x′

be the word of length |xyx| starting at position 6i1 in ϕ(w). Let uvu′ be the factor
of w of length 1

6 |xyx| starting at position i1 such that |u| = 1
3 |v| = |u′|. Then

ϕ(uvu′) = x′y′x′, so uvu′ is a pre-5/4-power. This contradicts the hypothesis that
w is a pre-5/4-power-free word. �

Lemma 18. Let Γ be the alphabet in Lemma 9. If w is a subscript-increasing word
on Σ8 \ Γ, then ϕ(w) contains no 5/4-power of length less than or equal to 25.

Proof. Given (n + d)i where d ∈ {1, 2, 3} and 0 ≤ i ≤ 7, we will need to know the
values of j ∈ {0, 1, . . . , 7} for which the letter (n + d)i is the last letter of ϕ(nj).
This is given by the following table.

(3)
(d, i) (1, 1) (1, 5) (2, 3) (2, 7) (3, 1) (3, 5)
j 6 4 1, 5 3, 7 2 0

As in the proof of Lemma 12, ` is even. It suffices to look at ` = 2 and ` = 4.
Since w is subscript-increasing, we may consider the word

ϕ(n0)ϕ(n1)ϕ(n2)ϕ(n3)ϕ(n4)ϕ(n5)ϕ(n6)ϕ(n7)

circularly and slide a window of length 5` through this word. Here n is a symbol,
not an integer. For each factor of length 5`, we compare its prefix of length ` to its
suffix of length `. If they are elements of Σ∗8 (that is, they do not involve n), then
we check that they are unequal. Otherwise, for each pair of letters that involves n,
we solve for n, and we use Table (3) to determine the possible subscripts j of n.
The set Γ is precisely the set of letters nj that arise. �

As an example of the algorithm described in the previous proof, for ` = 2 one
possible form of 5/4-powers of length 10 is

02(n+ 2)31415160700(n̄+ 3)10213.

We solve (n + 2)3 = 13 and get n = −1. Since d = 2 and the subscript is i = 3,
then according to Table (3) we find j ∈ {1, 5}. Therefore ϕ(−11n̄2 ¯̄n3), ϕ(−11n̄2 ¯̄n7),
ϕ(−15n̄2 ¯̄n3), and ϕ(−15n̄2 ¯̄n7) all contain a 5/4-power of length 10 (even though
−11n̄2 ¯̄n3 is the only subscript-increasing preimage). In this case, we add −11 and
−15 to Γ.

We need a stronger result than Lemmas 17 and 18 provide. Namely, since we
iterate ϕ, we need that images under ϕ are not just 5/4-power-free but are in fact
pre-5/4-power-free.

Proposition 19. Let Γ be the alphabet in Lemma 9. If w is a pre-5/4-power-free
subscript-increasing word on Σ8 \ Γ, then ϕ(w) is pre-5/4-power-free.
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Proof. Since w is subscript-increasing, so is ϕ(w). Let xyx′ be a nonempty factor
of ϕ(w) with |x| = 1

3 |y| = |x′|. We show that xyx′ is not a pre-5/4-power. We
consider two cases depending on the parity of |x|.

Case 1. Suppose that |x| is odd. Then the sequences of subscripts in x and x′

differ by 4.
If x contains a letter with an even subscript, then the corresponding letter

in x′ also has an even subscript. This pair of corresponding letters belongs to
{(00, 14), (02, 16), (14, 00), (16, 02)} by Part 4 of Lemma 9. Therefore the images
under τ of the two letters differ by ±1 /∈ {−2, 2}, so xyx′ is not a pre-5/4-power by
Lemma 15.

If x does not contain a letter with an even subscript, then |x| = 1, so x and x′

are letters with odd subscripts. Then (x, x′) is of one of the forms

(11, (n+ 3)5) (03, 17) ((n+ 3)5, 01)
(17, (n+ 2)3) (01, 15) ((n+ 2)3, 07)
(15, (n+ 3)1) (07, 13) ((n+ 3)1, 05)
(13, (n+ 2)7) (05, 11) ((n+ 2)7, 03)
(11, (n+ 1)5) ((n+ 1)5, 01)
(15, (n+ 1)1) ((n+ 1)1, 05).

Since w is a word on Σ8 \ Γ, we have τ(x) 6= τ(x′) thanks to Part 5 of Lemma 9.
Therefore xyx′ is not a pre-5/4-power by Lemma 15.

Case 2. Assume that |x| ≥ 2 is even. Then the sequences of subscripts in x and
x′ are equal. By Part 4 of Lemma 9, each pair of corresponding letters in x and x′

with even subscripts belongs to {(00, 00), (02, 02), (14, 14), (16, 16)}. To show that
xyx′ is not a pre-5/4-power, we use Lemma 15 and show that there exists a pair
(x(m), x′(m)) of corresponding letters with odd subscript j such that x(m) 6= x′(m).
Since |x| is even and |xy| = 4|x|, then |xy| ≡ r mod 6 with r ∈ {0, 2, 4}. We break
the remainder of the proof into two cases, depending on the value of r.

Case 2.1. Suppose that |xy| ≡ r mod 6 with r ∈ {2, 4}. If r = 2, then x
contains a letter in the second (respectively, fourth or sixth) column if and only
if x′ contains the corresponding letter in the fourth (respectively, sixth or second)
column. If r = 4, then x contains a letter in the second (respectively, fourth or sixth)
column if and only if x′ contains the corresponding letter in the sixth (respectively,
second or fourth) column. Therefore it suffices to compare the second, fourth, and
sixth columns, and we have pairs of the forms

(1j , 0j), (1j , (n+ d)j), (0j , 1j), (0j , (n+ d)j), ((n+ d)j , 1j), ((n+ d)j , 0j)

with d ∈ {1, 2, 3}. Since w is a word on Σ8 \ Γ, we have x(m) 6= x′(m) thanks to
Part 5 of Lemma 9. Therefore xyx′ is not a pre-5/4-power by Lemma 15.

Case 2.2. Assume that |xy| ≡ 0 mod 6, which implies |x| ≥ 6 since |xy| = 4|x|
and |x| is even. Since |xy| ≡ 0 mod 6, x and x′ agree on their backgrounds, that
is, letters in the first five columns. For instance, we may have

x = 11020314(n+ 3)516

y = 17000102(n̄+ 2)31415160700(¯̄n+ 3)10213140516(¯̄̄n+ 2)700

x′ = 11020314(¯̄̄̄n+ 1)516

as a factor of ϕ(n0n̄1 · · ·
¯̄̄̄
n̄5). Recall that we need to exhibit a pair of correspond-

ing letters in x and x′ with odd subscript j such that x(m) 6= x′(m). The only
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possibility is that x(m) and x′(m) both belong to the sixth column. Toward a
contradiction, suppose that such a pair does not exist, and so x and x′ also agree
on their letters belonging to the sixth column. In particular, x = x′. We have thus
found a 5/4-power in ϕ(w). This violates Lemma 17 since w is pre-5/4-power-free
by assumption. Therefore there is a pair with x(m) 6= x′(m), so xyx′ is not a
pre-5/4-power by Lemma 15. �

Now we return to studying the particular words z and s = zϕ(z)ϕ2(z) · · · from
Definition 8. First we show that s is pre-5/4-power-free. As a consequence, we
will show that pτ(ϕ(s)) is 5/4-power-free in Section 5. The words p and τ(z) have
a common suffix 0003. Since this suffix is a factor of τ(ϕ(11)) = τ(ϕ(15)), this
requires extra consideration in Theorem 20 and several other results.

Theorem 20. The word s is pre-5/4-power-free.

Proof. We show that, for all e ≥ 1, zϕ(z) · · ·ϕe(z) is pre-5/4-power-free. Note that
zϕ(z) · · ·ϕe(z) ∈ (Σ8 \ Γ)∗ for all e ≥ 1. Since s is subscript-increasing by Part 3
of Lemma 9, its factor zϕ(z) · · ·ϕe(z) is also subscript-increasing. We proceed by
induction on e.

For e = 1, one checks programmatically that zϕ(z) is pre-5/4-power-free. Our
implementation took about 6 hours (although this could be reduced by paralleliz-
ing).

Now suppose that the word zϕ(z) · · ·ϕe(z) is pre-5/4-power-free. We show that
zϕ(z) · · ·ϕe(z)ϕe+1(z) is also pre-5/4-power-free. Since zϕ(z) · · ·ϕe(z) is a word
on Σ8 \ Γ, Proposition 19 implies that ϕ(z)ϕ2(z) · · ·ϕe+1(z) is pre-5/4-power-free.
Also, z is pre-5/4-power-free since zϕ(z) is pre-5/4-power-free. Therefore it suffices
to check factors of zϕ(z) · · ·ϕe+1(z) that overlap both z and ϕ(z) · · ·ϕe+1(z). Let
xyx′ be such a factor, with |x| = 1

3 |y| = |x
′|.

If x is a factor of z, then

|xyx′| = 5|x| ≤ 5|z| < 6|z| = |ϕ(z)|.

Therefore xyx′ is a factor of zϕ(z). The base case of the induction implies that
xyx′ is not a pre-5/4-power. (Note that if we had used e = 0 as the base case of
the induction, we still would have needed to check the case e = 1 programmatically
here.)

If x is not a factor of z, then x overlaps the last letter of z and the first letter of
ϕ(z) · · ·ϕe+1(z), since we assume xyx′ overlaps both z and ϕ(z) · · ·ϕe+1(z). There
are two cases.

If x overlaps the last 5 letters of z, then x contains the suffix 2700010233 of z.
If the subscripts in x and x′ differ by 4, then x′ being a factor of ϕ(z) · · ·ϕe+1(z)
implies that the factor 2700010233 of x corresponds to a factor n314n̄516 ¯̄n7 of x′.
So xyx′ is not a pre-5/4-power by Lemma 15. If the subscripts in x and x′ line
up, then the factor 2700010233 of x corresponds to a factor n700n̄102 ¯̄n3 of x′. Since
2700010233 is not a factor of ϕ(z) · · ·ϕe+1(z), we must have n7 6= 27 or n̄1 6= 01 or
¯̄n3 6= 33. Therefore xyx′ is not a pre-5/4-power by Lemma 15.

Suppose x overlaps fewer than the last 5 letters of z. If |x| is odd, then the
subscripts in x and x′ differ by 4. Since x contains the factor 3314, then x′ being a
factor of ϕ(z) · · ·ϕe+1(z) implies that the factor 3314 of x corresponds to a factor
n700 of x′, and xyx′ is not a pre-5/4-power by Lemma 15. If |x| is even, then
the subscripts in x and x′ line up. The words x and x′ agree on even subscripts
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(by Part 3 of Lemma 9 because the length-4 suffix of z is 00010233). For odd
subscripts, if the corresponding letters of x and x′ belong to different columns
(that is, their positions are not congruent modulo 6), then, as in Case 2.1 in the
proof of Proposition 19, they form one of the pairs

(1j , 0j), (1j , (n+ d)j), (0j , 1j), (0j , (n+ d)j), ((n+ d)j , 1j), ((n+ d)j , 0j)

with j odd and d ∈ {1, 2, 3}. Part 5 of Lemma 9 implies that xyx′ is not a pre-
5/4-power by Lemma 15. If the corresponding letters belong to the same column,
then x and x′ agree everywhere except maybe in the sixth column. Let j be the
initial position of x′ in ϕ(z)ϕ2(z) · · ·ϕe+1(z). Let u′ be the word of minimal length

starting at position b j6c in zϕ(z) · · ·ϕe(z) such that x′ is a factor of ϕ(u′).
If |u′| ≤ 3, then |x| ≤ |ϕ(u′)| ≤ 18, so |xyx′| = 5|x| ≤ 90 < |zϕ(z)|, which means

that xyx′ is a factor of zϕ(z). Due to the base case, we already know that xyx′ is
not a pre-5/4-power.

Finally, consider the case |u′| ≥ 4. Toward a contradiction, suppose x = x′.
Since x = x′ is a prefix of

00010233ϕ(z)ϕ2(z) · · · = 00010233 · 141516070031 · 021314051627 · 001102031445 · · · ,
the word u′ is one of the two preimages

u′ =

{
11020334 · · ·
15260710 · · · .

Recall that u′ is a factor of zϕ(z) · · ·ϕe(z). By Part 3 of Lemma 9, the fourth
letters 34 and 10 do not occur in ϕ(z) · · ·ϕe(z), so they must occur in z. We
consider the positions where they occur. The letter 34 occurs in z only in positions
2 and 66. Position 2 is too early for 11020334 to be a factor. At position 66 we
have z(63)z(64)z(65)z(66) = 01020334. Similarly, the letter 10 occurs in z only in
positions 22 and 54 and 78, and we find

z(19)z(20)z(21)z(22) = 25260710

z(51)z(52)z(53)z(54) = 15262710

z(75)z(76)z(77)z(78) = 15261710.

Therefore neither 11020334 nor 15260710 is a factor of z. It follows that x 6= x′.
Since the sequences of subscripts in x and x′ are equal, this implies that xyx′ is not
a pre-5/4-power by Lemma 15. �

5. 5/4-power-freeness

In this section we show that pτ(ϕ(s)) is 5/4-power-free. As a consequence of
Theorem 20, we obtain the following.

Proposition 21. The infinite word ϕ(s) is 5/4-power-free.

Proof. By Theorem 20, s is pre-5/4-power-free. Since s is a word on Σ8 \Γ, Propo-
sition 19 implies that ϕ(s) is also pre-5/4-power-free. Proposition 16 implies that
ϕ(s) is 5/4-power-free. �

The next lemma shows that applying the coding τ to ϕ(s) preserves 5/4-power-
freeness.

Lemma 22. The infinite word τ(ϕ(s)) is 5/4-power-free.
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Proof. Let xyx′ be a nonempty factor of τ(ϕ(s)) with |x| = 1
3 |y| = |x′|. We show

that x 6= x′. Let uvu′ be the factor of ϕ(s) corresponding to xyx′ in τ(ϕ(s)), where
τ(u) = x, and τ(v) = y, and τ(u′) = x′. Let ` = |x|.

First assume ` is even. Assume toward a contradiction that x = x′. Since
|uv| = 4` is a multiple of 8, the sequences of subscripts in u and u′ line up. Then
τ(u) = x = τ(u′) implies that u = u′, and uvu is a 5/4-power in ϕ(s). This violates
Proposition 21.

Assume that ` is odd. Then 4` ≡ 4 mod 8, and the sequences of subscripts in
u and u′ differ by 4. For convenience, we give a table of the values of τ(ϕ(nj)):

(4)

τ(ϕ(n0)) = 0 1 0 0 1 (n+ 3)
τ(ϕ(n1)) = 1 1 0 0 0 (n+ 2)
τ(ϕ(n2)) = 1 1 1 0 0 (n+ 3)
τ(ϕ(n3)) = 0 1 1 0 1 (n+ 2)
τ(ϕ(n4)) = 0 1 0 0 1 (n+ 1)
τ(ϕ(n5)) = 1 1 0 0 0 (n+ 2)
τ(ϕ(n6)) = 1 1 1 0 0 (n+ 1)
τ(ϕ(n7)) = 0 1 1 0 1 (n+ 2).

Recall that s is a word on Σ8 \ Γ by Part 3 of Lemma 9.
If ` = 1, it is sufficient to check that the letter in position i in τ(ϕ(s)) is different

from the letter in position i+ 4 since Table (4) lists the letters in images of τ ◦ ϕ.
We do this by looking at six pairs of columns, each separated by 3 columns, in
Table (4). The first and fifth columns are unequal row by row. For the second
and sixth columns, several potential problems occur. For instance, in the fifth row,
τ(ϕ(04)) = 010011 contains the 5/4-power 10011, but fortunately 04 never appears
in s. Similarly, −20,−11,−22,−13,−15, 06,−17 create 5/4-powers but never appear
in s. For the third and first columns, we have to compare letters that are offset by
1 row. In particular, the last letter of the third column has to be compared with
the first letter in the first column. We do the same for the remaining three pairs of
columns and find that there are no 5/4-powers of length 5 in τ(ϕ(s)).

Suppose that ` ≥ 3. Each occurrence of u in ϕ(s) contains a letter with an even
subscript, that is, a letter that falls either in the first, third, or fifth column in
Table (4). Since the subscripts in u and u′ differ by 4, the pair of corresponding
letters in u and u′ belongs to

{(00, 14), (02, 16), (14, 00), (16, 02)}

by Part 3 of Lemma 9, as in the proof of Proposition 19. This shows that τ(u) 6=
τ(u′), which implies x 6= x′. �

Remark 23. Note that the previous argument works more generally to show that
if w is a subscript-increasing pre-5/4-power-free word on Σ8 \ Γ then τ(ϕ(w)) is
5/4-power-free.

The last step in showing that pτ(ϕ(s)) is 5/4-power-free is to prove that prepend-
ing p to τ(ϕ(s)) also yields a 5/4-power-free word. To that aim, we introduce the
following notion.

Definition 24. Let N be a set of integers, and let α, β ∈ Z∪ {n+ 1, n+ 2, n+ 3},
where n is a symbol. Then α and β are possibly equal with respect to N if there
exist m,m′ ∈ N such that α|n=m = β|n=m′ .
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Two letters α, β are possibly equal with respect to N if we can make them equal
by substituting integers from N for the symbol n. In particular, for every nonempty
set N , two integers α, β are possibly equal if and only if α = β. The definition of
possibly equal letters extends to words on Z ∪ {n + 1, n + 2, n + 3} in the natural
way. The next two lemmas will be used to prove Theorem 27.

Lemma 25. Let n be a symbol, and let N ⊇ {−3,−2, . . . , 4}. Let α, β be elements
of {0, 1, . . . , 5} ∪ {n+ 1, n+ 2, n+ 3}. If α and β are possibly equal with respect to
N , then they are possibly equal with respect to {−3,−2, . . . , 4}.
Proof. Suppose α and β are possibly equal with respect to N . There are three cases
to consider depending on the nature of the letters α and β.

If both letters are integers, then α = β. It follows that α and β are possibly
equal with respect to {−3,−2, . . . , 4}.

If one letter is an integer and the other is symbolic, without loss of generality let
α ∈ {0, 1, . . . , 5} and β = n + d for some d ∈ {1, 2, 3}. By assumption, α = n + d
for some n ∈ N , namely n = α − d ∈ {0, 1, . . . , 5} − {1, 2, 3} = {−3,−2, . . . , 4}.
Therefore α and β are possibly equal with respect to {−3,−2, . . . , 4}.

If both letters are symbolic, write α = n+d and β = n+d′ with d, d′ ∈ {1, 2, 3}.
Without loss of generality, d ≤ d′. Let m,m′ ∈ N such that m + d = m′ + d′.
Then m−m′ = d′ − d ∈ {0, 1, 2}. Then α and β are possibly equal with respect to
{−3,−2, . . . , 4}, since (m−m′) + d = 0 + d′ and m−m′, 0 ∈ {−3,−2, . . . , 4}. �

Lemma 26. Let n be a symbol, and let N = {−3,−2, . . . , 4}. For all α ∈ Z∪{n+
1, n+ 2, n+ 3}, define the set

Xα =

{
{α} if α ∈ Z
N + d if α ∈ {n+ 1, n+ 2, n+ 3}.

If α, β ∈ {0, 1, . . . , 5} ∪ {n + 1, n + 2, n + 3} are possibly equal with respect to N ,
then Xα ∩Xβ is nonempty.

Proof. The set Xα is the set of integer letters c such that the letter α is possibly
equal to c with respect to N . Suppose the letters α, β ∈ {0, 1, . . . , 5} ∪ {n+ 1, n+
2, n + 3} are possibly equal with respect to N . There are three cases to consider
depending on the nature of these letters.

If both letters are integers, then α = β, so α ∈ Xα ∩Xβ .
If one letter is an integer and the other is symbolic, without loss of generality,

let α ∈ {0, 1, . . . , 5} and β = n + d with d ∈ {1, 2, 3}. By assumption, α = n + d
for some n ∈ N . So Xα ∩Xβ = {α} ∩ (N + d) = {α}.

If both letters are symbolic, let α = n + d and β = n + d′ with d, d′ ∈ {1, 2, 3}.
Then Xα = N + d and Xβ = N + d′, so 0 ∈ Xα ∩Xα. �

Theorem 27. The infinite word pτ(ϕ(s)) is 5/4-power-free.

Proof. Since p is the prefix of w5/4 of length 6764, p is 5/4-power-free. By
Lemma 22, τ(ϕ(s)) is also 5/4-power-free. So if pτ(ϕ(s)) contains a 5/4-power,
then it must overlap p and τ(ϕ(s)). We will show that there are no 5/4-powers
xyx starting in p.

For factors xyx with |x| < 952 starting in p, note that |x| < 952 implies |xyx| <
5 ·952, so it is enough to look for 5/4-powers in pτ(ϕ(z)) — as opposed to pτ(ϕ(s))
— starting in p. We check programmatically that there is no such 5/4-power xyx.
The computation took about a minute.
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For longer factors, we show that each length-952 factor x starting in p only
occurs once in pτ(ϕ(s)). This will imply that there is no 5/4-power xyx in pτ(ϕ(s))
starting in p such that |x| ≥ 952. Since s = 020334 · · · , the word pτ(ϕ(s)) is of the
form

pτ
(
ϕ(n2)ϕ(n3)ϕ(n4)ϕ(n5)ϕ(n6)ϕ(n7)ϕ(n0)ϕ(n1) · · ·

)
.

Here we abuse notation; namely, the n’s are not necessarily equal. Observe that
|ϕ(n2)ϕ(n3) · · ·ϕ(n0)ϕ(n1)| = 48. We use a method to distinguish factors based
on [9, Section 6], where one would consider the set {0, 1, . . . , |p|+ 48− 1} of initial
positions. However, the morphism ϕ makes things more complicated. We need
to run the procedure in the following paragraph for two different sets of positions
instead of one. Indeed, although the sequence 3, 2, 1, 2, 1, 2, 3, 2, . . . of increments
d has period length 8, each of the first five columns has period length at most 4.
This implies that the factors starting at positions i and i + 24 are possibly equal
for all i sufficiently large, so one set of positions does not suffice. The two sets are

S1 = {0, 1, . . . , |p| − 1} ∪ {|p|, |p|+ 1, . . . , |p|+ 23}

and

S2 = {0, 1, . . . , |p| − 1} ∪ {|p|+ 24, |p|+ 25, . . . , |p|+ 47}.
The positions in {0, 1, . . . , |p| − 1} represent factors starting in the prefix p of
pτ(ϕ(s)), while the other positions are representatives of general positions modulo
48 in the suffix τ(ϕ(s)). We also need to specify a set N of integers that, roughly
speaking, represent the possible values that each symbolic n can take.

Let S be a set of positions, and let N be a set of integers. As in Lemma 26, the set
N represents values of n such that the last letter of τ(ϕ(nj)), namely n+d for some
d ∈ {1, 2, 3}, is a letter in pτ(ϕ(s)). We maintain classes of positions corresponding
to possibly equal factors starting at those positions. Start with ` = 0, for which all
length-0 factors are equal. Then all positions belong to the same class S. At each
step, we increase ` by 1, and for each position i we consider the factor of length `
starting at position i, extended from the previous step by one letter to the right.
We break each class into new classes according to the last letter of each extended
factor, as described in the following paragraph. We stop once each class contains
exactly one position, because then each factor occurs at most once. Note that this
procedure does not necessarily terminate, depending on the inputs. If it terminates,
then we record `.

For each class I, we build subclasses Ic indexed by integers c. For each position
i ∈ I, we consider the extended factor of length ` starting at position i. If 0 ≤ i ≤
|p|− 1, then the new letter is in Z because i+ `− 1 represents a particular position
in pτ(ϕ(s)). If i ≥ |p|, then the new letter is either in Z or symbolic in n because
i+ `− 1 represents all sufficiently large positions congruent to i+ `− 1 modulo 48.
Now there are two cases. If the new letter is an integer c, we add the position i to
the class Ic. If the new letter is n+ d where d ∈ {1, 2, 3}, then we add the position
i to the class In′+d for each n′ ∈ N . We do this for all classes I and we use the
union ⋃

I
{Ic : c ∈ Z}

as our new set of classes for the next length `+ 1.
For the sets S1 and S2, we initially use N = {0, 1, 2, 3, 4}. For both sets, this

procedure terminates and gives ` = 952. Our implementation took about 10 seconds
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each. The prefix of pτ(ϕ(s)) of length |p| + 952 − 1 is a word on the alphabet
{0, 1, . . . , 5}. Therefore, since d ∈ {1, 2, 3}, at most the eight classes I0, I1, . . . , I7
arise in each step of the procedure, since {0, 1, . . . , 5}∪(N+{1, 2, 3}) = {0, 1, . . . , 7}.

It remains to show that using the set N = {0, 1, 2, 3, 4} is sufficient to guarantee
that, since the procedures terminated, each length-952 factor x starting in p only
occurs once in pτ(ϕ(s)). Since pτ(ϕ(s)) is a word on the alphabet N, it suffices to
choose a subset N of N− {1, 2, 3} = {−3,−2, . . . }. There exist letters in pτ(ϕ(s))
that arise as the last letter of τ(ϕ(nj)) for arbitrarily large n, but the procedure
cannot use an infinite set N . We use Lemmas 25 and 26 to show that N need not
contain any integer greater than 4.

The procedure examines factors of a prefix of pτ(ϕ(s)) and

τ
(
ϕ(n2)ϕ(n3)ϕ(n4)ϕ(n5)ϕ(n6)ϕ(n7)ϕ(n0)ϕ(n1) · · ·

)
.

The factors of pτ(ϕ(s)) lie in a prefix of length at most |p|+952−1. The other word
τ(ϕ(n2)ϕ(n3)ϕ(n4) · · · ) is on {0, 1} ∪ {n+ 1, n+ 2, n+ 3}. Both words are on the
alphabet {0, 1, . . . , 5}∪ {n+ 1, n+ 2, n+ 3}, so we will be able to apply Lemma 26.
Let N ⊇ {0, 1, . . . , 5} − {1, 2, 3} = {−3,−2, . . . , 4}. On the step corresponding
to length ` in the procedure, suppose the length-` factors starting at positions i
and j are possibly equal with respect to N . We will show that there is a class Ic
containing i and j. By Lemma 25, the two factors are possibly equal with respect to
{−3,−2, . . . , 4}. In particular, the last two letters, which have positions i+`−1 and
j + `− 1, are possibly equal with respect to {−3,−2, . . . , 4}. Let α and β be these
two letters. Recall that α, β ∈ {0, 1, . . . , 5} ∪ {n+ 1, n+ 2, n+ 3}. By Lemma 26,
there exists c ∈ Xα ∩ Xβ . Therefore the letters α and β are both possibly equal
to c with respect to {−3,−2, . . . , 4}, since Xα is the set of integers possibly equal
to α with respect to {−3,−2, . . . , 4}. So i and j are both added to Ic. We have
shown that N ⊆ {−3,−2, . . . , 4} suffices.

Next we remove −3 and −2. We continue to consider letters in pτ(ϕ(s)) that
arise as the last letter of τ(ϕ(nj)) for n ∈ N . Since τ(s) does not contain the letter
−3, this implies n + 3 and 0 are not possibly equal with respect to the alphabet
of τ(s), so N need not contain −3. Similarly, τ(s) does not contain the letter −2;
therefore n+2 and 0 are not possibly equal, and n+3 and 1 are not possibly equal,
so N need not contain −2. Therefore N ⊆ {−1, 0, 1, 2, 3, 4} suffices.

To remove −1, we run the procedure on the sets S1 and S2 again. However,
this time we use the set {−1, 0, 1, 2, 3, 4} and we artificially stop the procedure at
` = 952.

For the set S1, stopping at ` = 952 yields 4 nonempty classes of positions re-
maining, namely

{{6760, 6784}, {6761, 6785}, {6762, 6786}, {6763, 6787}}.

The smallest position in each class is one of the last 4 positions in p. As length-952
factors of pτ(ϕ(n2)ϕ(n3) · · · ), each pair of factors starting at those positions are
possibly equal with respect to N . For instance, consider the two factors

000 3 11100 3 01101 2 01001 4 11000 2 11100 2 · · · ,
000(n+ 2)11100(n+ 1)01101(n+ 2)01001(n+ 3)11000(n+ 2)11100(n+ 3) · · ·

starting at positions 6760, 6784. The first factor is a prefix of 0003τ(ϕ(s)) and the
second is a prefix of 000(n+2)τ(ϕ(n6)ϕ(n7) · · · ), which occurs every 48 positions in
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the periodic word τ(ϕ(n2)ϕ(n3) · · · ). For these two factors to be equal, the pair of
letters 2 and n+ 3 have to be equal, and solving 2 = n+ 3 gives n = −1. Similarly,
the other three pairs of factors are only equal if the same pair of letters are equal,
which again gives n = −1. But letters −1 only appear in s in its prefix z and only
with subscripts 0 and 2 and only in the nine positions 6, 14, 16, 32, 40, 48, 56, 70, 80.
A finite check shows that the factors in each pair are different.

For S2, there are also 4 nonempty classes of positions remaining:

{{6760, 6808}, {6761, 6809}, {6762, 6810}, {6763, 6811}}.

To show that the factors in each pair are different, we use slightly longer prefixes
of 003τ(ϕ(s)) and 000(n+ 2)τ(ϕ(n2)ϕ(n3) · · · ) than we used for S1, and we again
find a pair of letters 2 and n+ 3. This again implies n = −1 for each class.

Therefore we can remove −1 from N . So N = {0, 1, 2, 3, 4} suffices. �

6. Lexicographic-leastness

In this section we show that pτ(ϕ(s)) is lexicographically least by showing the
following.

Theorem 28. Decreasing any nonzero letter of pτ(ϕ(s)) introduces a 5/4-power
ending at that position.

Proof. We proceed by induction on the positions i of letters in pτ(ϕ(s)). As a base
case, since we have computed a long enough common prefix of w5/4 and pτ(ϕ(s)),
decreasing any nonzero letter of pτ(ϕ(s)) in position i ∈ {0, 1, . . . , 331039} intro-
duces a 5/4-power in pτ(ϕ(s)) ending at that position.

Now suppose that i ≥ 331040 = 31|p| + 6|z| and assume that decreasing a
nonzero letter in any position less than i in pτ(ϕ(s)) introduces a 5/4-power in
pτ(ϕ(s)) ending at that position. We will show that decreasing the letter in position
i in pτ(ϕ(s)) introduces a 5/4-power in pτ(ϕ(s)) ending at that position. Since
|p| = 6764 and |z| = 20226, observe that this letter in position i ≥ 128120 =
|p| + 6|z| = |pτ(ϕ(z))| actually belongs to the suffix τ(ϕ2(s)), and its position in
τ(ϕ2(s)) is i − |p| − 6|z|. Every such letter is a factor of τ(ϕ(nj)) for some n ∈ N
and some j ∈ {0, 1, . . . , 7}. We make use of the array (4) of letters of ϕ.

If i−|p|−6|z| 6≡ 5 mod 6, then the letter in position i belongs to one of the first
five columns. Any 0 letters cannot be decreased. Observe that the fourth column is
made of letters 0. Since each letter in the second column is 1, decreasing any letter
1 to 0 in the second column produces a new 5/4-power of length 5 of the form 0y0
between the fourth and second columns. Since the even-subscript letters in ϕ(s)
form the word (14160002)ω by the proof of Part 3 in Lemma 9, then decreasing any
letter 1 to 0 in the first, third, or fifth column introduces a 5/4-power of length 5.

Otherwise i−|p|−6|z| ≡ 5 mod 6, that is, the letter in position i is in the sixth
column. These letters arise as n + d for some n ∈ N and d ∈ {1, 2, 3}. By Parts 3
and 5 of Lemma 9, n+ d ≥ 2. If we decrease n+ d to 0, then we create one of the
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following 5/4-powers of length 10:

10 · 1(n+ 2)0100 · 10

00 · 1(n+ 3)1100 · 00

00 · 0(n+ 2)1110 · 00

10 · 0(n+ 3)0110 · 10

10 · 1(n+ 2)0100 · 10

00 · 1(n+ 1)1100 · 00

00 · 0(n+ 2)1110 · 00

10 · 0(n+ 1)0110 · 10.

If we decrease n+ d to 1, then we create a new 5/4-power of length 5 because each
letter in the second column is 1.

It remains to show that decreasing the letter n + d in position i in τ(ϕ2(s)) to
a letter c ∈ {2, 3, . . . , n + d − 1} introduces a 5/4-power ending at that position.
Intuitively, this operation corresponds to decreasing a letter nj in the preimage
ϕ(s) to (c− d)j for some 0 ≤ j ≤ 7. In particular, the last letter of τ(ϕ((c− d)j))
is c. We examine three cases according to the value of d.

Case 1. If d = 1, then Notation 3 implies that the corresponding letter in
position i in ϕ2(s) is (n+ 1)5 or (n+ 1)1. We see that (n+ 1)5 and (n+ 1)1 appear
in the images of n4 and n6 under ϕ. By Parts 3 and 4 of Lemma 9, the only letters
with subscripts 4 and 6 in ϕ(s) are 14 and 16. Therefore n = 1, and there is nothing
to check since {2, 3, . . . , n+ d− 1} is the empty set.

Case 3. If d = 3, then the corresponding letter in position i in ϕ2(s) is (n+ 3)5
or (n+ 3)1, which appear in the images of n0 and n2 under ϕ. By Parts 3 and 4 of
Lemma 9, the only letters with subscripts 0 and 2 in ϕ(s) are 00 and 02, so n = 0
and c ∈ {2, 3, . . . , n+d−1} = {2}. By Part 3 of Lemma 9, the letter four positions
before 00 is 14, and the letter four positions before 02 is 16. Therefore decreasing
n+ 3 in 35 or 31 to c = 2 introduces one of following 5/4-powers of length 30:

τ(ϕ(14n̄5 ¯̄n6 ¯̄̄n7))010012 = 010012τ(ϕ(n̄5 ¯̄n6 ¯̄̄n7))010012

τ(ϕ(16n̄7 ¯̄n0 ¯̄̄n1))111002 = 111002τ(ϕ(n̄7 ¯̄n0 ¯̄̄n1))111002.

Case 2. If d = 2, then the corresponding letter in position i in ϕ2(s) is (n+ 2)3
or (n + 2)7, which appear in the images of n1, n3, n5, and n7 under ϕ. Let w
be the length-(i − |p| − 6|z| + 1) prefix of τ(ϕ2(s)) with last letter n + 2. Since

i − |p| − 6|z| ≡ 5 mod 6, let u be the prefix of ϕ(s) of length i−|p|−6|z|+1
6 . Then

τ(ϕ(u)) = w and τ(u) ends with n as pictured.

p τ(ϕ(z)) τ(ϕ2(z)ϕ3(z) · · · )

w

i

τ(u)

Let w′ be the word obtained by decreasing the last letter n + 2 in w to c, and let
u′ be the word obtained by decreasing the last letter nj in u to (c − 2)j . Then
τ(ϕ(u′)) = w′. By the induction hypothesis, pτ(u′) contains a 5/4-power suffix
xyx. Now we consider two subcases, depending on where xyx starts in pτ(u′) as
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depicted below. (Case 2.2 contains two possibilities, but we show that the first does
not actually occur.)

p τ(u′)

x y x
Case 2.1

Case 2.2

x y x

x y x

Case 2.1. Suppose that xyx starts after p in pτ(u′), that is, xyx is a suffix of
τ(u′). Write x = τ(x′) = τ(x′′) and y = τ(y′) where x′y′x′′ is the corresponding
subscript-increasing suffix of u′. Since |xy| is divisible by 4, the subscripts in x′

and x′′ are either equal or differ by 4. Since d = 2, the subscripts of the last letters
of x′ and x′′ are odd. If |x| = 1, then x = c − 2 and ϕ(x′) = ϕ(x′′) by definition
of ϕ. Now if |x| ≥ 2, the subscripts of the penultimate letters of x′ and x′′ are
even and either equal each other or differ by 4. Since the subscripts cannot differ
by 4 by Part 3 of Lemma 9, they must be equal. Since τ(x′) = τ(x′′), we have
x′ = x′′, so ϕ(x′) = ϕ(x′′). Then pτ(ϕ(z))w′ = pτ(ϕ(zu′)) contains the 5/4-power
τ(ϕ(x′y′x′′)) as a suffix. Therefore, decreasing n+ 2 to c introduces a 5/4-power in
pτ(ϕ(s)) ending at position i.

Case 2.2. Suppose that xyx starts before τ(u′) in pτ(u′). In particular, τ(u′) is
a suffix of xyx. Since i ≥ 331040 = 31|p|+ 6|z|,

5|p| < i− |p| − 6|z|+ 1

6
= |u| = |τ(u′)| ≤ |xyx| = 5|x|,

which implies |p| < |x|. Therefore the first x overlaps p but is not a factor of p.
Suppose the overlap length is at least 5. Then the first x contains 20003 as a factor.
But since 20003 is never a factor of an image under τ ◦ ϕ, so the overlap length of
x and p is at most 4. Then the first x = sv is made of a nonempty suffix s of 0003
followed by a nonempty prefix v of τ(u′) such that vyx = τ(u′). Write v = τ(v′),
x = τ(x′′), and y = τ(y′) where v′y′x′′ = u′. To get around the fact that p does
not have subscripts, we use z instead to obtain a preimage of s under τ . Recall
that 0003 is a common suffix of p and τ(z), and the corresponding suffix in z is
00010233. So let s′ be the suffix of 00010233 such that s = τ(s′). Now observe that
x′ = s′v′ is a subscript-increasing factor of zu′, overlapping z. Thus ϕ(x′y′x′′) is a
subscript-increasing suffix of ϕ(zu′), overlapping ϕ(z). By Part 3 of Lemma 9 again,
since τ(x′) = τ(s′v′) = sv = x = τ(x′′) and |x| ≥ 2, the subscripts in x′ and x′′ are
equal. Consequently, x′ = x′′ and ϕ(x′) = ϕ(x′′). Then pτ(ϕ(z))w′ = pτ(ϕ(zu′))
contains the 5/4-power τ(ϕ(x′y′x′′)) as a suffix. Therefore, decreasing n + 2 to c
introduces a 5/4-power in pτ(ϕ(s)) ending at position i. �

Theorems 27 and 28 imply Theorem 4, which states that w5/4 = pτ(ϕ(s)).
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7. The sequence of letters in w5/4

In this section we prove Corollary 5, which states that the sequence w(i)i≥0 of
letters in w5/4 satisfies

(5) w(6i+ 123061) = w(i+ 5920) +


3 if i ≡ 0, 2 mod 8

1 if i ≡ 4, 6 mod 8

2 if i ≡ 1 mod 2

for all i ≥ 0. Then we prove Theorem 6, which states that a sequence satisfying
a certain recurrence is k-regular. In particular, the sequence of letters in w5/4 is
6-regular.

Proof of Corollary 5. Since |p| = 6764 and |pτ(ϕ(z))| = 128120, we have

w(6764)w(6765) · · · = τ(ϕ(s))

and

w(128120)w(128121) · · · = τ(ϕ2(s))

by Theorem 4. The first letter in ϕ(s) is 14, so the definition of ϕ implies

w(6i+ 128125) = w(i+ 6764) +


1 if i ≡ 0, 2 mod 8

3 if i ≡ 4, 6 mod 8

2 if i ≡ 1 mod 2

for all i ≥ 0. Thus Equation (5) holds for i ≥ 844. Note that, since 844 ≡ 4 mod 8,
the cases i ≡ 0, 2 mod 8 and i ≡ 4, 6 mod 8 are switched relative to Equation (5).
Finally, we check programmatically that Equation (5) holds for all 0 ≤ i ≤ 843.
Alternatively, this follows from the fact that the length-844 suffixes of p and τ(z)
are equal by Part 1 of Lemma 9 and the fact that zϕ(z) is subscript-increasing by
Part 3 of Lemma 9. �

Corollary 5 gives a recurrence for letters w(6i+1) for sufficiently large i. Letters
in the other residue classes modulo 6 are given by the next proposition, which follows
directly from Theorem 4, the definition of ϕ, and the fact that w(6 · 1127 + 0) = 0.

Proposition 29. For all i ≥ 1127 = |p|−2
6 , the letters of the word w5/4 satisfy

w(6i+ 0) =

{
0 if i ≡ 0, 3 mod 4

1 if i ≡ 1, 2 mod 4

w(6i+ 2) =

{
0 if i ≡ 0, 1 mod 4

1 if i ≡ 2, 3 mod 4

w(6i+ 3) = 1

w(6i+ 4) =

{
0 if i ≡ 1, 2 mod 4

1 if i ≡ 0, 3 mod 4

w(6i+ 5) = 0.

Recall the definition of a k-regular sequence [2].
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Definition 30. Let k ≥ 2 be an integer. For any sequence s(i)i≥0, the set of
subsequences {s(kei + j)i≥0 : e ≥ 0 and 0 ≤ j ≤ ke − 1} is called the k-kernel of
s(i)i≥0. A sequence s(i)i≥0 is k-regular if the Q-vector space generated by its k-
kernel is finitely generated. The rank of s(i)i≥0 is the dimension of this vector
space.

The following theorem is a generalization of [9, Theorem 8], which is the special
case s = 0 and ` = 1.

Theorem 6. Let k ≥ 2 and ` ≥ 1. Let d(i)i≥0 and u(i)i≥0 be periodic integer
sequences with period lengths ` and k`, respectively. Let r, s be nonnegative integers
such that r − s + k − 1 ≥ 0. Let w(i)i≥0 be an integer sequence such that, for all
0 ≤ m ≤ k − 1 and all i ≥ 0,

(6) w(ki+ r +m) =

{
u(ki+m) if 0 ≤ m ≤ k − 2

w(i+ s) + d(i) if m = k − 1.

Then w(i)i≥0 is k-regular.

In proving Theorem 6, we obtain an upper bound on the rank of w(i)i≥0 as a
k-regular sequence.

Two integers k, ` ≥ 2 are said to be multiplicatively dependent if there exist
positive integers α and β such that kα = `β . They are multiplicatively independent
if such integers do not exist. Bell [4] showed that if a sequence w(i)i≥0 is both k-
regular and `-regular for multiplicatively independent integers k and ` then w(i)i≥0
is an eventual quasi-polynomial sequence. Since the ith letter in wa/b satisfies

w(i) = O(
√
i) [9, Theorem 9], this implies that the value of k for which the sequence

of letters in wa/b is k-regular is unique up to multiplicative dependence.
The proof of Theorem 6 relies on the following technical lemma, which identifies

kernel sequences on which Recurrence (6) can be iterated.

Lemma 31. Assume the hypotheses of Theorem 6. For every e ≥ 0, let

j?e =
ke − 1

k − 1
(r − s+ k − 1) + s.

For all sufficiently large e, if j ≡ j?e mod kh where 0 ≤ h ≤ e, then we can
iteratively apply the case m = k−1 of Recurrence (6) at least h times to w(kei+ j)

for all i ≥
⌈
r−s
k−1

⌉
+ 1.

Proof. The proof consists of two steps. First, we will show that the statement
holds for all sufficiently large i. Second, we establish the lower bound on i, which is
independent of e for sufficiently large e. We would like to iterate the case m = k−1
of Recurrence (6), namely

(7) w(ki+ r + k − 1) = w(i+ s) + d(i).

Define

fe,t,j(i) = ke−ti+
j − s
kt
− (1 + k + · · ·+ kt−1)(r − s+ k − 1)

kt

= ke−ti+
j − s
kt
− kt − 1

kt(k − 1)
(r − s+ k − 1),
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which will be useful to describe iterations of Recurrence (7). One checks that
fe,t,j(i)+s = kfe,t+1,j(i)+r+k−1. Observe that if fe,t+1,j(i) ≥ 0, then fe,t,j(i) ≥ 0
since r − s+ k − 1 ≥ 0 by assumption. Recurrence (7) gives

w(fe,t,j(i) + s) = w(kfe,t+1,j(i) + r + k − 1)

= w(fe,t+1,j(i) + s) + d(fe,t+1,j(i))(8)

if fe,t+1,j(i) ≥ 0. We proceed by induction on h. If h = 0, then the statement of
the lemma is clear. Let j ≡ j?e mod kh+1 with 0 ≤ h ≤ e − 1, and inductively
assume that we can iteratively apply Recurrence (7) h times to w(kei + j) for all
sufficiently large i. By the induction hypothesis, iteratively applying Recurrence (8)
to w(kei+ j) for t = 0, . . . , t = h− 1 yields

(9) w(kei+ j) = w(fe,0,j(i) + s) = w(fe,h,j(i) + s) +

h−1∑
t=0

d(fe,t+1,j(i))

for all sufficiently large i. We claim we can apply Recurrence (7) (in the form of
Recurrence (8)) one more time to obtain that w(kei+ j) is equal to

w(fe,h+1,j(i) + s) +

h∑
t=0

d(fe,t+1,j(i))

= w

(
ke−h−1i+

j − s
kh+1

− (1 + k + · · ·+ kh)(r − s+ k − 1)

kh+1

)
+

h∑
t=0

d(fe,t+1,j(i))

for all sufficiently large i. Indeed,

j − s
kh+1

− (1 + k + · · ·+ kh)(r − s+ k − 1)

kh+1

is an integer since, by assumption,

j ≡ j?e mod kh+1

≡ ke − 1

k − 1
(r − s+ k − 1) + s mod kh+1

≡
(
1 + k + · · ·+ ke−2 + ke−1

)
(r − s+ k − 1) + s mod kh+1

≡
(
1 + k + · · ·+ kh−1 + kh

)
(r − s+ k − 1) + s mod kh+1.

It remains to establish the bound i ≥
⌈
r−s
k−1

⌉
+1. To apply Recurrence (7) h times

to w(kei+ j), we need fe,t,j(i) ≥ 0 for all t ∈ {1, . . . , h}. It follows by definition of
fe,t,j(i) that fe,t,j(i) ≥ fe,t,0(i). If follows from fe,t,0(i)+s = kfe,t+1,0(i)+r+k−1
that fe,t,j(i) ≥ fe,e,0(i) since t ≤ h ≤ e. We have

fe,e,0(i) ≥ 0 ⇐⇒ i ≥ ke − 1

ke(k − 1)
(r − s+ k − 1) +

s

ke
.

As e gets large, the right side of the previous inequality approaches the finite limit
r−s+k−1
k−1 . Therefore, for all sufficiently large e and for all integers i ≥ r−s+k−1

k−1 , we

can apply Recurrence (7) h times to w(kei+ j), as desired. �

We now prove Theorem 6. We will define a sequence (je)e≥0, where each je is
the unique residue modulo ke for which we can apply Recurrence (6) the maximal
number of times to w(kei+ je). For w5/4, the sequence (je)e≥0 is

0, 1, 31, 31, 895, 7375, 38479, 38479, 318415, 1998031, . . . .



AVOIDING 5/4-POWERS ON THE ALPHABET OF NONNEGATIVE INTEGERS 25

We will see in the proof of Theorem 33 that applying the recurrence to w(kei+ je)
for large e produces w(ke−1i+ je−1).

Proof of Theorem 6. We show that the Q-vector space generated by the k-kernel
of w(i)i≥0 is finitely generated. We will see that subsequences w(kei + j)i≥0 for
certain values of j behave differently than others. Namely, for most sequences,
iteratively applying Recurrence (6) to all but finitely many terms brings us into the
periodic background u (this is Case 1 below), but for certain sequences we stay in
the self-similar column (Case 2).

For every e ≥ 0, we let

je = j?e − keqe =
ke − 1

k − 1
(r − s+ k − 1) + s− keqe,

where j?e is defined as in Lemma 31 and qe is the unique integer such that 0 ≤
j?e − keqe < ke. Since r − s + k − 1 ≥ 0, qe is nonnegative. Since 0 ≤ je

ke < 1, we
have Qe − 1 < qe ≤ Qe with

Qe =
ke − 1

ke(k − 1)
(r − s+ k − 1) +

s

ke
.

In particular, qe = bQec. As e gets large, Qe approaches the finite limit r−s+k−1
k−1 ,

so the integers qe are the same for all e ≥ E for some integer E ≥ 0. We take
E to be minimal. We show that there exists M ≥ 0 such that, for all e ≥ 0 and
0 ≤ j ≤ ke− 1, w(kei+ j)i≥0 belongs to the Q-vector space generated by the finite
set

{w(kei+ j)i≥0 : 0 ≤ e ≤ E − 1 and 0 ≤ j ≤ ke − 1}∪{w(kei+ je)i≥0 : 0 ≤ e ≤M}
and finitely many eventually periodic sequences.

As in the proof of Lemma 31, define

fe,t,j(i) = ke−ti+
j − s
kt
− kt − 1

kt(k − 1)
(r − s+ k − 1).

Case 1. First, we consider subsequences w(kei+ j)i≥0 with 0 ≤ j ≤ ke − 1 and
j 6= je. We show that all but finitely many have tails that can be expressed in terms
of u by iterating Recurrence (6). Let h be maximal such that j ≡ je mod kh. By
Lemma 31, we can iteratively apply Recurrence (7) h times to w(kei + j) for all
e ≥ E and i ≥ qE + 1, giving

w(kei+ j) = w(fe,h,j(i) + s) +

h−1∑
t=0

d(fe,t+1,j(i))

from Equation (9). Since h is maximal, we cannot apply Recurrence (7) an addi-
tional time. If i ≥ qE + 1, then

fe,h,j(i) + s ≥ kfe,e,0(i) + r + k − 1 ≥ r,
as in the proof of Lemma 31. So we can apply the case m 6= k−1 of Recurrence (6)
instead to w(fe,h,j(i) + s). Therefore

(10) w(kei+ j) = u(fe,h,j(i) + s− r) +

h−1∑
t=0

d(fe,t+1,j(i)),

so w(kei + j)i≥qE+1 is a periodic sequence with period length at most k` since u
and d are periodic sequences with period lengths dividing k`. Therefore w(kei +
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j)i≥0 is an eventually periodic sequence with preperiod length at most qE + 1,
which is independent of e and j. It suffices to include generators for eventually
periodic sequences with preperiod length qE + 1. Let Gk` be the standard basis
for periodic sequences with period length k` (that is, with periods of the form
0, . . . , 0, 1, 0, . . . , 0). For all m ≥ 0, let vm(i)i≥0 be the sequence defined by vm(m) =
1 and vm(i) = 0 for all i 6= m. Let HqE+1 = {vm(i)i≥0 : 0 ≤ m ≤ qE}. Each
sequence w(kei+j)i≥0 for e ≥ 0 and j 6= je belongs to the Q-vector space generated
by

{w(kei+ j)i≥0 : 0 ≤ e ≤ E − 1 and 0 ≤ j ≤ ke − 1} ∪Gk` ∪HqE+1,

which is finite-dimensional.
Case 2. Second, we examine subsequences w(kei+ je)i≥0. We show that these

sequences do not depend on u and that all but finitely many of them are essentially
generated by one. We defined je in such a way that kei+ je = fe,0,je(i) + s. From
Equation (9), e applications of Recurrence (6) yield

w(kei+ je) = w(fe,e,je(i) + s) +

e−1∑
t=0

d(fe,t+1,je(i))

= w(i− qe + s) +

e−1∑
t=0

d(fe,t+1,je(i))

for all i ≥ qe, after expanding fe,e,je(i). However, we would like to get a relation of
this form that holds for all i ≥ 0. It is possible that e applications of the recurrence
are too many, and in such cases we use h applications and choose h accordingly.
For h ≤ e, Equation (9) with j = je gives

(11) w(kei+ je) = w(fe,h,je(i) + s) +

h−1∑
t=0

d(fe,t+1,je(i)),

as long as fe,h,je(i) ≥ 0. We consider two cases, because if r−s
k−1 is an integer then

the integers je are the same when e is sufficiently large.
Case 2.1. Suppose r−s

k−1 is not an integer. The sequence (Qe)e≥0 approaches its

limit from either above or below; in either case qe = bQec < r−s+k−1
k−1 for sufficiently

large e. (Note the strict inequality, since r−s
k−1 is not an integer.) We would like

fe,h,je(i) ≥ 0. Since fe,h,je(i) is an increasing function of i, it suffices to guarantee
that fe,h,je(0) ≥ 0. We get

fe,h,je(0) ≥ 0 ⇐⇒ −qeke−h +
ke−h − 1

k − 1
(r − s+ k − 1) ≥ 0

⇐⇒ kh−e ≤ 1− qe (k − 1)

r − s+ k − 1

⇐⇒ h ≤ e+ logk

(
1− qe (k − 1)

r − s+ k − 1

)
.

Since qe <
r−s+k−1
k−1 , the argument of the logk is in the interval (0, 1). We use the

largest integer h satisfying the inequality, namely

he = e+

⌊
logk

(
1− qe (k − 1)

r − s+ k − 1

)⌋
.
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We conclude that, for all e ≥ E,

(12) w(kei+ je)−
he−1∑
t=0

d(fe,t+1,je(i)),

is independent of e (recall that qe = qE for all e ≥ E). Therefore each sequence
w(kei+ je)i≥0 for e ≥ 0 belongs to the Q-vector space generated by

{w(kei+ je)i≥0 : 0 ≤ e ≤ E} ∪Gk`,

which is finite-dimensional. (Recall that Gk` is a basis for the periodic sequences
with period length k`.)

Case 2.2. If r−s
k−1 is an integer, then, for sufficiently large e, we have qe = bQec =

r−s+k−1
k−1 . (In this case the argument of logk in the definition of he would be 0

as defined in the previous case, so we need a different approach.) Let E′ be the
smallest such integer e such that qe = r−s+k−1

k−1 and fe,0,je(i) ≥ 0 for all i ≥ 1. For

all e ≥ E′,

je =
ke − 1

k − 1
(r − s+ k − 1) + s− keqe = s− r − s+ k − 1

k − 1

is independent of e; let J = je. Since

fe,0,je(i) = fe,0,J(i) = kei− r − s+ k − 1

k − 1
,

a simple computation shows that fe+1,0,J(i) + s = kfe,0,J(i) + r + k − 1. If i = 0,
w(ke+1i + J) = w(J) = w(kei + J), so the two sequences w(kei + J)i≥0 and

w(kE
′
i+ J)i≥0 agree on the first term for all e ≥ E′. If i ≥ 1, then fe,0,J(i) ≥ 0 by

definition of E′, so we can apply Recurrence (6) to obtain

w(ke+1i+ J) = w(fe+1,0,J(i) + s)

= w(kfe,0,J(i) + r + k − 1)

= w(fe,0,J(i) + s) + d(fe,0,J(i))

= w(kei+ J) + d(fe,0,J(i)).

Therefore each sequence w(kei + je)i≥0 for e ≥ 0 belongs to the Q-vector space
generated by

{w(kei+ je)i≥0 : 0 ≤ e ≤ E′} ∪ {σ(g(i)i≥1) : g ∈ Gk`} ,

where σ is the right shift operator, which prepends a 0 to the front of a sequence.
Again this vector space is finite-dimensional.

We have shown that the k-kernel is contained in the Q-vector space generated
by

{w(kei+ j)i≥0 : 0 ≤ e ≤ E − 1 and 0 ≤ j ≤ ke − 1}
∪Gk` ∪HqE+1 ∪ {w(kei+ je)i≥0 : 0 ≤ e ≤ E}

if r−s
k−1 is not an integer and

{w(kei+ j)i≥0 : 0 ≤ e ≤ E − 1 and 0 ≤ j ≤ ke − 1}
∪Gk` ∪HqE+1 ∪ {w(kei+ je)i≥0 : 0 ≤ e ≤ E′} ∪ {σ(g(i)i≥1) : g ∈ Gk`}
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if r−s
k−1 is an integer. Then

M =

{
E if r−s

k−1 is not an integer

E′ if r−s
k−1 is an integer

is the constant mentioned at the beginning of the proof. �

Corollary 32. The sequence of letters in w5/4 is a 6-regular sequence with rank
at most 79472.

Proof. Use k = 6, ` = 8, r = 123056, and s = 5920 in Theorem 6. Let u =
τ(ϕ(0001020304050607))ω be the word made up of the background, and let d =
(32321212)ω. We find r−s+k−1

k−1 = 23428 + 1
5 , so qe → 23428 and E = 7.

Since r−s
k−1 is not an integer, the proof of Theorem 6 shows that the 6-kernel of

w5/4 is a subset of the Q-vector space generated by

(13) {w(kei+ j)i≥0 : 0 ≤ e ≤ E − 1 and 0 ≤ j ≤ ke − 1}
∪Gk` ∪HqE+1 ∪ {w(kei+ je)i≥0 : 0 ≤ e ≤ E} ,

which has dimension at most

E−1∑
e=0

ke + k`+ (qE + 1) + (E + 1) = 79472. �

In fact the rank is much smaller.

Theorem 33. The sequence of letters in w5/4 is a 6-regular sequence with rank
188.

To prove Theorem 33, we first reduce the bound from Corollary 32 to 4078.

Proposition 34. The sequence of letters in w5/4 is a 6-regular sequence with rank
at most 4078.

Proof. We use the value of the constants k, `, r, s, u, d, E, and qE from the previous
proof. Recall from the proof of Corollary 32 that the k-kernel of w5/4 is a subset
of the Q-vector space generated by (13).

First, we show that we can omit the generators

{w(kei+ j)i≥0 : 0 ≤ e ≤ E − 1 and 0 ≤ j ≤ ke − 1} .

Let 0 ≤ e ≤ E − 1, let 0 ≤ j ≤ ke − 1 such that j 6= je, and let h be maximal such
that j ≡ je mod kh. As stated, Lemma 31 applies for large e, but we show that we
can apply the end of the proof to small e. For the word w5/4, (Qe)e≥0 approaches
its limit from below:

(qe)0≤e≤E−1 = 5920, 20510, 22941, 23347, 23414, 23425, 23427.

In particular, qe ≤ qE = 23428 for all e ≥ 0. Therefore, for all i ≥ qE + 1, we can
see from the end of the proof of Lemma 31 that fe,e,0(i) ≥ 0, so Equation (9) holds,
namely

w(kei+ j) = w(fe,h,j(i) + s) +

h−1∑
t=0

d(fe,t+1,j(i)).
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Furthermore, from Case 1 in the proof of Theorem 6, i ≥ qE + 1 also implies that
Equation (10) holds, namely

w(kei+ j) = u(fe,h,j(i) + s− r) +

h−1∑
t=0

d(fe,t+1,j(i)).

Thus w(kei+ j)i≥0 belongs to the Q-vector space generated by Gk` ∪HqE+1.
Additionally, we just need half the generators inGk` since u agrees with τ(ϕ(00010203)2)ω

except on positions congruent to 5 modulo 6. Let G24 be the standard basis
for periodic sequences with period length 24. Since ` divides 24, each sequence
d(fe,h,j(i))i≥0 belongs to the Q-vector space generated by G24.

Finally, we show that we do not need all generators in HqE+1. Recall that
HqE+1 was constructed with qE + 1 generators since, for all 0 ≤ j ≤ ke − 1 such
that j 6= je, the sequence w(kei+ j)i≥0 is eventually periodic with preperiod length
at most qE + 1. For all i ≥ qE + 1 we can apply Corollary 5 h times to w(kei+ j),
where h is maximal such that j ≡ je mod kh, followed by the case m 6= k − 1 of
Theorem 6. We show that we can lower the bound on i by using Proposition 29
instead of the case m 6= k− 1 of Theorem 6; namely, for all i ≥ 4046, we can apply
Corollary 5 h times to w(kei+ j), followed by Proposition 29. This will imply that
we can replace HqE+1 with H4046. We consider large e and small e separately.

Let e ≥ E, and let 0 ≤ j ≤ ke − 1 such that j 6= je. Let h be maximal such that
j ≡ je mod kh. In the proof of Lemma 31, we were able to apply Corollary 5 h
times to w(kei+ j) by choosing i so that fe,e,0(i) ≥ 0. Let i ≥ 4046. Then

i > 4045 +
1

30
≥ ke−1 − 1

ke(k − 1)
(r − s+ k − 1) +

s

ke
+
|p| − 2− s

k

since the right side of the previous inequality approaches 4045 + 1
30 from below

as e gets large. By definition of f , this implies fe,e−1,0(i) + s ≥ |p| − 2. Since
|p|−2−s > 0, this also implies fe,e−1,0(i) ≥ 0. Since j 6= je in our current case, we
have h 6= e, and therefore fe,e−1,0(i) ≥ 0 is sufficient to apply Corollary 5 h times.
This gives

w(kei+ j) = w(fe,h,j(i) + s) +
h−1∑
t=0

d(fe,t+1,j(i))

as in Case 1 of the proof of Theorem 6. Since h is maximal, we cannot apply
Corollary 5 an additional time. Instead, we apply Proposition 29 to w(fe,h,j(i)+s),
since fe,h,j(i) + s ≥ |p|− 2 (as opposed to fe,h,j(i) + s ≥ r as in Case 1). This gives

w(kei+ j) = u(fe,h,j(i) + s− r) +

h−1∑
t=0

d(fe,t+1,j(i)),

so w(kei+ j)i≥4046 is a periodic sequence with period length at most k`. Therefore
w(kei+j)i≥0 is an eventually periodic sequence with preperiod length at most 4046.
Let H4046 = {vm(i)i≥0 : 0 ≤ m ≤ 4045}, where vm(i)i≥0 is the sequence defined by
vm(m) = 1 and vm(i) = 0 for all i 6= m.

For 0 ≤ e ≤ E − 1, it is sufficient to check that fe,h,j(i) + s ≥ |p| − 2, since the
rest of the argument is the same as the case when e ≥ E. A finite check shows that
this inequality holds for all i ≥ 4046.
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We have shown that the 6-kernel of w5/4 is a subset of the Q-vector space
generated by

G24 ∪H4046 ∪ {w(kei+ je)i≥0 : 0 ≤ e ≤ E} ,
which has dimension at most 24 + 4046 + (E + 1) = 4078. �

Finally, we prove Theorem 33.

Proof of Theorem 33. We continue to use the constants k = 6, ` = 8, r = 123056,
s = 5920, E = 7, and so on. Let je be defined as in the proof of Theorem 6. Let

V = 〈w(kei+ j)i≥0 : 0 ≤ e ≤ E and 0 ≤ j ≤ ke − 1 with j 6= je〉

be the vector space generated by the kernel sequences w(kei+j)i≥0 with 0 ≤ e ≤ E
and j 6= je, and let

W = 〈w(kei+ je)i≥0 : 0 ≤ e ≤ E〉 .
We show that dimV = 179, dimW = 8, and the vector space generated by the k-
kernel of w(i)i≥0 is the direct sum V ⊕W⊕〈w(kE+1i+jE)i≥0〉, which has dimension
188.

Let e ≥ 0 and 0 ≤ j ≤ ke − 1 such that j 6= je. We claim that the first
4050 terms of the sequence w(kei+ j)i≥0 determine it uniquely. From the proof of
Proposition 34, w(kei+j)i≥4046 is periodic. Since we used Proposition 29 to obtain
the bound 4046, the period length of w(kei + j)i≥4046 is a divisor of 4. Therefore
the first 4046 + 4 terms determine it uniquely.

In particular, the first 4050 terms of each generator of V determine the sequence
uniquely. Therefore we obtain the dimension of V by row-reducing the matrix
containing the first 4050 terms of each sequence w(kei + j)i≥0 with 0 ≤ e ≤ E,
0 ≤ j ≤ ke − 1, and j 6= je. This gives dimension 179 and took about a half hour
using 8 parallel threads.

In computing the dimension of V , we computed a basis of V consisting of kernel
sequences. We claim that all periodic sequences with period length 4 and the
sequence 1, 0, 0, . . . belong to V . For m ∈ {0, 1, 2, 3}, define gm(i) = 1 if i ≡ m
mod 4 and gm(i) = 0. Let G4 = {gm(i)i≥0 : 0 ≤ m ≤ 3}, and let H1 = {v0(i)i≥0},
where v0(i)i≥0 is the eventually 0 sequence as defined in the proof of Proposition 34.
Each sequence in G4 ∪H1 is eventually periodic with preperiod length ≤ 4046 (in
fact ≤ 1) and period length dividing 4, so row-reducing a 184-row matrix using
the first 4050 terms shows that G4 ∪H1 ⊂ V . This computation took less than a
second and finds the relations

−w(6i) + w(36i) + w(6i+ 2)− 2w(6i+ 4) + 2g0(i) = 0

−w(6i)− w(36i) + w(6i+ 2) + 2g1(i) = 0

−w(6i) + w(36i)− w(6i+ 2) + 2g2(i) = 0

w(6i)− w(36i)− w(6i+ 2) + 2g3(i) = 0

−w(216i+ 23)− w(216i+ 29) + w(216i+ 35) + w(216i+ 41) + v0(i) = 0.

In particular, since G4 ⊂ V , the constant sequence (1)i≥0 is an element of V .
We show that w(kei + je)i≥0 /∈ V for 0 ≤ e ≤ E, that w(kE+1i + jE)i≥0 /∈ V ,

and that all 188 sequences are linearly independent of each other, by using the
first 4050 terms of the 179 basis elements of V and row-reducing the appropriate
188-row matrix. This computation took less than a second. In particular, dimW =
E + 1 = 8.
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By definition, the kernel sequences w(kei + j)i≥0 for all 0 ≤ e ≤ E belong to
V ⊕W . We have proved that this vector space has dimension 187. It remains to
show that for e ≥ E + 1 all the kernel sequences w(kei+ j)i≥0 belong to V ⊕W ⊕
〈w(kE+1i+ jE)i≥0〉. First we consider j = je. We show that

w(kei+ je) = w(kEi+ jE) + 2(e− E).

for all i ≥ 0. From (11) and (12), we know that

(14) w(kei+ je) = w(fe,he,je(i) + s) +

he−1∑
t=0

d(fe,t+1,je(i)),

for all i ≥ 0. We next compute he and fe,t+1,je(i) mod ` for t ∈ {0, 1, . . . , he − 1}.
Since qe = qE = 23428 for all e ≥ E, we have

he = e+

⌊
logk

(
1− qE (k − 1)

r − s+ k − 1

)⌋
= e− E.

By definition, we have

fe,t+1,je(i) = ke−t−1i+
ke−t−1 − 1

k − 1
(r − s+ k − 1)− qeke−t−1.

In Equation (14), t+ 1 ≤ he = e− E, so e− t− 1 ≥ E = 7. Therefore ke−t−1 ≡ 0
mod `, so we get

fe,t+1,je(i) ≡ −1

k − 1
(r − s+ k − 1) ≡ 7 mod `

for all i ≥ 0. Since d(7) = 2, the sum on the right side of (14) is

he−1∑
t=0

d(fe,t+1,je(i)) =

he−1∑
t=0

d(7) = 2(e− E).

Thus Equation (14) becomes

w(kei+ je) = w(fe,he,je(i) + s) + 2(e− E)

= w

(
ke−hei+

ke−he − 1

k − 1
(r − s+ k − 1)− qEke−he + s

)
+ 2(e− E)

= w

(
kEi+

kE − 1

k − 1
(r − s+ k − 1) + s− qEkE

)
+ 2(e− E)

= w
(
kEi+ jE

)
+ 2(e− E)

as desired. Therefore w(kei+ je)i≥0 is a linear combination of the kernel sequence
w(kEi+ jE)i≥0 ∈W and the constant sequence (1)i≥0 ∈ V .

Now let 0 ≤ j ≤ ke − 1 such that j 6= je. We use induction on e, so assume
that w(ke−1i+ j′)i≥0 ∈ V ⊕W ⊕ 〈w(kE+1i+ jE)i≥0〉 for all 0 ≤ j′ ≤ ke−1 − 1. If
j 6≡ 1 mod k, then Proposition 29 implies that w(kei+j)i≥1 is periodic with period
length dividing 4. Therefore w(kei + j)i≥0 is a linear combination of sequences in
G4 ∪H1 ⊂ V . Now assume j ≡ 1 mod k. From Equations (8) and (9), we have

w(kei+ j) = w(fe,0,j(i) + s) = w(fe,1,j(i) + s) + d(fe,1,j(i)).

We have

fe,1,j(i) = ke−1i+
j − s
k
− r − s+ k − 1

k
= ke−1i+

j − r − k + 1

k
.
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Note that j − r − k + 1 ≡ 0 mod k, so fe,1,j(i) is an integer. Note also that

fe,1,j(i) ≡ j−r−k+1
k mod `, so d(fe,1,j(i))i≥0 is a constant sequence. We consider

two subcases depending on whether j < r − ks+ k − 1 = 87541 or not.
If r − ks + k − 1 ≤ j ≤ ke − 1, then j−r−k+1

k + s ∈ {0, 1, . . . , ke−1 − 1}, so the
sequence w(fe,1,j(i) + s)i≥0 that appears in

w(kei+ j) = w(fe,1,j(i) + s) + d(fe,1,j(i))

is the kernel sequence w(ke−1i+ j−r−k+1
k + s)i≥0. Therefore w(kei+ j) ∈ V ⊕W ⊕

〈w(kE+1i+ jE)i≥0〉 by the induction hypothesis.

If 0 ≤ j < r − ks + k − 1, then j−r−k+1
k + s < 0, so the sequence w(ke−1i +

j−r−k+1
k + s)i≥0 that appears in

w(kei+ j) = w(ke−1i+ j−r−k+1
k + s) + d(fe,1,j(i)).

is not necessarily a kernel sequence. We checked above that w(kE+1i + jE)i≥0
is linearly independent of the sequences in V ⊕W . For all other j, we show that
w(kei+j)i≥0 ∈ V ⊕W . (We do this directly without using the inductive hypothesis.)

For each e ∈ {8, 9, . . . , 12} and each 0 ≤ j ≤ ke−1 such that (e, j) 6= (E+1, jE),
we check that w(kei+ j)i≥0 ∈ V ⊕W ⊕〈w(kE+1i+ jE)i≥0〉 by row-reducing a 189-
row matrix using the first 4050 terms. This computation took about 40 minutes
using 8 parallel threads.

Now assume e ≥ 13. We show that each w(kei + j)i≥1 is a constant sequence.
Since jE+1 = 318415 > r−ks+k−1 > j, j− je is not divisible by kE+1. Therefore
h ≤ 7. As in Proposition 34, to apply Corollary 5 h times and Proposition 29, we
need fe,t,j(i) ≥ 0 for all t ∈ {1, . . . , h} and fe,h,j(i)+s ≥ |p|−2. We show that this
happens for all i ≥ 1. Since |p|−2−s > 0, it is enough to check fe,h,j(i) ≥ |p|−2−s
for all i ≥ 1. We have

i > 6794085199
13060694016 =

s

k13
+

k7 − 1

k13(k − 1)
(r − s+ k − 1) +

k7

k13
(|p| − 2− s)

≥ s− j
ke

+
kh − 1

ke(k − 1)
(r − s+ k − 1) +

kh

ke
(|p| − 2− s),

which implies

fe,h,j(i) = ke−hi+
j − s
kh
− kh − 1

kh(k − 1)
(r − s+ k − 1) ≥ |p| − 2− s.

So

w(kei+ j) = w(fe,h,j(i) + s) +

h−1∑
t=0

d(fe,t+1,j(i))

holds for all i ≥ 1. We show that fe,t+1,j(i) mod 24 is independent of i for all
t ∈ {0, 1, . . . , h−1}; this will imply that w(fe,h,j(i)+s) is constant by Proposition 29
and that d(fe,t+1,j(i)) is constant since ` divides 24. We have

fe,t+1,j(i) = ke−t−1i+
j − s
kt+1

− kt+1 − 1

kh(k − 1)
(r − s+ k − 1)

≡ j − s
kt+1

− kt+1 − 1

kh(k − 1)
(r − s+ k − 1) mod 24

since e− t−1 ≥ 6. Therefore w(kei+ j)i≥1 is a constant sequence, so w(kei+ j)i≥0
is a linear combination of sequences in G4 ∪H1 ⊂ V . �
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8. Open questions

We end this paper with several open questions. Regarding finite alphabets, the
structure of the lexicographically least square-free infinite word on {0, 1, 2} is still
unknown [3, Open Problem 2 in Section 1.10].

The following table presents the known information about wa/b for simple ra-
tional numbers a/b.

a/b k d r′ s rank result sequence
a ∈ N≥2 a 1 0 0 2 [8] e.g. A007814

3/2 6 2 0 0 3 [10] A269518
4/3 56 1, 2 73 0 4 [9, Theorem 7] A277142
5/3 7 1 0 0 2 [9, Theorem 1] A277143
5/4 6 1, 2, 3 123061 5920 188 Theorem 33 A277144
7/4 50847 2 0 0 2 [9, Theorem 4] A277145
6/5 1001 3 30949 0 33 [9, Theorem 5] A277146
7/5 [9, Conjecture 6] A277147
8/5 733 2 0 0 2 [9, Theorem 3] A277148
9/5 13 1 0 0 2 [9, Theorem 2] A277149
7/6 Conjecture 35 A277150
11/6 No conjecture A277151
8/7 Conjecture 35 A277152
9/7 Conjecture 35 A277153
10/7 Conjecture 35 A277154
11/7 27 1 0 0 2 [9, Theorem 52] A277155
12/7 17 1 0 0 2 [9, Theorem 16] A277156
13/7 19 1 0 0 2 [9, Theorem 16] A277157
9/8 No conjecture A277158
11/8 No conjecture A277159
13/8 33 1 0 0 2 [9, Theorem 52] A277160
15/8 Conjecture 35 A277161

Here k is the smallest value for which the sequence of letters in wa/b is k-regular,
and we include the values of d which arise in the morphism. The values of r′ and s
are as in Recurrence (2) and are chosen to be minimal. The rank of each sequence
for which s = 0 can be determined from the recurrence it satisfies. This table
emphasizes the extent to which w5/4 is more complicated than other words.

Previous work on wa/b has suggested that the structure of the word wa/b is
generally more complicated for even denominators b than for odd b. This trend is
supported by the structure of w5/4.

An obvious question is whether the proof strategy for w5/4 can be applied to
other words wa/b. It seems likely that it can, but we leave this an open question.
The major difficulties are that identifying the structure of wa/b potentially requires
computing a huge number of terms and that we do not have a systematic way of
guessing the structure even if we have many terms.

Ordered by denominator, the simplest words whose structure is not yet known
are w7/5, w7/6, and w11/6. Pudwell and the first-named author [9, Conjecture 6]
conjectured that the letters of w7/5 satisfy

w(80874i+ 173978) = w(i) + 1

http://oeis.org/A007814
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http://oeis.org/A277152
http://oeis.org/A277153
http://oeis.org/A277154
http://oeis.org/A277155
http://oeis.org/A277156
http://oeis.org/A277157
http://oeis.org/A277158
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for all i ≥ 0. Here we conjecture the structure of five additional words.

Conjecture 35. For all i ≥ 0, the letters of w7/6 satisfy

w(41190i+ 41201) = w(i) + 3.

For all i ≥ 0, the letters of w8/7 satisfy

w(340i+ 52670) = w(i) + 3.

For all i ≥ 0, the letters of w9/7 satisfy

w(44i+ 2701) = w(i) + 2.

For all i ≥ 0, the letters of w10/7 satisfy

w(26i+ 428) = w(i) +

{
0 if i = 0

1 if i 6= 0.

For all i ≥ 0, the letters of w15/8 satisfy

w(22763i+ 22850) = w(i) + 2.

However, we still do not have a conjecture for w11/6 and w11/8. Based on
w3/2 and w5/4, one might guess that w7/6 and w9/8 have similar structure. In
Conjecture 35, the recurrence for w7/6 has a single value of d and s = 0, so it does
not seem to be part of the same family. For w9/8, we do not have a conjectural
recurrence, but experiments suggest that k = 156 is promising.

Additionally, there are other natural notions of pattern avoidance for fractional
powers on N. For a/b > 1, we define two additional words. Let w≥a/b be the
lexicographically least infinite word on N avoiding p/q-powers for all p/q ≥ a/b,
and let w>a/b be the lexicographically least infinite word on N avoiding p/q-powers
for all p/q > a/b.

Guay-Paquet and Shallit [8] asked whether w≥5/2 is in fact a word on {0, 1, 2}.
This question is still open. Pudwell and Rowland [9, Theorem 71] proved that
w27/23 is a word on the finite alphabet {0, 1, 2}, showing that there exist lexico-
graphically least pattern-avoiding words defined on N that only use a finite alphabet.

Pudwell and Rowland [9, Conjecture 13] conjectured that

w≥4/3(336i+ 1666) = w4/3(56i+ 17) + 4

for all i ≥ 0. This suggests that the structure of w≥a/b is slightly more complicated
than that of wa/b. However, not much is known about w≥a/b. Guay–Paquet and
Shallit [8] showed that the overlap-free word [12, A161371]

w>2 = 001001100100200100110010021001002001001100 · · ·

is generated by a non-uniform morphism, which leads us to believe that the struc-
ture of w>a/b is even more complicated than that of wa/b.

The biggest question remains the following. For each a/b, is there an integer
k ≥ 2 such that the sequence of letters in wa/b is k-regular? Similarly, one could
ask about w≥a/b. Finally, which words w>a/b are k-regular for some k?

http://oeis.org/A161371
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[14] A. Thue, Über die gegenseitige Loge gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk.
Skr. I Math-Nat. Kl. Chris. 1 (1912), 1–67.

Department of Mathematics, Hofstra University, Hempstead, NY, USA

http://oeis.org

	1. Introduction
	1.1. Experimental discovery

	2. Basic properties of the words p and z
	3. Lengths of 5/4-powers
	4. Pre-5/4-power-freeness
	5. 5/4-power-freeness
	6. Lexicographic-leastness
	7. The sequence of letters in w5/4
	8. Open questions
	References

