

The neural basis of Consciousness

Athena Demertzi, PhD

FNRS Research Associate, PI
Physiology of Cognition Lab I GIGA Consciousness I GIGA Institute
University of Liège Belgium

KU Leuven May 7 2020

Consciousness in real-life

Behavioural signs of Consciousness

Not everyone agrees with guidelines

2,475 medical professionals

Demertzi et al, J Neurol 2011

Treatment can be stopped in chronic...

Demertzi et al, *Prog Brain Res* 2009 Demertzi & Racine et al, *Neuroethics* 2012

We cannot always trust behavior

Standardized assessment

n=103 post-comatose patients

45 Clinical diagnosis of VS18 Coma Recovery Scale MCS

40% misdiagnosed

Schnakers et al, Ann Neurol 2006; BMC Neurol 2009

JFK COMA RECOVERY SCALE - REVISED ©2004 This form should only be used in association with the "CRS-R ADMINISTRATION AND SCORING GUIDELINES" which provide instructions for standardized administration of the scale. Patient: Diagnosis: Etiology: Date of Onset: Date of Admission: Week ADM 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 AUDITORY FUNCTION SCALE 4 - Consistent Movement to Command * 3 - Reproducible Movement to Command * 2 - Localization to Sound 1 - Auditory Startle VISUAL FUNCTION SCALE 5 - Object Recognition 4 - Object Localization: Reaching 1 3 - Visual Pursuit * 2 - Fixation * 1 - Visual Startle 0 - None MOTOR FUNCTION SCALE 6 - Functional Object Use 5 - Automatic Motor Response * 4 - Object Manipulation 3 - Localization to Noxious Stimulation ' 2 - Flexion Withdrawal 1 - Abnormal Posturing 0 - None/Flaccid OROMOTOR/VERBAL FUNCTION SCALE 3 - Intelligible Verbalization 2 - Vocalization/Oral Movement 1 - Oral Reflexive Movement COMMUNICATION SCALE 2 - Functional: Accurate 1 - Non-Functional: Intentional * 0 - None AROUSAL SCALE 3 - Attention 2 - Eye Opening w/o Stimulation 1 - Eye Opening with Stimulation 0 - Unarousable TOTAL SCORE

Denotes emergence from MCS[†]
Denotes MCS *

To be conscious, we need a brain

(all of it?)

To be conscious, we need a *functional* brain

Neuroimaging paradigms

Owen et al, Science 2006 Monti & Vanhaudenhuyse et al, NEJM 2010

Boly et al, Lancet Neurol 2008

Heine, Di Perri, Soddu, Laureys, Demertzi In: *Clinical Neurophysiology in Disorders of Consciousness*, Springer-Verlag 2015 Demertzi & Laureys, In: I know what you are thinking: brain imaging and mental privacy, Oxford University Press 2012

The stream of consciousness

William James (1842-1910)

The stream of thought (Chapter IX)
The principles of psychology 1890

Some numbers...

- The human brain is approximately 2% of body's weight
- 80% of this energy for neuronal signalling
 → most of consumed energy used for function
- Stimulus & performance-evoked changes in brain energy consumption are surprisingly small (typically <5%)

While conscious awareness is a low bandwidth phenomenon and therefore energetically inexpensive, it is dependent upon a very complex, dynamically organized, non-conscious state of the brain that is achieved at great expense

Task deactivations

Task performance - Rest (fixation/eyes closed) → **Deactivations**

The brain's default mode at rest

Demertzi & Whitfield-Gabrieli, in: Neurology of Consciousness 2nd ed. 2015 Demertzi, Soddu, Laureys, *Curr Opin Neurobiology*Demertzi et al, *Front Hum Neurosci*Raichle et al, *PNAS*

Default mode network in DOC

DMN anticorrelations

External awareness or anticorrelated network

Internal awareness or Default mode network

Cognitive-behavioral relevance

Anticorrelations and awareness

- □ Normal consciousness
- Autobiographical mental imagery
- Hypnosis

Anticorrelations and wakefulness

Effect of environment

www.nature.com/scientificreports/

Parabolic flight

European Space Agency

Parabolic flight trajectory

Angelique Van Ombergen¹, Floris L. Wuyts¹, Ben Jeurissen², Jan Sijbers², Floris Vanhevel³, Steven Jillings¹, Paul M. Parizel³, Stefan Sunaert⁴, Paul H. Van de Heyning¹, Vincent Dousset⁵, Steven Laureys⁶ & Athena Demertzi^{6,7}

Anticorrelations and environment

Post – Pre flight

Anticorrelations and pathology

Many resting state networks

Smith et al, PNAS 2009

Long-range system connectivity disrupted

Which network discriminates best?

MCS> VS/UWS

	Feature selection criterion (t-test)			Single-feature classification		
Network	t value	Rank	p value	TP MCS	TN VS/UWS	Accuracy
Auditory	8.32	1	<.001	25	18	43/45
Visual	7.79	2	<.001	23	15	38/45
Default mode	6.95	3	<.001	23	15	38/45
Frontoparietal	6.82	4	<.001	23	15	38/45
Salience	6.21	5	<.001	24	15	39/45
Sensorimotor	5.87	6	<.001	24	13	37/45

FWE p<0.05 (cluster-level)

Crossmodal connectivity classifies DOC

- Training set: 45 DOC (26 MCS, 19 VS/UWS)
 - 14 trauma, 28 non-trauma, 3 mixed
 - 34 patients assessed >1m post-insult
- Test set: 16 MCS, 6 VS/UWS (Mage: 43y, 15 non-trauma; all chronic), from 2 different centers

Stationary connectivity

RS stationary connectivity:

- is linked to behavior and task performance (Laird et al,. J Cogn Neurosci 2011)
- reflects physiological & pathological unconsciousness (Heine et al, Front Psychol 2012)
- permits single-patient automatic diagnosis (Demertzi & Antonopoulos et al, Brain 2015)

But

it remains unclear to what extent it provides a representative estimate of cognition

(Peterson et al, Neurolmage Clin 2015)

Ongoing interactions among distinct brain regions

(Hutchison et al, Neurolmage 2013)

From stationarity to dynamics

Stationary fc

Time-varying fc

Dynamic

$$x_t = A \cdot x_{t-1} + \epsilon_t$$

Brain dynamics and cognition

Typical wakefulness: significance for performance, emotion and cognition

(Alavash et al, *Neuroimage*, 2016; Shine et al *Neuron*, 2016; Friston *Neuroimage*, 1997; Thompson et al, *Hum Brain Mapp*, 2013)

Unconsciousness: rigid spatiotemporal organization, less metastable dynamics

- SICED (Tagliazucchi et al, *PNAS* 2013; Wang et al, *PNAS* 2016; Wilson et al., *Neuroimage* 2015; Chow et al, *PNAS* 2013)
- anesthesia
 - O in humans (Tagliazucchi et al, *J. R. Soc. Interface* 2016; Kafashan et al, *Front Neural Circuits*, 2016; Amico et al, *PLoS One* 2014)
 - O in animals (Barttfeld et al, *PNAS* 2014); Grandjean et al, *Neuroimage* 2017; Liang et al, *Neuroimage* 2015).

Barttfeld*, Ulhrig*, Sitt*, et al, PNAS 2015

The brain cannot map the complexity of the internal and external world (Dehaene et al, *Trends Cog Sci, 2006;* Tononi et al, *Nat Rev Neurosci.* 2016)

Patterns of recurrent coordinated activity

More chances to transition if in higher conscious state

Markov Process

- · stochastic process that has no memory
- selection of next state depends only on current state, and not on prior states
- process is fully defined by a set of transition probabilities π_{ij} = probability of selecting state j next, given that presently in state i. Transition-probability matrix Π collects all π_{ij}

Transition-Probability Matrix

O Example

· system with three states

$$\Pi = \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix} = \begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.9 & 0.1 & 0.0 \\ 0.3 & 0.3 & 0.4 \end{pmatrix}$$
If in state 1, will move to state 3 with probability 0.4

Never go to state 3 from state 2

If in state 1, will stay in state 1

with probability 0.1

Consciousness-level dependent

Why does it matter?

Balancing costs-benefits

Results of Tests	Beneficial Effects	Harmful Effects	
- brain activity than neurological examination	Relatives: decisions to limit life- sustaining treatment	Relatives: may lose hope, purpose, and meaning in life	
+ brain activity than neurological examination	Clinical management: may be intensified by the chance of further recovery	Relatives: false hopes	
Same as neurological examination	Clinicians & relatives: may be affirmed in their decision about the level of treatment	Clinicians & relatives: may be disappointed & treatment cost/effectiveness may be poor	

Quality of Life

Bruno et al, Br Med J Open 2011

Nizzi & Demertzi et al, Conscious & Cogn 2012

Nizzi, Blandin, Demertzi NeuroEthics 2018

BRAIN

BRAIN-BODY INTERACTIONS

Cognition and somatic markers

Auditory oddball paradigm

Cardiac cycle phase acceleration only in MCS

Electrocardiographic markers carry independent information from EEG

Warm water caloric irrigation

Conclusions

Consciousness needs a brain which:

- is intrinsically organized
- shows complexity
- shows dynamic flexibility

Consciousness from brain-body interactions

Consciousness as a collective consensus

Consciousness

a.demertzi@uliege.be

