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Abstract 
Maintaining satisfying economic outcomes and limiting environmental impacts are 

key challenges in dairy farming today and this requires good decision-making 
regarding actions to make on farms. The analysis of milk by Fourier-transform mid-
infrared (MIR) spectrometry provides valuable information on milk composition. This 
technique has already demonstrated qualities to support decision-making, for 
example, through the well-established predictions of milk fat and protein contents or 
the latest development of prediction models for novel traits. However, its full potential 
remains partly uninvestigated. Hence, the objective of this thesis was to contribute to 
the development of decision-support tools with economic and environmental interests 
for the dairy sector using milk MIR spectrometry. The research conducted in the 
framework of this thesis covered three different approaches of using MIR for decision 
support: (1) the development of a MIR calibration equation to predict a trait of interest, 
(2) the development of a test-day model to predict milk MIR spectra for management 
purposes, and (3) the combination of MIR-predicted data with other data streams as a 
means of providing additional information for decision-making. 

First, we explored different strategies to predict the pregnancy status of dairy cows 
(pregnant vs. open) in Australia using milk MIR spectra and partial least squares 
discriminant analysis. Correctly identifying the pregnancy status of cows is imperative 
for a profitable dairy farm. Early pregnancy could not be detected satisfactorily, but 
promising results were obtained using MIR spectra recorded 151 days or more after 
insemination (i.e., mid- and late gestation), with the area under the receiver operating 
characteristic curve of 0.76 on the testing set. A potential application that needs to be 
explored further is the development of a screening tool to detect mid- to late-term fetal 
abortion.  

Secondly, we studied the ability of a test-day mixed model to predict milk MIR 
spectra from first parity Holstein cows for management purposes (e.g., for the 
detection of problems, simulations, predictions of future data). The spectral data used 
for modeling originated from the Walloon milk recording database. The average 
correlation between observed and predicted values of each spectral wavenumber was 
0.85 for the modeling set and ranged from 0.36 to 0.62 for different scenarios that 
corresponded to situations with more or less information known about the cows. 
Correlations between milk fat, protein and lactose contents predicted from the 
observed spectra and from the modeled spectra ranged from 0.83 to 0.89 for the 
modeling set and from 0.32 to 0.73 for the scenarios. These results demonstrated a 
moderate but promising ability to predict milk MIR spectra using a test-day model. 
Different improvements of the model are possible before potential practical 
applications that could have economic or environmental implications for dairy 
farming, depending on the MIR traits subsequently predicted from the modeled 
spectra. 
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Thirdly, we investigated the univariate relationships (correlations) between dairy 
cow enteric methane (CH4) production (g/day) predicted from milk MIR spectra and 
42 technico-economic variables from 206 Walloon dairy herds over a period of 8 
years. Enteric CH4 is an important part of the carbon footprint of milk production. 
Significant correlations ranged between |0.06| and |0.38|. Low MIR CH4 production 
tended to be associated with more extensive or suboptimal management practices, 
which could lead to lower profitability. The observed weak correlations suggest 
intricate interactions between MIR CH4 and technico-economic variables due to the 
use of real farm data with large variability in management practices. This implies the 
need for further research to unravel these complex relationships for a better 
understanding of factors associated with CH4 production on dairy farms in order to 
better target mitigation strategies.  

Lastly, we discussed, in the light of the research carried out in this thesis, strengths 
as well as issues and considerations regarding the development of decision-support 
tools using milk MIR. In particular, key strengths of MIR are the low cost and rapidity 
of the technology as well as the standard procedures for milk sample collection and 
analysis, allowing the acquisition of MIR data on a large scale for the development of 
various customized tools to assist decision-making on dairy farms. Issues and 
considerations covered the prediction of indirect MIR traits, the quality and variability 
of spectral and reference data, the choice and validation of models, the utilization of 
MIR indicators, the study of MIR traits in the population, the timing of milk sampling, 
and the uptake of MIR tools by farmers.  

In conclusion, this thesis contributed (1) to establish the first steps of the 
development of new MIR tools and studies to support decision-making in dairy 
farming with potential economic and environmental benefits; and (2) to gain insight 
into the benefits and considerations of using milk MIR for the development of 
decision-support tools. 
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Résumé 
Maintenir des résultats économiques satisfaisants et limiter les impacts 

environnementaux sont des enjeux essentiels en élevage laitier de nos jours et cela 
demande des prises de décisions adéquates par rapport aux actions à réaliser dans les 
exploitations laitières. L’analyse du lait par la spectrométrie moyen infrarouge à 
transformée de Fourier (MIR) fournit des informations intéressantes sur la 
composition du lait. Cette technique a déjà démontré des qualités pour accompagner 
les prises de décisions, par exemple via les prédictions des teneurs en matière grasse 
et protéine du lait déjà bien établies ou les récents développements de modèles de 
prédiction pour des caractères nouveaux. Cependant, son plein potentiel reste encore 
partiellement inexploré. De ce fait, l’objectif de cette thèse est de contribuer au 
développement d’outils d’aide à la décision avec des intérêts économiques et 
environnementaux pour le secteur laitier en utilisant la spectrométrie MIR. Les 
recherches réalisées dans le cadre de cette thèse couvrent trois approches différentes 
de l’utilisation de la spectrométrie MIR pour l’aide à la décision : (1) le 
développement d’une équation de calibration MIR pour prédire un caractère d’intérêt,  
(2) le développement d’un modèle jour de test pour prédire le spectre MIR du lait dans 
un but de management, et (3) la combinaison de données prédites à partir de la 
spectrométrie MIR avec d’autres sources de données afin de fournir des informations 
supplémentaires pour les prises de décisions. 

Premièrement, différentes stratégies ont été explorées pour prédire le statut de 
gestation des vaches laitières (gestantes vs. non gestantes) sur base de spectres MIR 
du lait collectés en Australie et à l’aide de la méthode d’analyse discriminante par les 
moindres carrés partiels (PLS-DA). Identifier de façon correcte le statut de gestation 
des vaches est essentiel pour la rentabilité des exploitations laitières. La gestation à 
un stade précoce n’a pas pu être détectée de manière satisfaisante, mais des résultats 
prometteurs ont été obtenus en utilisant des spectres MIR collectés 151 jours ou plus 
après insémination (c.-à-d. en milieu et fin de gestation), avec une aire sous la courbe 
ROC de 0.76 pour le jeu de valdiation. Une application potentielle à explorer 
davantage serait le développement d’un un outil de screening pour alerter quant à de 
potentiels avortements à des stades moyens à avancés. 

Deuxièmement, nous avons étudié la capacité d’un modèle jour de test mixte pour 
prédire le spectre MIR du lait de vaches Holstein en première lactation dans un but de 
management (p.ex. détection de problèmes, simulations, prédictions de données 
futures). Les données spectrales utilisées pour la modélisation proviennent du contrôle 
laitier en Wallonie. La corrélation moyenne entre les valeurs observées et prédites 
pour chaque nombre d’onde du spectre est de 0.85 pour le jeu de modélisation et varie 
entre 0.36 et 0.62 pour différents scénarios correspondant à des situations où on 
connait plus ou moins d’informations à propos des vaches. Les corrélations entre les 
teneurs en matière grasse, protéine et lactose prédites sur base du spectre observé et 
sur base du spectre modélisé varient de 0.83 à 0.89 pour le jeu de modélisation et de 
0.32 à 0.73 pour les scénarios. Ces résultats montrent une capacité moyenne mais 
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prometteuse de prédire le spectre MIR du lait à partir d’un modèle jour de test. 
Différentes améliorations du modèle sont possibles avant de potentielles applications 
pratiques qui pourraient avoir des implications économiques ou environnementales 
selon les caractères prédits à partir du spectre modélisé. 

Troisièmement, nous avons analysé les relations univariées (corrélations) entre les 
émissions de méthane (CH4 ; g/jour) entérique des vaches laitières prédites à partir du 
spectre MIR du lait et 42 variables technico-économiques pour 206 troupeaux laitiers 
Wallon sur une période de 8 ans. Le CH4 entérique constitue une partie importante de 
l’empreinte carbone de la production de lait. Les corrélations significatives varient 
entre |0.06| et |0.38|. Des émissions plus faibles de MIR CH4 ont tendance à être 
associées avec des pratiques de management plus extensives ou sous-optimales, qui 
peuvent conduire à des résultats économiques plus faibles. Les faibles corrélations 
observées suggèrent des relations complexes entre le MIR CH4 et les variables 
technico-économiques du fait de l’utilisation de données réelles issues d’exploitations 
avec une large variabilité de pratiques de management. Cela implique la nécessité de 
réaliser des études plus approfondies afin de décrypter ces relations complexes pour 
une meilleure compréhension des facteurs associés aux émissions de CH4 afin de 
mieux cibler les stratégies de réduction des gaz à effet de serre dans les fermes 
laitières. 

En dernier lieu, nous avons discuté, à la lumière des recherches réalisées dans cette 
thèse, de certains points positifs et points d’attention concernant le développement 
d’outils d’aide à la décision en utilisant la spectrométrie MIR du lait. Plus 
particulièrement, les avantages principaux de la spectrométrie MIR sont le coût peu 
élevé et la rapidité des analyses ainsi que les procédures standardisées pour la collecte 
et l’analyse des échantillons, permettant l’obtention de données MIR à large échelle 
afin de développer différents outils personnalisés pour accompagner les prises de 
décision dans les fermes laitières. Les points d’attention discutés concernent les 
prédictions de caractères MIR indirects, la qualité et la variabilité des données de 
référence et des données spectrales, le choix et la validation des modèles utilisés, 
l’utilisation d’indicateurs MIR, l’étude des caractères MIR dans une population, la 
fréquence de collecte des échantillons de lait, et l’adoption des outils MIR par les 
éleveurs.  

En conclusion, cette thèse (1) contribue à établir les premières étapes du 
développement de nouveaux outils et études MIR pour accompagner les prises de 
décisions en élevage laitier, avec de potentiels bénéfices économiques et 
environnementaux ; et (2) contribue à une meilleure compréhension des bénéfices et 
des éléments à considérer lors de l’utilisation de la spectrométrie MIR pour 
développer des outils d’aide à la décision. 
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1:  General introduction 
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1. Context: current challenges of dairy farming  
For centuries, milk and dairy products have been an important source of nutrients 

for the global population. In the European Union (EU), milk production is the second 
largest agricultural sector, representing more than 13% of total agricultural outputs in 
2018 (Eurostat, 2019). Total milk production was estimated at about 170 million tons 
per year and there were around 21 million cows in the EU in 2018 (European 
Commission, 2019a; Eurostat, 2019). However, the European and global dairy sector 
has been facing many changes and challenges in recent years. 

First, there is reduced governmental involvement in regulating agricultural 
commodity prices worldwide, such as the abolishment of milk quotas in the EU in 
2015 and the openness to the world market, or the recent international trade 
agreements (e.g., EU-Mercosur), leading to fluctuating (typically declining) milk 
prices to align with global prices (Barkema et al., 2015; DG AGRI, 2017; European 
commission, 2019b). The fluctuating and low milk price is a major factor in reduced 
profitability. On top of that, some countries like Belgium are noticing an increase in 
agricultural land price, mainly driven by an increasing demand for land for non-
agricultural uses (La Spina, 2014). 

Besides, the trend toward fewer but larger dairy farms continues in the EU and 
across the globe (Barkema et al., 2015). Since the abolishment of milk quotas, farmers 
in the EU are facing growing pressures to focus on the economy of scale by increasing 
the size of their herds (Norton and Berckmans, 2017). At the same time, there is lower 
involvement of family labour on the farm and more farms depend on non-family 
labour, often expensive and sometimes less skilled (La Spina, 2014). More animals 
and less workforce lead to more complex and time-consuming monitoring and 
management of cows, potentially affecting farm profitability (Norton and Berckmans, 
2017).  

Additionally, there are increasing regulations related to consumer protection, food 
safety and quality, sanitary measures (i.e., preventing animal and zoonotic diseases, 
and reduction of medical treatment), and the environment as well as increasing 
administrative work (Barkema et al., 2015; Turlot, 2019). Also, the consumers, 
influencing processors and retailers, are being increasingly concerned with animal 
welfare, food safety, health, and environmental protection (De Graaf et al., 2016). 
This requires updated infrastructures, adapted management practices, better 
monitoring of animals, and tools to control food quality, environmental parameters as 
well as animal welfare. In this context, farmers can face costs for compliance with 
regulations, which can impact profitability (DG AGRI, 2017). 

Moreover, climate change and environmental disruptions will likely become 
increasingly important in the future. Global temperature has increased steadily in the 
last decades and is expected to continue (Allen et al., 2018). In many areas of the 
world, scientists forecast warmer temperatures year-round, greater variation in 
precipitations (i.e., periods of drought and excess rainfall) and more severe weather 
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incidents (Seneviratne et al., 2012). Changing climatic conditions lead to more 
difficult crop and fodder production for feed as well as animal health and welfare 
issues (e.g., heat stress), also exerting weight on farm profitability (Raitens and 
Combs, 2019). Also, assessing the environmental impacts of dairy farms (e.g., soil 
degradation, ecotoxicity, greenhouse gas emissions) is necessary to better target 
actions to mitigate environmental footprint. 

Lastly, there is a need to improve on-farm working conditions and the quality of life 
of farmers. Farmers seek less physical work, to save time, more and more flexibility 
in organizing their work (i.e., to adapt to their family life) and to reduce the mental 
workload by anticipating events such as inseminations or health problems (Hostiou et 
al., 2017).  

Summing up, dairy farming in the EU and across the globe is facing many 
challenges related to the three pillars of sustainability, i.e., economic, environmental 
and social aspects (Wezel et al., 2014).   

2. The need for new decision-support tools in dairy 
farming 
In this context, there is an increasing importance of good decision-making regarding 

actions to make on farms in order to maintain sustainable dairy farming, and there is 
a need for the development of new management tools to cope with these different 
challenges. The farmer has a key role in farm decision-making, but he is not the only 
one to take decisions regarding dairy farming. Several stakeholders (agricultural 
advisors, feed or fertilizer salesmen, etc) may be involved in the analysis of problems 
and the selection of appropriate solutions. Also, the authorities can encourage certain 
practices by specific support, or restrict others as a means of regulation (Meynard et 
al., 2002).  

Traditionally, farmers and stakeholders made their decisions based on intuitive 
methods, experiential learning, experts’ knowledge, or statistics from historical 
records (Jago et al., 2013). The two last approaches can lead to approximate decisions 
that can be too generic (i.e., not adapted to each farm and not specific enough for 
individual cows) and insensitive to the unstable changes in the market and 
environment. Dairy farms are complex systems with many interacting inputs and 
outputs. Each type of feed crop or animal has its own set of interacting components 
upon which observations need to be made, decisions need to be taken, and operations 
need to be controlled (Figure 1-1, Heinemann, 2009). To deal with decision-making 
in such complex systems and to customize what actions to make for each specific 
farm, decision-support tools have been developed to guide the farmers and 
stakeholders towards the best alternative solutions from an economic, social or 
environmental point of view. Decision-support tools assist the users in their decision 
process and support, rather than replace, human judgment (Moureaux, 2016). There 
are different types of decision-support tools, with many of them being computer-
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based. For instance, these can be dynamic tools, whose recommendations vary 
according to the users’ inputs, and they lead the users through clear steps and suggest 
optimal decisions (Rose et al., 2016). Other decision-support tools may not be 
dynamic, but rather descriptive or predictive and act as information sources to 
improve the evidence base for decisions. These can use field observations and 
measurements or associated predictions to adjust interventions to the farm (Meynard 
et al., 2002; Rose et al., 2016).  

 

Figure 1-1. Diagram of a specialized dairy farming system (based on Heinemann, 2009). 

Many management decision-support tools have been developed so far to assist dairy 
farmers and stakeholders. They cover different components of the dairy farming 
system (Figure 1-1). Examples of operational decision-support tools include tools for 
fertilizers and manure recommendations (e.g., Valor, CRA-W, valor.cra.wallonie.be; 
Date N’Prairie, Arvalis, www.datenprairie.arvalis-infos.fr), the assessment of 
environmental impact (e.g., DeCIDE, CRA-W, decide.cra.wallonie.be), heat 
detection (e.g., Heatime, SCR, www.fr.scrdairy.com/cow-intelligence/heatime-hr-
systeme.html), feed management (e.g., Eva’lait, INRA, 
evalait.bretagne.chambagri.fr), grassland management (e.g., GrassMan, 
www.grassman.fr) or herd health management (e.g., Parasit'sim, 
idele.fr/services/outils/parasitsim-outil-de-simulation-du-risque-parasitaire.html).  

The availability of high-performance computing resources, new technologies (i.e., 
precision farming), and mass data in dairy farming are prompting the development of 
new and more customized decision-support tools (Eastwood et al., 2012; Jago et al., 
2013). Among the potential technologies, Fourier-transform mid-infrared (MIR) 
spectrometry is already routinely used in the dairy industry in many areas of the world 
to analyze major milk components (e.g., fat, protein, lactose contents) for milk 
payment and individual milk recording (ICAR, 2017). Some advantages of this 
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technology are the reasonable cost of analysis and rapid testing, allowing for large-
scale use. MIR has already demonstrated its ability for the development of some 
management decision-support tools, which will be discussed later, but its full utility 
is still partly unexplored. 

3. MIR analysis of milk  
In this section, we will give a more detailed explanation of the general concept of 

spectroscopy and spectrometry, Fourier-transform mid-infrared (MIR) spectrometry, 
and the use of MIR for the analysis of milk. 

Spectroscopy is the study of the interaction between matter and electromagnetic 
radiation. Electromagnetic radiation comprises different regions depending on the 
wavelengths. The infrared region is lying between the visible and microwave regions 
(from ~ 800 nm to ~1 mm) and is used to identify and study chemical substances, 
either solid, liquid, or gaseous. When matter is crossed by the infrared electromagnetic 
radiation, the bonds between the atoms of a molecule vibrate at a precise frequency, 
interact with infrared rays having the same frequency and absorb the energy of the 
rays (Subramanian and Rodriguez-Saona, 2009; Khan et al., 2018). On the basis of 
supplied radiation energy and the amount passing through or absorbed by the sample, 
it is possible to determine an absorption spectrum representing the chemical 
composition of different types of samples (De Marchi et al., 2014). Because of the 
quantitative aspects of infrared spectroscopy (i.e., measuring the electromagnetic 
radiation as a means of obtaining information), the word spectrometry is also 
commonly used (Gengler et al., 2016). The resulting absorption spectrum is 
commonly expressed in % transmittance or absorbance (i.e., representing the amount 
of radiation absorbed by the sample) versus wavenumber (i.e., wavenumber (cm-1) is 
the inversed function of wavelength, Khan et al., 2018). The transmittance (T) and 
absorbance (A) are calculated as follows: 

T= I/I0         A = log (I0/I) = -log(T) 

where I0 is the intensity of light emitted by the source and I is the intensity of light 
after passing through the sample (Khan et al., 2018). Expressed in wavenumbers, the 
infrared region of the electromagnetic radiation ranges from approximately 40 cm-1 to 
14,000 cm-1 and is divided into three main portions: near-infrared (4000 to 14000 
cm−1), mid-infrared (400 to 4000 cm−1), and far-infrared (40 to 400 cm−1; De Marchi 
et al., 2014).  

Milk is usually analyzed in the mid-infrared region, and more rarely in the near-
infrared region, because the mid-infrared region provides the clearest signal (i.e., best 
signal-to-noise ratio) and more relevant information (Grelet, 2019). Spectrometers 
currently used for milk analysis are Fourier-transform mid-infrared spectrometers, 
i.e., the most common type of mid-infrared spectrometer. Unlike dispersive 
instruments such as monochromators, Fourier-transform mid-infrared spectrometers 
collect all wavelengths simultaneously. They use different beams containing a 
combination of different wavelengths of electromagnetic radiation at once and 
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measure the total beam intensity. Then, data are processed posteriorly using a 
technique called Fourier-transform to obtain the desired spectrum (Gengler et al., 
2016; Khan et al., 2018). The main manufacturers of Fourier-transform mid-infrared 
spectrometers for milk analysis are Foss (Hillerød, Denmark), Perten Instruments 
(formerly Delta Instruments, Drachten, the Netherlands) and Bentley (Chaska, MN, 
USA). These three brands provide MIR spectra with different wavenumber ranges, 
from 925.66 to 5,010.15 cm−1 for Foss spectrometers, from 649.03 to 3,998.59 cm−1 
for Bentley spectrometers and from 397.31 to 4,000 cm−1 for Perten spectrometers 
(Grelet, 2019). 

The use of milk MIR spectrometry is common in dairy cattle for the analysis of milk 
of individual cows for milk recording, and also for the analysis of bulk tank milk for 
milk payment. Figure 1-2 illustrates the process of individual MIR samples analysis 
as part of milk recording, including a representation of the typical shape of the 
resulting MIR spectra. Milk samples are collected routinely on farms, usually on a 
monthly basis, for herds enrolled in milk recording (e.g., every 4 or 6 weeks in the 
Walloon region of Belgium). Samples are either from the morning milking, the 
evening milking (usually alternately between test days), or more commonly a mixture 
of both. At the same time, other useful information is collected for each cow, e.g., test 
date, animal identification, milk yield, breed, birth date, calving date, pedigree. The 
samples are then analyzed by a Fourier-transform spectrometer in a certified milk 
laboratory (ICAR, 2017; awé, 2019). The absorbance peaks of the resulting MIR 
spectra represent wavenumbers at which significant amounts of mid-infrared radiation 
were absorbed by the samples. The height or area of a peak is proportional to the 
concentration of the chemical bond they represent in milk. Hence, after spectral data 
processing, the milk MIR spectra are used both for a qualitative and quantitative 
purpose as they indicate the presence of a substance in milk and also the quantity of 
this substance in milk. Absorbance values at different wavenumbers can be linked to 
reference values in order to develop calibration equations allowing the prediction of 
milk traits of interest (Gengler et al., 2016). Spectra and predicted traits are stored in 
databases and can subsequently be reported to farmers (ICAR, 2017; awé, 2019). 
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Figure 1-2. Pictorial summary of milk MIR analysis as part of milk recording. 
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4. Milk MIR for decision support 
Some major advantages of milk MIR for the development of decision-support tools 

for dairy farming are the easy collection of milk samples on farms on a large scale, 
the low cost and rapidity of MIR analyses in the laboratory, the comparability of MIR 
data within and between farms, and the ability to develop customized tools at the herd 
and at the animal levels. The advantages of milk MIR will be explained and discussed 
in more detail in section 1 of Chapter 5, including examples from the research 
conducted in this thesis.  

MIR-based tools directly or indirectly target different aspects of the dairy farming 
system described in Figure 1-1, such as feed, health and vet care, product processing, 
or the environmental impact.  

Prediction equations are the most commonly developed tools with MIR and can 
support decision-making at the herd level through bulk tank milk analysis and most 
commonly at the individual level through milk recording. Figure 1-3 explains the 
usual steps for the development of MIR prediction equations. Some of these stages 
are part of the traditional process to develop a decision-support tool. The first usual 
step is the selection, manipulation, and cleaning of the data. The next stage is the 
development of the model itself (e.g., calibration of the equation), followed by 
validation (e.g., application of the equation to an independent dataset) to test the 
performances of the model on real-world data before the implementation. At the 
implementation stage, it is important to inform the users about the objectives, benefits, 
conditions of utilization, and limits of the tool.  

 

Figure 1-3. Usual steps in the development of a MIR prediction equation. 

Traditional milk components predicted using MIR calibration equations (e.g., milk 
fat, protein, lactose, and urea contents) are the most common traits communicated to 
farmers and used for decision-making. For example, the evolution of fat and protein 
contents over the lactation and the year is used to detect abnormalities or to make 
decisions regarding feeding, culling, or breeding. The ratio of fat to protein content in 
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milk is used to detect unbalanced diet: a ratio > 1.5 may indicate that the diet is 
deficient in energy (i.e., risk of ketosis) and a ratio < 1.1 may indicate that the diet is 
too rich in energy and not fibrous enough (i.e., risk of acidosis; Koeck et al., 2014; 
awé, 2020). Monitoring urea content in milk is useful for feeding management and to 
estimate feed nitrogen efficiency, which is also related to the environmental impact of 
excessive nitrogen excretion (Bastin et al., 2009). 

Besides the conventional milk components such as fat, protein, lactose and urea 
contents, milk composition is much more complex. Following advances in informatics 
and exploration of MIR spectra (e.g., using multivariate statistics), the number of 
studies exploring the use of MIR to predict other informative traits has strongly 
increased since the mid-2000s (De Marchi et al., 2014). Models have been recently 
built to attempt to predict fine milk composition, such as fatty acid composition 
(Soyeurt et al., 2006; De Marchi et al., 2011; Maurice-Van Eijndhoven et al., 2013), 
protein composition (Bonfatti et al., 2011; Rutten et al., 2011), minerals (Soyeurt et 
al., 2009) or lactoferrin (Soyeurt et al., 2007). Other research explored MIR to predict 
milk technological properties, such as milk coagulation and cheese yield (Ferragina 
et al., 2013; Visentin et al., 2015) or milk acidity (De Marchi et al., 2009). Recent 
studies also considered MIR to predict novel traits mainly related to the cow 
physiology, for instance methane (CH4) emissions (Vanlierde et al., 2018), nitrogen 
use efficiency (Grelet et al., 2020), body energy status (McParland et al., 2011), body 
weight (Soyeurt et al., 2019), fertility (Ho et al., 2019), energy intake and efficiency 
(McParland et al., 2014) or milk components related to physiological pathologies like 
ketosis (Van der Drift et al., 2012; Grelet et al., 2016). In addition, MIR has been 
investigated to develop other novel models, for example to have information about 
the geographical origin of milk (Scampicchio et al., 2016; Caredda et al., 2017) or to 
detect milk adulteration (Balabin and Smirnov, 2011). Most of these MIR prediction 
equations have been developed in the framework of research projects. Only few of 
them have been implemented in practice in some countries and reported to farmers, 
or are in the process of being deployed, to support management decision-making. For 
instance, in the Walloon region of Belgium, detection of ketosis using several MIR 
traits (e.g., β-hydroxybutyrate (BHB), fatty acids, acetone) and milk technological 
properties (e.g., for farms wishing to diversify production and process milk on the 
farm) are under study to be included in the milk recording results reported to farmers 
(C. Bastin, 2020, personal communication). To take another example, in Canada, the 
Ketolab service provides BHB predictions for ketosis detection, and fatty acids 
predictions on bulk tank milk have recently been available for farmers for feed 
management (Valacta, 2011; Santschi et al., 2019). Many other novel traits developed 
by scientific institutions are promising tools to guide various decisions and to optimize 
herd management, but they need to be elaborated further to be used as decision-
support tools in practice. 

In addition to management decision support based on predicted MIR phenotypes, 
conventional and novel MIR traits are of great interest for genetic and genomic 
evaluations because of the large amounts of phenotypes available through the use of 
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MIR (Gengler et al., 2016). Genetic evaluations are important for breeding decisions 
and some other management decisions (e.g., culling). Also, several studies showed 
the interest of modeling MIR traits predicted from spectra collected routinely using 
test-day models (TDM), for instance to predict future values, detect problems by 
comparing observed and predicted (i.e., expected) values or by evaluating the 
deviation of herd effects (e.g., Koivula et al., 2007; Bastin et al., 2009; Gillon et al., 
2010). As a practical example, in Finland, monthly herd-management effect solutions 
from TDM of milk, fat and protein yields, and SCC are provided for authorized users 
such as farmers and dairy advisors to recognize management problems (Koivula et 
al., 2007). 

5. Research objectives and outline 
This introductory chapter has shown that dairy farming is facing multiple challenges 

compromising the sustainability of the sector. Dairy farmers consider the economic 
viability as the most important pillar of sustainability, while society is increasingly 
concerned by the environmental aspects (Vandreck, 2018). In this context, milk MIR 
would be a promising method to guide decisions leading to potential improvement of 
economic and environmental performances of dairy herds. However, the full utility of 
MIR is still partly unexplored. Therefore, the aim of this thesis was to contribute to 
the development of novel decision-support tools with economic and environmental 
interests for the dairy sector using milk MIR spectrometry. This manuscript consists 
of a compilation of three published scientific papers, covering different approaches of 
using MIR for decision support and addressing gaps in the current diversity of MIR 
tools. An overview of the next chapters is given in Figure 1-4. 

The first paper (i.e., Chapter 2) focuses on the use of MIR to diagnose the pregnancy 
status of dairy cows. It illustrates the development of a calibration equation using milk 
MIR spectra and considers an economically important trait that has not been 
successfully predicted with MIR yet. This tool would be dedicated to dairy farmers 
directly or to dairy advisors who could transfer the outputs to farmers and advise them 
regarding, for example, mating decisions. 

The second paper (i.e., Chapter 3) investigates the use of a test-day mixed model to 
predict milk MIR spectra with the perspective of herd management. As mentioned 
earlier in the introduction, there is an interest in modeling MIR traits using test-day 
models. Depending on the trait, this could contribute to optimizing economic and/or 
environmental performances of dairy herds. However, given the large number of MIR 
trait prediction equations, developing separate models for each trait would be time- 
and resource-consuming. Therefore, modeling directly the whole MIR spectrum and 
subsequently applying existing MIR calibration equations to the modeled spectra 
could be a better option. This tool would rather be dedicated to dairy advisors who 
could interpret the outputs and subsequently give advice to farmers, but also to 
researchers.  
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The third paper (i.e., Chapter 4) illustrates the implementation of a MIR tool and the 
interest of combining MIR-predicted data with other sources of data to provide more 
comprehensive information for decision-making. More specifically, we studied the 
relationships between milk MIR-predicted enteric CH4 production and the technical 
and financial performances of commercial dairy herds. MIR equations to predict 
enteric CH4 production have recently been developed (e.g., Vanlierde et al., 2016). A 
significant part of greenhouse gases emitted on a dairy farm comes from enteric CH4 

(e.g., 45% in Belgium), meaning it is an important factor in the carbon footprint of 
dairy products and a key trait to improve the environmental performances of dairy 
farms (FPS Public Health, 2018). This study was originally dedicated for research 
purposes to better understand management practices associated with CH4 production, 
with potential implications for decisions at the political level (e.g., regarding climate 
policies) and subsequently at the farm level. 

Chapter 5 discusses the main strengths as well as some issues and considerations 
regarding the use of milk MIR for the development of decision-support tools, mainly 
based on the learning acquired through the three research studies developed in this 
thesis. Lastly, a general conclusion and future prospects are addressed. 

 

 

Figure 1-4. Overview of Chapters 2-5 of the thesis. 
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Outline 
Pregnancy is a meaningful trait for dairy farms’ sustainability because of its 

economic importance. Being able to detect early pregnancy is particularly useful to 
know if a cow should be re-bred or to forecast calving dates. Previous research 
achieved limited results in predicting the pregnancy status of dairy cows using MIR 
and suggested that further research would be needed on this topic. The interest in 
predicting pregnancy using MIR originates from the fact that pregnancy 
establishment would result in changing milk composition. Therefore, this chapter 
investigated innovative strategies to attempt to find a successful approach to diagnose 
pregnancy using a MIR calibration equation. This study was conducted using milk 
MIR spectra and records of insemination from Australian dairy cows. The algorithm 
used to calibrate the equations developed in the article mentioned in this chapter was 
partial least squares discriminant analysis (PLS-DA). However, alternative machine 
learning algorithms were also tested and are presented in section 2.3.1 of Chapter 5. 
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Abstract 
Pregnancy diagnosis is an essential part of successful breeding programs on dairy 

farms. Milk composition alters with pregnancy and this is well documented. Fourier-
transform mid-infrared (MIR) spectrometry is a rapid and cost-effective method for 
providing milk spectra that reflect the detailed composition of milk samples. 
Therefore, the aim of this study was to assess the ability of MIR spectrometry to 
predict the pregnancy status of dairy cows. The MIR spectra and insemination records 
were available from 8,064 Holstein cows of 19 commercial dairy farms in Australia. 
Three strategies were studied to classify cows as open or pregnant using partial least 
squares discriminant analysis models with random cow-independent 10-fold cross-
validation and external validation on a cow-independent test set. The first strategy 
considered 6,754 MIR spectra after insemination used as independent variables in the 
model. The results showed little ability to detect the pregnancy status as the area under 
the receiver operating characteristic curve was 0.63 and 0.65 for cross-validation and 
testing, respectively. The second strategy, involving 1,664 records, aimed to reduce 
noise in the MIR spectra used as predictors by subtracting a spectrum before 
insemination (i.e., open spectrum) from the spectrum after insemination. The accuracy 
was comparable with the first approach, showing no superiority of the method. Given 
the limited results for these models when using combined data from all stages after 
insemination, the third strategy explored separate models at seven stages after 
insemination comprising 348 to 1,566 records each (i.e., progressively greater 
gestation) with single MIR spectra after insemination as predictors. The models 
developed using data recorded after 150 d of pregnancy showed promising prediction 
accuracy with the average value of area under the receiver operating characteristic 
curve of 0.78 and 0.76 obtained through cross-validation and testing, respectively. If 
this can be confirmed on a larger dataset and extended to somewhat earlier stages after 
insemination, the model could be used as a complementary tool to detect fetal 
abortion. 

 

Key words: gestation, prediction accuracy, milk composition, discriminant analysis 
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1. Introduction 
An accurate and timely detection of pregnancy is fundamental to successful 

breeding programs in dairy cows because it enables non-pregnant cows to be re-bred 
as soon as possible (Velek et al., 2012). Pregnancy diagnosis methods that are 
currently available include the observation of non-return to estrus, transrectal 
palpation, transrectal or transcutaneous ultrasonography, and analysis of progesterone 
and pregnancy-associated glycoproteins in milk or blood (Fricke et al., 2016). 
However, these methods have a certain cost and efficacy and some require animal 
handling, which might limit their practical implementation.  

Fourier-transform mid-infrared (MIR) spectrometry is already routinely used in the 
dairy industry worldwide to analyze major milk components (e.g., fat, protein, lactose 
contents, and urea) for milk payment, herd management, quality control, or genetic 
evaluation programs (ICAR, 2017a). Additionally, MIR can be used to predict other 
phenotypes associated with milk composition in dairy cows with reasonable accuracy, 
such as fatty acids (Soyeurt et al., 2006), ketone bodies (Grelet et al., 2016), methane 
emissions (Vanlierde et al., 2018), or energy intake and feed efficiency (McParland 
and Berry, 2016). Because the establishment of pregnancy affects milk composition, 
through altering nutrient partitioning between physiological functions, it might be 
hypothesized that MIR would be used to detect the pregnancy of a dairy cow. Indeed, 
several authors have indicated, for instance, increasing milk fat and protein contents 
of pregnant compared with non-pregnant cows, especially in the last months of 
gestation (Olori et al., 1997; Penasa et al., 2016; Lainé et al., 2017).  

Toledo-Alvarado et al. (2018) investigated the possibility to predict the pregnancy 
status of dairy cows from multiple breeds using the whole raw milk MIR spectrum 
alone or in combination with other effects including DIM; parity; and concentration 
of fat, protein, and lactose in milk. They found promising, but limited, prediction 
accuracy for classification of open and pregnant cows [i.e., around 0.60 for the area 
under the receiver operating characteristic curve (AUC)]. The imperfect prediction 
accuracy was attributed to the complicated nature of pregnancy status and its indirect 
association with milk composition. Lainé et al. (2014) used residual MIR spectra 
which were obtained after correcting for several effects associated with open cows 
(i.e., fixed effects of parity, breed, month of test-day, DIM and random effects of 
cows) to discriminate between pregnant and open cows. They initially reported very 
good prediction accuracy for classification of open and pregnant cows (i.e., specificity 
and sensitivity higher than 90%), which they achieved through random cross-
validation. Unfortunately, the prediction accuracy did not hold in external validation, 
with a drop up to 50% reported in a later study (A. Lainé, 2019, University of Liège, 
Gembloux, Belgium, personal communication). The explanation was that the way 
they removed fixed effects to obtain the residual MIR spectrum somehow artificially 
created dependencies to the dataset used, but this cannot be done with future data 
where pregnancy status is not known a priori. These inconsistent results facilitate a 
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consideration of new approaches to investigate the association between MIR and 
pregnancy, as also indicated by Toledo-Alvarado et al. (2018).  

This study aimed to investigate the potential of milk MIR to predict the pregnancy 
status of dairy cows while considering some new aspects that are unexplored in the 
existing literature on this subject. The first innovation of this work lies in the use of 
novel residual MIR spectrum, which is the difference between the spectrum after an 
insemination and a spectrum before this insemination at a specific stage during the 
same lactation. By doing this, we expected to simplify the MIR signal after 
insemination by removing effects specific to each cow when being open while 
preserving the potential pregnancy signal. The second novelty is the exploration of 
predictions at different stages after insemination, because the stage of gestation has 
been reported to influence milk composition. The third novelty is the use of cow-
independent validation because the commonly applied method of random cross-
validation has recently been reported to produce overoptimistic results (Wang and 
Bovenguis, 2019). 

2. Materials and methods 

2.1. Data 
The data used in this study, including milk MIR spectra and records of insemination 

from 8,064 Holstein cows, were obtained from 19 commercial dairy herds located in 
Victoria, Tasmania, and New South Wales of Australia in 2016, 2017 and 2018. Milk 
samples were collected 1 to 8 times per cow and sent to TasHerd Pty. Ltd. (Hadspen, 
Tasmania, Australia) for analysis by an infrared spectrometer (Bentley Instruments 
NexGen Series FTS Combi machine, Chaska, MN) to obtain the MIR spectrum from 
which fat, protein, and lactose contents were estimated using manufacturer prediction 
equations. The obtained MIR spectrum was expressed in absorbance, with 899 
wavenumbers covering the absorption of light in the infrared region located from 649 
to 3,999 cm-1.  

The pregnancy status, defined as pregnant or open, was determined for each test 
date using records of insemination and the corresponding calving date. Where an 
insemination did not result in a pregnancy, MIR records occurring before and after 
that insemination were set to open status. Where an insemination resulted in a 
pregnancy, MIR records occurring before and after that insemination were set to open 
and pregnant statuses, respectively. Pregnancy was confirmed by the following actual 
calving record (Figure 2-1a). Cows with no calving records were also retained and 
considered as open cows.  
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Figure 2-1. (a) Timeline diagram explaining how the pregnancy status (i.e., open or 
pregnant) was defined for milk mid-infrared spectrum (MIR) records. (b) Timeline diagram 
explaining the selection of spectra after insemination. The MIR records with open status can 

be associated with several inseminations. The MIR records with pregnant status are only 
associated with the successful insemination. I = insemination. 

2.2. Data preprocessing 
The first derivative of raw MIR spectra was calculated for each wavenumber X as 

the difference between the wavenumber X-2 and the wavenumber X+2 to remove the 
baseline variation (Soyeurt et al., 2011). On the reduced spectra, noisy regions with 
low signal-to-noise ratio induced by water absorption were first removed, leaving 538 
spectral points out of 899 for the study (Bonfatti et al., 2011; Grelet et al., 2016). 
These 538 wavenumbers were in the regions from 928 to 1,596 cm-1 and from 1,693 
to 3,025 cm-1. Subsequently, potential spectral outliers were excluded by calculating 
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the standardized Mahalanobis distance or global distance, and records with global H 
distance > 3 were eliminated (De Maesschalck et al., 2000; Grelet et al., 2017).  

The data were also checked for unusual milk fat and protein contents (i.e., 1.5 g/dL 
of milk < fat < 9 g/dL of milk, 1 g/dL of milk < protein < 7 g/dL of milk) and SCC 
(0.01% upper values were deleted) following the recommendation of the International 
Committee for Animal Recording (ICAR, 2017b). Finally, gestation length was 
restricted to be from 250 to 300 d, because the average for Australian Holsteins is 281 
d (Haile-Mariam and Pryce, 2019).  

2.3. Modeling strategies 
2.3.1. Single spectra after insemination  

In this strategy, only spectral records after insemination were considered, which is 
similar to the study by Toledo-Alvarado et al. (2018).  However, Toledo-Alvarado et 
al. (2018) did not consider cows with no calving records, in contrast to the present 
study. The selection of spectral records after insemination is described in Figure 2-1b. 
MIR records with open status, as previously described, could be associated with 
several inseminations, while those with pregnant status were only associated with the 
successful (i.e., last) insemination. 

2.3.2. Spectral differences 

The concept behind this strategy is to look at the change in a spectrum arising from 
pregnancy, which was done by subtracting a spectrum collected before insemination 
(i.e., open spectrum) from the one collected after insemination (i.e., open spectrum if 
the animal was not pregnant and pregnant spectrum if the animal was pregnant). We 
hypothesized that, by taking the difference and given the animal was pregnant, the 
resulting spectrum would be less noisy and retain among others the information 
potentially related to pregnancy establishment. This approach is similar to Lainé et al. 
(2014) except that we subtracted observed spectra and not modeled spectra. For each 
spectrum after insemination, we selected an open spectrum before insemination within 
a restricted window of 5 to 30 DIM, to have control spectra at a similar lactation stage 
and before the first insemination for all cows.  

2.3.3. Stages after insemination  

We hypothesized that the pregnancy signal in milk might vary by gestation stage, 
with the signal being stronger towards the end of gestation. Therefore, grouping 
records based on the period after insemination and modeling each group separately 
may improve the accuracy of the models by reducing the spectral and the pregnancy 
signal variabilities. Consequently, only single spectra after insemination were selected 
and divided into 7 classes based on the number of days after insemination (Table 2-
1).  
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2.4. Model development and evaluation of performance 
For each strategy, approximately 80% of the data was randomly selected for 

calibration and the remaining 20% was selected for testing (the specific number of 
records can be seen in Table 2-1). All test sets were cow-independent, meaning that 
cows from each test set were different from those in the corresponding calibration set. 
All calibration and test sets were forced to have a balanced ratio of open and pregnant 
records by randomly sampling the majority class to be the same size as the minority 
class.  

Partial least squares discriminant analysis was used to classify open and pregnant 
records (1 = pregnant, 0 = open), using the Caret package in R (version 3.6.0; Kuhn, 
2019). Spectra after insemination were used as independent variables for the first and 
third strategies (i.e., single spectra after insemination and stages after insemination), 
whereas in the second strategy (i.e., spectral subtraction) spectral differences were 
used as independent variables. Partial least squares discriminant analysis was used 
because it performs dimensionality reduction while simultaneously carrying out 
classification (Rozenstein et al., 2015), which is usually preferred to conventional 
regression techniques, for example, logistic regression when predictor variables are 
highly correlated. As such, this method is appropriate due to the correlations that exist 
between wavenumbers.  

The model performance was evaluated in two ways: random cow-independent 10-
fold cross-validation and external validation. Random cow-independent 10-fold cross-
validation means that 10% of the cows were randomly removed from the calibration 
set, and a model built with the remaining cows was used to classify the excluded 
records. The procedure was repeated 10 times to obtain predictions for all records. 
Hence, for each of the 10 folds, cows in the training set were different from those in 
the validation set. In addition to assessing the predictive performance of the model, 
cross-validation was also used to fine-tune the model (i.e., determine the most 
appropriate number of components of the partial least squares discriminant analysis 
models). However, the maximum number of components was fixed to 20 to avoid 
overfitting. External validation was carried out using the cow-independent testing data 
consisting of cows that were not used to build up and tune the model.  

Model performance for calibration, cross-validation, and testing were assessed 
using the sensitivity, specificity, AUC, and median predicted class probability for 
correctly classified records. This median predicted probability is explained as follows: 
only records correctly classified were retained and, for each of them, the predicted 
probability amongst the 2 classes (i.e., open vs. pregnant) with a value greater than 
the 0.5 threshold was retained and the median of these predicted probabilities was 
calculated. Values that are close to 1 indicate high confidence in prediction results for 
correctly classified records, whereas values around 0.5 indicate low confidence. 
Sensitivity is defined as the proportion of records belonging to pregnant cows that 
were correctly identified as pregnant, and specificity is defined as the proportion of 
records belonging to open cows that were correctly identified as open. Sensitivity and 
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specificity are calculated at a decision threshold probability of 0.5, and when this 
threshold is modified, the values of both measures are also modified. Consequently, 
the projection of these measures at different threshold probabilities defines a curve 
referred to as the receiver operating characteristic curve. The area under the receiver 
operating characteristic curve indicates how well the model can distinguish between 
the 2 categories. The AUC values are between 0 and 1, with 0.5 being a random guess 
(Šimundić, 2009).  

For strategy 2, to have a fair comparison of model performance obtained using the 
spectral differences and single spectra after insemination, we ran the 2 models on the 
same dataset. Finally, to explore if the patterns of effects of pregnancy on MIR would 
change as gestation progresses, the coefficients of the 7 models in the third strategy 
(i.e., stages after insemination) were extracted and analyzed. Accordingly, the 
correlations between the models’ coefficients are presented as a heatmap. If the 
correlation between the coefficients of 2 models is strong, similar wavenumbers might 
have been used for the prediction of the pregnancy status.  

3. Results and discussion 
A timely and cost-effective pregnancy diagnosis is desirable in the management of 

dairy farms, enabling decisions such as feed budgets, planning which cows to cull or 
rebreed, and when to dry off. MIR spectrometry allows low-cost, high throughput, 
and large-scale milk analysis and is already routinely used in many countries 
worldwide in milk recording programs.  Hence, using MIR data for pregnancy 
diagnosis would be inexpensive and simple to conduct on farms. The expectation that 
MIR could be used to predict pregnancy status originates from the fact that a 
pregnancy establishment would result in changing milk composition (Olori et al., 
1997; Roche, 2003; Penasa et al., 2016), which is commercially analyzed using MIR. 
This study shows that generally MIR can predict pregnancy status with promising 
accuracy in the late but not early stage of gestation. 

3.1. Data description 
Table 2-1 describes the datasets used for the 3 modeling strategies. Due to the 

repeated records per cow, some cows could have records that appear in both 
calibration and test sets, or in both training and validation sets for cross-validation, 
which is likely to lead to overoptimistic results (Shetty et al., 2017; Wang and 
Bovenhuis, 2019). Consequently, we decided to use random cow-independent cross-
validation and cow-independent test sets (external validation; i.e., cows from each 
validation or test set are different from those in the corresponding training or 
calibration set). Such validation strategies were not implemented in the previous 
studies on diagnosing the pregnancy status of dairy cows (Lainé et al., 2014; Toledo-
Alvarado et al., 2018).  

Regarding the third strategy (i.e., our hypothesis that the pregnancy signal in milk 
might vary by gestation stage), the number of records decreased from the first to the 
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last class (Table 2-1). The small number of spectral records available for pregnant 
cows in late gestation stages was caused by the dry-off period, which is usually at 
least six weeks before calving (Dairy Australia, 2017). Records from cows that were 
still open later in lactation and a long interval from insemination could be from cows 
that were not re-inseminated because of fertility or health issues but remained in the 
herd until the end of the lactation. We were unable to verify this assumption with 
certainty because culling records were sparse. 

As expected, an increasing pattern existed for the average DIM from class 1 to class 
7, but in each class, the DIM for open and pregnant records were in similar ranges. 
This was important to make sure that the models did not discriminate between open 
and pregnant cows solely based on changes in milk composition associated with 
different lactation stages (Mayeres et al., 2004), instead of the true effects of 
pregnancy.  

The distribution of open and pregnant records and DIM at different periods after 
insemination for strategies 1 and 2 was similar to that of strategy 3. In the study by 
Toledo-Alvarado et al. (2018), the proportion of open cows decreased by week after 
insemination, meaning that open and pregnant records were not equally represented 
at different periods after insemination, in contrast to the present study.  

3.2. Diagnosis of pregnancy status using MIR with different 
approaches 
In this study, we explored 3 approaches to use MIR data to predict the pregnancy 

status of dairy cows. In the first approach, which is similar to the study by Toledo-
Alvarado (2018), only single spectral records taken after insemination were retained. 
In terms of prediction accuracy, the value of AUC obtained through cross-validation 
in our study was comparable to that reported by Toledo-Alvarado (2018) when using 
a Bayesian model with Holstein cows and the whole MIR spectra as independent 
variables (i.e., 0.63 and 0.61, respectively; Table 2-2). Sensitivity and specificity 
values reported in this study were comparable and close to 0.60. For the test set, 
sensitivity was higher than specificity (i.e., 0.65 and 0.56, respectively), indicating 
that the model might have a slightly better ability to predict pregnant records correctly. 
The median probability values for correctly classified records were 0.56 for both 
cross-validation and testing. These low values (i.e., close to the 0.5 threshold) indicate 
poor confidence in the predictions. However, the negligible difference in prediction 
accuracy between calibration and cross-validation was a good sign because this 
implies that the model was unlikely to be overfitted and presented a certain robustness. 
One of the reasons for poor performance of the models might be that the spectra after 
insemination were too noisy, because they contain not only the effect of pregnancy 
but also other factors such as the lactation stage, herd management, or cow genetics 
(Collier et al., 2017). Consequently, finding a signal indicating pregnancy was 
challenging.  
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Table 2-2. Strategy 1 (single spectra after insemination): results of partial least squares 
discriminant analysis for calibration, random cow-independent 10-fold cross-validation 

(mean, with SD in parentheses), and cow-independent test set  

Item1 Calibration Cross-validation Test 

AUC 0.69 0.63 (0.05) 0.65 

Sensitivity 0.63 0.60 (0.03) 0.65 

Specificity 0.65 0.59 (0.07) 0.56 

Probability 0.56 0.56 (0.00) 0.56 
1AUC = area under the receiver operating characteristic curve; sensitivity = proportion of records 

belonging to pregnant cows that were correctly classified as pregnant; specificity = proportion of records 
belonging to open cows that were correctly classified as open; and probability = median predicted 
probability for correctly classified records (i.e., for each correctly classified record, the greatest predicted  
probability amongst the 2 classes open vs. pregnant was selected and the median was calculated). 

 

To overcome the problem caused by noisy effects of multiple factors on milk 
composition, in the second approach, a spectrum collected before insemination at a 
specific lactation stage was subtracted from that collected after insemination (Table 
2-3). By doing this, it was expected that the noisy effects of, for example, cow 
genetics, herd management, and parity might be eliminated, and the resulting 
spectrum would be less noisy and contain mainly the potential pregnancy signal (if 
there is one) and thus improve prediction accuracy. In fact, the idea of taking 
difference to remove noise and magnify signal has been studied in other research 
areas. For instance, noise reduction from speech signals by subtracting a signal during 
a nonspeech period is a well-known technique in audio signal processing (Boll, 1979). 
Similarly, in the field of earthquake engineering, Coelho et al. (2011) removed noise 
during seismic dynamic measurements using a spectral subtraction. Lainé et al. (2014) 
also used a spectral subtraction, but they derived the spectral difference by performing 
a mixed model on all open-cow data simultaneously (considering the fixed effects of 
parity, breed, month of test-day, DIM, and random effect of cows) to calculate an 
expected open spectrum, which was removed from the observed spectrum after 
insemination. In the present study, we performed the subtraction of spectra on 
observed data from the same cow and not using a mixed-model approach. Our strategy 
would, therefore, allow the removal of more specific effects to each cow and minor 
effects that were not accounted for in the study by Lainé et al. (2014), and without the 
need to know the population a priori.   
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Table 2-3. Strategy 2 (spectral differences): comparison of the results of partial least 
squares discriminant analysis with spectral differences vs. single spectra after insemination 
as independent variables for calibration, random cow-independent 10-fold cross-validation 

(mean, with SD in parentheses), and cow-independent test set  

 
1AUC = area under the receiver operating characteristic curve; sensitivity = proportion of records 

belonging to pregnant cows that were correctly classified as pregnant; specificity = proportion of records 
belonging to open cows that were correctly classified as open; and probability = median predicted 
probability for correctly classified records (i.e., for each correctly classified record, the greatest predicted 
probability amongst the 2 classes open vs. pregnant was selected and the median was calculated). 

 

Unexpectedly, the prediction accuracy for calibration, cross-validation and testing 
using spectral differences were not noticeably different from those obtained using 
single spectra after insemination on the same data, with values of AUC, sensitivity 
specificity and median probability for testing of 0.58 versus 0.62, 0.59 versus 0.61, 
0.52 versus 0.47 and 0.58 versus 0.60, respectively. These results were obtained on 
the same dataset to make sure the comparison is fair. Indeed, the restricted DIM 
window for the selection of spectra before insemination limited the number of data 
available for modeling. Different DIM windows were tested, but no improvements 
could be observed (results not shown). Further, the considerable drops in prediction 
accuracy between calibration and cross-validation (10-20%) implied a lack of 
robustness. This may be partly because of the small size of the dataset (Hawkins, 
2004). Indeed, the dataset for the single spectra after insemination approach (Table 2-
1) was larger, which has been shown to result in small differences in prediction 
accuracy between calibration and cross-validation. Given these results, it is not 
possible to conclude that the spectral difference approach we tested is superior to 
single spectra after insemination in diagnosing pregnancy status. However, the change 
in chemical composition of pasture for seasonal feeding systems, as in this study, 
could confuse the spectral signal before and after insemination, because the spectra 
were collected at different periods. In TMR systems, where the feed is more 
consistent, this method has a better chance of working. Also, it is still unclear whether 
a pregnancy signal in MIR exists of sufficient size to be detected, even after all the 
noisy effects have been removed, which could be elucidated using control studies such 
as the one by Lainé et al. (2017).  

We have shown that using spectral data from various pregnancy stages was not 
enough to accurately diagnose the pregnancy status of cows. Several studies have 
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reported a varying effect of pregnancy on milk composition throughout gestation. For 
example, Olori et al. (1997), Roche (2003), and Penasa et al. (2016) reported that milk 
fat and protein contents, as well as lactose content to a smaller extent, increased as 
pregnancy advances. More recently, Lainé et al. (2017) reported that the effect of 
pregnancy on the whole MIR spectrum was variable according to the spectral region 
and the gestation stage, and tended to be stronger at the end of the gestation. In the 
previous studies on the prediction of the pregnancy status of dairy cows (Lainé et al., 
2014; Toledo-Alvarado et al., 2018), the number of days after insemination was 
limited to 120 and 91 respectively, and the pregnancy status was studied without a 
consideration of different gestation periods. In this study, we had data for later stages 
after insemination and we hypothesized that separating data by stage after 
insemination might reduce spectral variability as well as pregnancy signal variability 
and thus improve prediction accuracy. This approach is comparable to the first one 
(i.e., using single spectra after insemination as independent variables in the model), 
but the data were grouped into 7 classes based on the days after insemination.  

Table 2-4 shows that, in general, for each class after insemination, the prediction 
accuracies for cross-validation and testing were relatively similar, whereas they were 
higher for calibration, indicating potential lack of robustness in all models. Similar to 
the results of the spectral difference approach, the lack of robustness might just be a 
consequence of having a small dataset in each class.  

Interestingly, the prediction accuracy for class 7 (i.e., records taken 181 or more 
days after insemination) was 20% higher than that of classes 1 to 5. We also observed 
higher cross-validation and test AUC, sensitivity, and median probability for class 6 
(i.e., records between 151 and 180 days after insemination) compared with classes 1 
to 5. Globally, the median probabilities for correctly classified records were relatively 
close to the 0.5 threshold, showing that the model was unable to separate well the data, 
though these probabilities were slightly higher in the last 2 groups. These results imply 
that although MIR may not be sufficient to predict the pregnancy status of dairy cows 
in early and mid-stages after insemination (from 1 to 150 d), promising results were 
obtained for records taken 151 d or more after insemination.  
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In late gestation, cows are subject to more significant endocrine changes, reduced 
feed intake, and greater nutritional demand of the growing calf compared to the early 
gestation period (Ingvartsen and Andersen, 2000; Penasa et al., 2016). Indeed, almost 
no increase in estrogen level exists during the first 3 mo of pregnancy, but it gradually 
rises from the third to the seventh month, before suddenly increasing after 7 mo of 
pregnancy (Parkhie et al., 1966; Penasa et al., 2016). The increase in estrogen levels 
in maternal blood during the last weeks of pregnancy affects nutrient partitioning, 
which has a deleterious effect on milk yield and, consequently, milk composition 
(Parkhie et al., 1966; Olori et al., 1997). Olori et al. (1997) also mentioned that the 
varying effect of pregnancy stages on milk composition suggests that the mechanism 
for the secretion of the solid and nonsolid components of milk might be unequally 
affected by pregnancy. This may offer an explanation of why good accuracy was 
obtained for the models using records after 150 d after insemination but not in early 
gestation.  

A potential application of MIR for pregnancy diagnosis at advanced stages after 
insemination is for detection of late fetal abortion. Mid- to late-term fetal losses are 
often detected using careful observations because of vaginal discharge or expulsion 
of placenta. However, not all abortions are detected, especially those that occur before 
180 d of pregnancy (Bronner et al., 2015), and therefore, MIR could be used as a 
complementary tool, provided that it can be used for slightly earlier diagnosis than 
151 d. This would need to be confirmed using a larger dataset. Adding data collected 
from other analyses such as metabolomics could further improve the prediction 
accuracy. Also, using a much larger dataset, it is worth exploring whether deep 
learning techniques can help provide a better prediction. 

The results obtained for strategy 3 are consistent with Figure 2-2, which is a heatmap 
of correlations between coefficients of the 7 models associated with the 7 classes. 
Correlations were generally low, with a maximum of 0.41. However, an interesting 
finding was that the closer the groups, the higher the correlations (e.g., group 7 had 
high correlations with groups 5 and 6, but lower correlations with group 1 to 4). These 
results potentially imply that pregnancy was detected using different spectral 
wavelengths or with different weights at different stages after insemination, with an 
evolving pattern from the beginning towards the end of the pregnancy. This confirms 
the poor prediction accuracy of the global model for pregnancy detection in the 
present study and the previous studies by Lainé et al. (2014) and Toledo-Alvarado et 
al. (2018).  

The low frequency of milk recoding, which is monthly in most countries, could be 
considered as an obstacle in applying MIR to predict not only pregnancy status but 
also other traits, such as indicators of early lactation metabolic diseases (e.g. β-
hydroxybutyrate, fatty acids). Only when scientists have been able to demonstrate the 
costs and benefits of having MIR collected more frequently, will farmers be willing 
to alter their milk-testing practice so that these MIR tools can be applied more 
effectively.  
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Figure 2-2. Heatmap of correlations between coefficients of the 7 models associated with the 
classes of records based on the number of days after insemination (class 1 = 1 to 30 d, class 2 
= 31 to 60 d, class 3 = 61 to 90 d, class 4 = 91 to 120 d, class 5 = 121 to 150 d, class 6 = 151 

to 180 d, class 7 = ≥181 d). 

4. Conclusions 
In this study, we have shown that milk MIR spectral data collected at different stages 

after insemination, when used directly or taking a spectral difference, were not 
sufficient to detect the pregnancy status of dairy cows. However, the models 
developed using data recorded after 150 d of pregnancy showed promising prediction 
accuracy, with the value of AUC around 78% obtained through random cow-
independent cross-validation. If this can be confirmed using a larger dataset and can 
be done a little earlier, the models could be used as a complementary tool to detect 
fetal abortion.  
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Outline 

Unlike lactation models, test-day models (TDM) model individual repeated 
measurements over time that are specific to a particular testing day. This chapter 
aimed to model milk MIR spectra using a TDM for management purposes. The 
research was carried out using data from first parity Holstein cows extracted from 
the Walloon milk recording database. Existing or future MIR prediction equations 
can be applied to the modeled spectra to predict traits of interest in different 
situations, without the need to develop one TDM separately for each trait. Interests 
for management are for instance the comparison between expected (i.e., modeled) 
records and observed records or the analysis of animal or herd effect solutions of the 
model to detect individual or herd abnormalities (e.g., feed or health problems), the 
prediction of missing or future data, or simulations by changing effects in the model. 
Depending on the MIR traits predicted from the modeled spectra, this could contribute 
to optimizing the economic and/or environmental performances of dairy herds.  
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Abstract 
The use of test-day models to model milk mid-infrared (MIR) spectra for genetic 

purposes has already been explored; however, little attention has been given to their 
use to predict milk MIR spectra for management purposes. The aim of this paper was 
to study the ability of a test-day mixed model to predict milk MIR spectra for 
management purposes. A dataset containing 467,496 test-day observations from 
53,781 Holstein dairy cows in first lactation was used for model building. Principal 
component analysis was implemented on the selected 311 MIR spectral wavenumbers 
to reduce the number of traits for modeling; 12 principal components (PC) were 
retained, explaining approximately 96% of the total spectral variation. Each of the 
retained PC was modeled using a single trait test-day mixed model. The model 
solutions were used to compute the predicted scores of each PC, followed by a back-
transformation to obtain the 311 predicted MIR spectral wavenumbers. Four new 
datasets, containing altogether 122,032 records, were used to test the ability of the 
model to predict milk MIR spectra in four distinct scenarios with different levels of 
information about the cows. The average correlation between observed and predicted 
values of each spectral wavenumber was 0.85 for the modeling dataset and ranged 
from 0.36 to 0.62 for the scenarios. Correlations between milk fat, protein and lactose 
contents predicted from the observed spectra and from the modeled spectra ranged 
from 0.83 to 0.89 for the modeling set and from 0.32 to 0.73 for the scenarios. Our 
results demonstrated a moderate but promising ability to predict milk MIR spectra 
using a test-day mixed model. Current and future MIR traits prediction equations 
could be applied to the modeled spectra to predict all MIR traits in different situations 
instead of developing one test-day model separately for each trait. Modeling MIR 
spectra would benefit farmers for cow and herd management, for instance through 
prediction of future records or comparison between observed and expected 
wavenumbers or MIR traits for the detection of health and management problems. 
Potential resulting tools could be incorporated into milk recording systems. 

 

Key words: mid-infrared spectrometry, mixed model, milk composition, 
management 
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1. Introduction 
Fourier-transform mid-infrared (MIR) spectrometry is a valuable technique to 

describe the molecular structure of food materials. It involves the absorption of 
electromagnetic radiation by a sample at frequencies (400 to 4,000 cm−1) that are 
characteristic of specific chemical bonds of a molecule (Van de Voort, 1992). The 
MIR spectrometry provides analyses with high throughput, at low cost, and on a large 
scale. Therefore, it is used in the dairy industry worldwide to predict major milk 
components (e.g., lactose, fat, protein contents, or urea) for milk quality control, milk 
payment, management of herds, or genetic studies (Gengler et al. 2016; ICAR, 2017). 
More recently, studies have focused on milk MIR spectrometry to predict other traits 
such as fine milk composition (Soyeurt et al., 2009; Bonfatti et al. 2011), milk 
technological properties (Ferragina et al., 2013; Visentin et al., 2015), body energy 
status (McParland et al., 2011), enteric methane emissions (Vanlierde et al., 2018), 
body weight (Soyeurt et al., 2019) or geographical origin of milk (Scampicchio et al., 
2016; Caredda et al., 2017). 

Test-day models (TDM) model individual test-day records (i.e., repeated 
measurements over time that are specific to a particular testing day) like milk yield or 
MIR traits records in dairy cattle. One of several benefits of TDM is the ability to 
account for individual animal effects and for environmental factors occurring on the 
day of milk recording (Wiggans and Goddard, 1997). Their use in genetic evaluations 
has been widely explored (e.g., De Roos et al., 2004; Hammami et al., 2009; Leclercq 
et al., 2013). However, relatively few published studies considered the use of TDM 
for prediction and management purposes. For example, Mayeres et al. (2004), 
Caccamo et al. (2008) and Gillon et al. (2010) investigated the use of TDM to predict 
future daily milk, fat and protein yields for management. Koivula et al. (2007) studied 
herd-management effect solutions from milk yield, fat and protein contents, and SCC 
TDM, and Bastin et al. (2009) explored the solutions and predictions of a TDM for 
milk urea. 

Modeling MIR traits with TDM would have numerous benefits for herd 
management, such as the prediction of future records or missing lactation records, the 
evaluation of cow responses to herd management changes by adjusting herd factors in 
the model, or simulation of new records by modifying effects in the models. Decision-
support tools incorporating such models could help farmers to detect problems 
affecting individual cows or the whole herd through direct comparison between the 
actual and predicted traits, predict the production potential of heifers, analyze the 
results of diet or environmental changes, and so on. With the increasing number of 
MIR traits (Gengler, 2016), implementing one TDM for each trait would be time- and 
resource-consuming from a workload and computational point of view. Therefore, 
predicting the whole milk MIR spectrum using TDM would be beneficial because of 
the reduction of the number of models to implement. All current and future MIR 
prediction equations could be applied to the modeled spectra to predict all MIR traits, 
without the need to do one TDM separately for each trait. Also, in some instances, 
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using the whole spectra instead of specific MIR traits could bring more comprehensive 
information.  

Several authors already modeled milk MIR spectral wavenumbers using TDM for 
genetic purposes (e.g., Soyeurt et al., 2010; Wang et al., 2016; Rovere et al., 2019), 
but few tackled the possible use for predictive and management purposes (e.g, 
Dagnachew et al., 2013b; Lainé et al., 2017). Therefore, the objective of this paper 
was to study the ability of a test-day mixed model to predict milk MIR spectra from 
first parity Holstein cows with the perspective of herd management. To do so, we 
compared observed and predicted spectral wavenumbers and we examined predicted 
MIR milk components obtained using the observed vs. predicted spectra. We tested 
different scenarios to assess the accuracy of the model when knowing more or less 
information about the cows.  

2. Materials and methods 

2.1. Modeling data 
The data used to build the model were collected from January 2012 to July 2017 by 

the Walloon Breeding Association (Ciney, Belgium) during the Walloon routine milk 
recording. A total of 467,496 test-day records from 53,781 Holstein dairy cows in first 
lactation within 541 herds were selected. Each record included the identification 
number of the cow and herd, the lactation stage (i.e., DIM), the test date, milk 
composition information (fat, protein and lactose contents, SCC), the milk MIR 
spectrum and pedigree data. Pedigree data contained 139,385 animals extracted from 
the database used for the official Walloon genetic evaluation and were limited to 
animals born after 1985. Milk MIR spectra were obtained by the analysis of individual 
milk samples on MilkoScan FT6000 spectrometers (Foss, Hillerod, Denmark) at the 
‘Comité du Lait’ laboratory (Battice, Belgium). Milk MIR spectra included 1,060 
spectral wavenumbers expressed in absorbance and covering the absorption of light 
in the infrared region located from 900 to 5,000 cm−1. All studied cows had at least 5 
test-day records per lactation and belonged to herds with more than 10 recorded cows 
in first lactation on average over the studied period. Records with fat and protein 
contents as well as milk yield out of the limits set by the International Committee for 
Animal Recording (ICAR, 2017) were discarded (i.e., 3 L < milk yield < 99.9 L, 1.5 
g/dL of milk < fat < 9 g/dL of milk, 1 g/dL of milk < protein < 7 g/dL of milk). Records 
within the 0.1% upper values and 0.1% lower values for lactose content as well as 
within the upper 0.1% values for milk somatic cells were removed. Records with DIM 
values higher than 563 (1% upper values) were also discarded.  

2.2. Preprocessing of modeling MIR spectra 
To remove baseline variation, the first derivative at wavenumber X was calculated 

on the raw spectra as the difference between the spectral wavenumber X-2 and the 
spectral wavenumber X+2. A total of 311 spectral wavenumbers out of the 1,060 were 
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retained for this study, covering three MIR spectral regions: 933 to 1,589 cm-1, 1,704 
to 1,809 cm-1 and 2,553 to 2,981 cm-1. Some spectral regions were excluded based on 
the experience of the research team; these are regions that cannot be used effectively 
as they have low signal-to-noise ratio or little relevant chemical information (e.g., 
Iñón et al, 2004; Soyeurt et al., 2010; Capuano et al., 2014). Previous studies involving 
MIR spectra also retained similar spectral regions (e.g., Grelet et al., 2016; Vanlierde 
et al., 2018).  

Spectral wavenumbers were standardized (i.e., centered and scaled) by subtracting 
the corresponding mean and dividing by the corresponding standard deviation. Then, 
principal components analysis (PCA) was carried out on the 311 standardized spectral 
wavenumbers. We performed standardization and PCA using the “stats” package in 
R (version 3.3.3; R Core Team, 2017). The PCA method extracts the information from 
a multivariate dataset and expresses it as a set of new variables called principal 
components (PC). These PC are a linear combination of the original variables keeping 
the largest amount of information contained in the original data (i.e., the PC explain 
most of the variance of the original data, Palm, 1998). The use of PCA has multiple 
advantages for this study: decreasing the number of traits to reduce computational 
operations and the independence of PC allowing separate modeling without losing 
information about the interactions between spectral wavenumbers (Soyeurt et al., 
2010). Let X(NxK) be the matrix for the 311 spectral wavenumbers for the 467,496 test-
day records where N is the number of test-day records and K is the number of spectral 
wavenumbers. The contributions of the spectral wavenumbers to each PC are given 
by the eigenvectors. The amount of variance retained by each PC is measured by its 
eigenvalue. PCA for X is expressed as:  

X(N×K) = Z(N×M) × V T
(M×K) + E(N×K) [1] 

where M is the number of PC selected (M <= K), Z(N×M) is the matrix of the PC 
scores, V T

(M×K) is the transpose of the eigenvector matrix and E(N×K) is the residual 
matrix after the M PC are extracted from X(N×K). The number of PC selected was 
based on the proportion of variance of the spectral wavenumbers explained and on the 
accuracy of the model. 

2.3. Model 
A total of M single-trait test-day mixed models was applied on the PC scores for the 

M selected PC (i.e., one model was run separately for each PC). Using single-trait 
models was preferred over a multi-trait model, because PC are phenotypically de-
correlated and because of the computational advantage for large datasets. Running 
several single-trait models in parallel (i.e., data parallelism) is faster and less 
computationally demanding than running one multi-trait model, and therefore easier 
to implement in practice (Shallue et al., 2019). The single-trait test-day mixed model 
used was defined as follows: 

y = Xb + Zu + e [2] 
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where y is the vector of observations (PC scores), b is the vector of fixed effects 
[including herd-test-year (HTY) effect, herd-test-month (HTM) effect and DIM], u is 
the vector of random effects [including herd-test-day (HTDr) effect, additive genetic 
effect, and permanent environmental effect] and e is the vector of random residual 
effects. X and Z are the corresponding incidence matrices. The distributional 
assumption about the random terms of the model was 

HTDr ~ N(0,IσHTDr
2 ), 

additive genetic ~ N(0,Aσg
2), 

permanent environnement ~ N(0,IσPE
2 ), 

e ~N(0,Iσe
2) 

where I was an identity matrix, A was the pedigree relationship matrix, σHTDr
2  was 

the variance of the herd test-day effect, σg
2 was the additive genetic variance, σPE

2  was 
the variance of the permanent environmental effect, and σe

2 was the error variance. We 
divided DIM into 38 classes of 15 d. Mayeres et al. (2002, 2004) suggested a 
remodeling of the HTD fixed effect usually used in genetic models by replacing it 
with three herd-test-related effects to allow prediction of future test-day 
measurements for predictive purposes. These three effects are a fixed herd-test month-
period effect, a fixed herd-test-year effect, and a random herd-test-day effect. The 
herd-test month-period effect and the herd-test-year effect represent the herd level and 
its seasonal trend and allow the prediction of future records, while the herd-test-day 
effect takes into account the effect of the herd at a specific date and is not assigned to 
the two other herd effects. In our study, we considered a simple herd-test-month effect 
instead of a herd-test month-period effect because the number of years considered in 
our study was higher. Variance components for random effects were estimated using 
expectation-maximization REML as described by Misztal et al. (2018). 

2.4. Spectral wavenumber predictions for the modeling dataset 
The solutions of the model were obtained using the Best Linear Unbiased Prediction 

(BLUP) method solved using the Preconditioned Conjugate Gradient algorithm 
(Tsuruta et al., 2001; Misztal et al., 2018). Estimates of the fixed and random effects 
were used to compute the predicted scores of each PC. Then the predicted 311 MIR 
spectral wavenumbers (i.e., 𝑿෡ matrix) were obtained using the equation derived from 
[1]: 

𝑿෡ = 𝒁෡ × VT [3] 

where 𝒁෡ is the matrix of the predicted PC scores and VT is the transpose of the 
eigenvector matrix of the PCA; and by adding the mean and multiplying by the 
standard deviation as data were standardized. For each spectral wavenumber, 
correlations were computed between observed and predicted values. Estimated 
variance components were also back-transformed to spectral basis using the 
eigenvector matrix. 
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2.5. Spectral wavenumber predictions for different scenarios 
Four new datasets, containing altogether 122,032 records from first parity Holstein 

cows, were used to test the ability of the model to predict accurately milk MIR 
spectrum in four distinct scenarios with different levels of information about the cows. 
These new datasets had different levels of relatedness with the modeling dataset. 
Information about each scenario and considered effect estimates for predictions are 
presented in Table 3-1.  

The 2 first scenarios corresponded to common practical situations. The first scenario 
represented predictions of future test-day spectra for cows in production. It included 
cows for which all effects were known except the HTDr. Data were collected from 
August to early December 2017 (i.e., over a four-month period after modeling data). 
As expected, the median DIM was high (i.e., 310 d), but was within the DIM range of 
the modeling set. A similar scenario with the same known and unknown effects could 
be applicable to the imputation of missing spectral records for a cow with previous 
recorded spectral data. The second scenario represented predictions of records for a 
new cow in a known herd (e.g., the evaluation of the potential of a heifer before it 
produces milk). Data were collected from August to early December 2017 and 
included cows with no known test date (i.e., unknown HTDr) and no previous animal 
data (i.e., the permanent environmental effect was unknown). 

The third and fourth scenarios were created based on records discarded when 
selecting data for the modeling dataset. The third scenario included cows with 
permanent environment as the only unknown effect. This could represent a situation 
when we want to evaluate the potential of a new cow like a heifer and compare it to 
existing test-day records of the other cows of the herd. The fourth scenario included 
cows with minimal information, i.e., only the DIM effect and the genetic effect were 
known. Data were unrelated to the modeling set regarding cows and herds, but were 
collected over the same period. This scenario, rather theoretical, would represent 
predictions of records for farms that have no spectral data, but only pedigree 
information. The interest, more academic, is to see how the accuracy would evolve 
when very little information is known. 

For each scenario, the predicted PC scores were obtained using the solutions from 
solving equations associated with the mixed model [2]. New datasets used had 
different levels of relatedness with the previous modeling dataset adding scenario 
records. The trait values (i.e., PC scores) of the scenario records were considered 
unknown during solving. The pedigree was updated compared to the modeling dataset 
in order to add animals related to the scenario cows (i.e., 191,685 animals in total). 
This strategy permitted estimation of predicted PC scores for scenario records by 
summing the solutions (i.e., fixed and random effect estimates) equivalent to those 
obtained using the modeling data. Missing effects, depending on the scenario, were 
set to zero. By extending the pedigree, solutions for the genetic effect were 
automatically computed for new animals with scenario records. These genetic 
solutions can be considered being the estimated breeding value for a cow that had 
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previous production records (i.e., scenario 1), or parent averages derived through the 
pedigree in all other situations (i.e., scenarios 2, 3 and 4). The permanent 
environmental effect solutions were known for cows with previous production 
records, but were set to an expected value of zero for other cows. The predicted PC 
scores were back-transformed to the 311 spectral wavenumbers using the PCA 
eigenvectors of the modeling set (Equation [3]) followed by de-standardization. For 
each spectral wavenumber, correlations were computed between observed values and 
predicted values. 

Table 3-1. Description of the 4 scenarios (number of records, cows and herds; effect 
estimates; and meaning) 

 
1Crosses in the effect estimate columns indicate known estimates used to calculate the predictions of 

spectral data. Unknown effect estimates were set to zero. HTY = herd-test-year fixed effect; HTM = 
herd-test-month fixed effect; DIM = fixed effect of days in milk; HTDr = random herd-test-day effect; 
Gen = random additive genetic effect; PE = random permanent environmental effect 

*An asterisk means that the genetic solutions are based on parent averages. The absence of an asterisk 
means that the genetic solutions are based on the estimated breeding value of the cow 

2.6. MIR trait predictions 
To assess the usefulness of predicted MIR spectra for practical applications, fat, 

protein, and lactose contents in milk were predicted from observed MIR spectra and 
predicted MIR spectra for the modeling dataset and scenarios. The prediction 
equations for fat, protein, and lactose contents had a cross-validation R² of 0.99, 0.99, 
and 0.91, respectively and a root mean square error of prediction of 0.06, 0.04, and 
0.06 g/dL of milk, respectively. Reference values to build these equations came from 
the predicted phenotypes obtained using the Milkoscan FT6000 (i.e., these phenotypes 
were based on the MIR spectra) because no phenotypes were available from chemical 
analysis. This explains the high R² values obtained for these prediction equations. 
Traits predicted from observed and modeled MIR spectra were compared using 
correlations, descriptive statistics and the root-mean-square error (RMSE). As a 
comparison, we also modeled directly milk fat, protein, and lactose contents using the 
TDM in equation [2]. We compared correlations between traits predicted from 
observed spectra vs. traits predicted from spectra modeled from a TDM with 
correlations between traits predicted from observed spectra vs. traits modeled directly 
from a TDM. This way, we can compare the accuracy of using prediction equations 
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on MIR spectra predicted from a TDM with the accuracy of modeling MIR traits 
directly using a TDM. 

3. Results and discussion 

3.1. Preprocessing of modeling MIR spectra 
Several preprocessing methods exist for MIR data (Rinnan et al., 2009). We chose 

first derivative because, in our study, data were collected with different spectrometers 
(but originating from the same laboratory and same brand) over several years and 
derivative is a useful technique to remove baseline variation that may occur because 
of instabilities between instruments of the same brand and over time (Owen, 1995). 
First-derivative preprocessing made data in our study more conform to normality as 
skewness and excess kurtosis were globally closer to zero after derivative (Figure 3-
1; Kim, 2013). Further analyses of our data and comparison of models using derived 
and raw spectral data suggested that first derivative was a useful pretreatment for our 
study and improved results accuracy (results not shown). Several authors who 
modeled MIR spectra using TDM previously did not precorrect spectral data (e.g., 
Bittante and Cecchinato, 2013; Wang et al., 2016; Zaalberg et al., 2019) while some 
precorrected MIR spectra using methods such as derivatives (e.g., Belay et al., 2017; 
Lainé et al., 2017) or extended multiplicative signal correction (e.g., Dagnachew et 
al., 2013a; Belay et al., 2017). Among these authors, Belay et al. (2017) indicated that 
spectral preprocessing improved prediction accuracy. Some authors stated that it is 
important to test different pretreatment methods to make the most advised choice and 
that pretreatment might only improve accuracy for some traits (De Marchi et al., 2011; 
Soyeurt et al., 2011; Mineur et al., 2017). This should be explored further.  

One advantage of PCA was the reduction of spectral variables for modeling to 
decrease computer operations. Use of PCA to reduce spectral dimensions was also 
implemented in other studies on MIR spectra (e.g., Soyeurt et al., 2010; Dagnachew 
et al., 2013a,b; Bonfatti et al., 2017). We selected a total of 12 PC, representing 96% 
of the information (i.e., total variance) contained in spectral wavenumbers. Other 
authors (e.g., Dagnachew et al., 2013a; Bonfatti et al., 2017) indicated that even less 
than 1% loss of total variation could lead to loss of relevant information. However, in 
the present study, we considered 12 PC as an optimum between dimension reduction 
and model accuracy. Indeed, although 4% of the spectral variance was lost, the 
average correlation between observed and predicted spectral wavenumbers did not 
substantially increase when adding extra PC [i.e., the correlation increased by only 
0.01 and 0.004 when increasing the number of PC from 12 to 23 (i.e., 99% of total 
variance) for modeling and scenarios, respectively; Figure 3-2]. Bonfatti et al. (2017) 
did not mention using spectral pretreatment, in contrast to the present study. When 
using raw spectra, a larger part of the variability may be noise and the remaining 
percentages may be interesting spectral variability. This might explain why even a 1% 
loss of spectral variation might lead to loss of relevant information. 
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Figure 3-1. (A) Skewness for each of the 311 selected spectral wavenumbers for the 
modeling dataset. The continuous line represents the raw spectra; circles represent the 

derived spectra. (B) Excess kurtosis for each of the 311 selected spectral wavenumbers for 
the modeling dataset. The continuous line represents the raw spectra; circles represent the 

derived spectra. 
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Figure 3-2. Average correlation between observed and predicted values for the 311 spectral 
wavenumbers according to the number of principal components selected (A) for the 

modeling dataset and (B) for the 4 scenarios datasets together. 

3.2. Variance components 
Figure 3-3 represents the percentage of total spectral variation retained by the model 

explained by the genetic, permanent environment, HTDr, and residual effects. Genetic 
and residual effects explained on average respectively 37% and 41% of the total 
variation for 79% of the wavenumbers (i.e., from 933 to 1,589 cm-1, 1,704 to 1,786 
cm-1 and 2,777 to 2,981 cm-1) while permanent environment and HTDr explained on 
average 10% and 12% for the same regions, respectively. This general pattern was 
observed in other studies (Wang et al., 2016; Lainé et al., 2017).  

In the present study, the HTDr effect was the most important effect in the spectral 
regions from 1,790 to 1,809 cm-1 and 2,553 to 2,773 cm-1. Similarly, in the study of 
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Dagnachew et al. (2013a) on dairy goat milk spectra, HTDr also had a high variance 
ratio between 2,400 and 2,800 cm-1 and around 1771 cm-1. Wang et al. (2016) 
observed a lower variance ratio explained by the genetic effect around 2,400 cm-1 to 
2,800 cm-1, similarly to the present study. Wang et al. (2016) and Lainé et al. (2017) 
found a lower proportion of variance explained by the genetic effect around 1,300 to 
1,500 cm-1, but this was not observed in our study.  

 

 

Figure 3-3. Percentage of total variance of spectral wavenumbers retained by the model 
explained by genetic, permanent environmental, herd-test-day and residual effects. 

3.3. Predictions of spectral wavenumbers 
The average correlation between observed and modeled values of the spectral 

wavenumbers was 0.85 for the modeling dataset, the minimum correlation value was 
0.67 and the maximum was 0.95 (Figure 3-4). Regarding the scenarios, on average 
correlations were the highest for scenario 3 and the lowest for scenario 4 (0.62 and 
0.36, respectively), with scenarios 1 and 2 in between (0.56 and 0.37, respectively, 
Table 3-2). We observed low correlations for spectral regions from 1,790 to 1,809 cm-

1 and from 2,553 to 2,773 cm-1 for scenarios 1, 2 and 4 (Figure 3-5). When removing 
these regions, the 1st scenario (i.e., prediction of future records) had the highest 
average correlation (r = 0.63). Comparing this with Figure 3-3, these results seemed 
logical because the variance was mainly explained by the HTDr effect in these 
regions. The high proportion of variance explained by HTDr suggests that the 
wavenumbers are influenced by test-day factors, such as daily changes of feed, 
climatic conditions, or laboratory environment. Therefore, when the HTDr effect is 
not known (i.e., scenarios 1, 2, and 4), wavenumbers predictions for this region have 
low accuracy. According to Socrates (2001), these regions are not very associated 
with main chemical information like fat, protein, or lactose content, but these could 
be associated with minor components.  
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Figure 3-4. Correlations between observed and predicted values for the 311 spectral 
wavenumbers for the modeling dataset. Min = minimum; Max = maximum. 

Table 3-2. Descriptive statistics of correlations between observed and predicted values for 
the 311 spectral wavenumbers for the 4 scenarios 

Scenario Mean Median Minimum Maximum SD 

1 0.56 0.62 0.06 0.72 0.15 

2 0.37 0.37 0.00 0.61 0.13 

3 0.62 0.59 0.30 0.89 0.12 

4 0.36 0.38 0.05 0.63 0.14 

To our knowledge, no other authors studied the predictability of spectral 
wavenumbers, so comparison with the existing literature is difficult. However, 
Dagnachew et al. (2013a) showed that for goat milk spectra PC scores for future 
records could be predicted with reasonable accuracy (correlations between observed 
and predicted PC scores ranged between 0.48 and 0.75 for the first 7 PC). In the 
present study, correlations between observed and predicted PC scores for the 12 
retained PC varied from 0.83 to 0.98 for the modeling dataset. Correlations between 
observed and predicted PC scores could not be calculated for the scenarios, because 
observed PC scores were not available as PCA was applied on modeling spectra only. 
The interpretation of individual spectral wavenumbers correlations and variance ratio 
variability is complicated because milk MIR spectra represent a combination of many 
different molecules in milk (Soyeurt et al., 2010). Not all wavenumbers have the same 
contribution in the prediction of specific traits and variation in spectral wavenumbers 
predictions might affect differently MIR traits predictions. For instance, chemical 
bonds that include nitrogen molecules (e.g., N-H, C-N) are specific to protein but less 
interesting to predict milk fat content (Socrates, 2001). Hence, comparing MIR traits 
predicted on modeled MIR spectra would be relevant.  
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Figure 3-5. Correlations between observed and predicted values for the 311 spectral 
wavenumbers for the 4 scenarios. 

3.4. Predictions of MIR traits 
One interest of the prediction of MIR traits on the modeled spectra was to see if the 

accuracy did not decrease compared to the prediction of spectral wavenumbers and if 
predicted phenotype values were in an acceptable range. The left side of Table 3-3 
presents correlations between predictions of milk fat, protein, and lactose contents 
from observed or modeled spectra. Correlations were relatively high for the modeling 
dataset as they were above 0.80. Regarding the scenarios, the first one had the highest 
correlation values for fat and lactose content (0.63 for both traits), and scenario 3 had 
the highest values for protein content (0.73). Scenarios 2 and 4 had the lowest values 
for the three milk components (i.e., 0.36, 0.62, 0.46 and 0.40, 0.64, and 0.32 for fat, 
protein, and lactose contents, respectively). Compared to fat and lactose contents, 
correlations for protein content showed a lower overall variation for the four 
scenarios. Globally, correlations for fat, protein and lactose contents varied in 
accordance with the evolution of correlations for spectral wavenumbers in the regions 
933 to 1,589 cm-1,1,704 to 1,786 cm-1 and 2,777 to 2,981 cm-1 (Figure 3-5). These 
spectral regions are associated with molecular functional groups belonging to major 
milk components like lipids, proteins or carbohydrates (Socrates, 2001; Iñón et al., 
2004; Dagnachew et al., 2013a). Milk fat is mainly associated with two spectral 
regions where the carbon-hydrogen groups (C–H) and the carbonyl groups (C=O) of 
milk fat absorb, that is to say at 2,873 and 1,747 cm−1, respectively (Socrates, 2001; 
Iñón et al., 2004). The region around 1,100 cm-1 is associated with lactose content 
(Picque et al., 1993). MIR regions located between 1,200 to 1,450 cm-1 and 1,500 to 
1,600 cm-1 correspond to protein content (Sivakesava and Irudayaraj, 2002). Superior 
accuracy for wavenumbers and MIR traits predictions for scenario 1 and 3 were 
justified by the higher number of known effects in the model compared to scenarios 2 
and 4. We expected that scenario 4 would produce the least accurate results given the 
little number of known effects included in the model. However, we noticed that 
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scenario 4 marginally outperformed scenario 2 for some wavenumbers and for the 
prediction of fat and protein contents, even though HTY and HTM effects were 
unknown. This might partly be the consequence of the different herds and cows and 
the different number of observations between these two scenarios. Indeed, scenario 4 
was composed of different cows and herds from those in the modeling set. In contrast, 
scenarios 1, 2, and 3 were partially connected to the modeling set and between them 
because they were composed of similar herds (i.e., known HTY and HTM), though 
they were of different sizes. Unfortunately, we are unable to verify this hypothesis 
with certainty due to the structure of the datasets. 

Table 3-3. Left side: correlations between fat, protein, and lactose contents (g/dL of milk) 
predicted from observed spectra vs. from spectra modeled from a test-day model (TDM); 
right side: correlations between fat, protein, and lactose contents (g/dL of milk) predicted 

from observed spectra vs. modeled directly using a TDM1  

 Traits predicted from observed 
spectra vs. from modeled 

spectra from TDM 

Traits predicted from observed 
spectra vs. modeled directly 

from TDM 

Item Fat Protein Lactose Fat Protein Lactose 

Modeling set 0.83 0.89 0.83 0.83 0.90 0.86 

Scenario 1 0.63 0.68 0.63 0.63 0.68 0.59 

Scenario 2 0.36 0.62 0.46 0.37 0.60 0.37 

Scenario 3 0.53 0.73 0.46 0.53 0.72 0.46 

Scenario 4 0.40 0.64 0.32 0.40 0.64 0.31 
1Results are presented for the modeling dataset and the four scenarios. 

For the 3 studied milk components, comparing the left and right parts of Table 3-3, 
correlations between traits predicted from observed spectra vs. traits predicted from 
spectra modeled from a TDM were very similar to correlations between traits 
predicted from observed spectra vs. traits predicted directly from a TDM. This implies 
that, for these traits, using prediction equations on MIR spectra predicted from a TDM 
did as good as modeling traits directly using a TDM. For future research, it might also 
be useful to consider other traits such as fine milk components that are less correlated 
with the major sources of variation of the spectra (Bonfatti et al., 2017). 

Table 3-4 displays mean values and standard deviations for fat, protein, and lactose 
contents predicted from observed or modeled spectra and RMSE between these traits 
predicted from observed vs. modeled spectra. For the modeling dataset and the four 
scenarios, mean values predicted from modeled spectra were very similar to mean 
values predicted from observed spectra, but standard deviations were smaller. It shows 
the ability of the model to predict values in a similar range as traits predicted from 
observed spectra on average (i.e., close to reality), but with lower variability. In all 
situations, the RMSE was the highest for milk fat content, followed by protein content 
and then lactose content. Values for RMSE were in similar ranges compared to the 
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standard deviation for the traits predicted from the observed spectra for the modeling 
set. This indicates that the error is relatively large compared to the expected variation 
of the observed traits in the population. RMSE was slightly lower for the first scenario 
(i.e., prediction of future records) compared with the 3 other cases, in line with 
globally higher correlations (Table 3-3). Even when knowing very little information 
about the cow, like for scenario 4 (i.e., only genetic and DIM effects were known), 
correlations for the 3 studied milk traits were still higher than zero and the RMSE did 
not increase sharply (Tables 3-3 and 3-4). 

Table 3-4. Mean (SD in parentheses) for fat, protein, and lactose contents (g/dL of milk) 
predicted from observed and modeled spectra and root mean square error (RMSE) between 

fat, protein, and lactose contents predicted from observed vs. modeled spectra for the 
modeling dataset and the 4 scenarios 

 
1Mean of the trait predicted from the observed spectra 
2Mean of the trait predicted from the modeled spectra 

3.5. Practical use for herd management 
The objective of this study was to test the ability of a test-day mixed model to predict 

milk MIR spectra with the perspective of herd management. Today numerous traits 
are predicted from milk MIR spectra (Gengler, 2016). One advantage of modeling the 
MIR spectrum compared with modeling MIR traits directly is that a limited number 
of models are required (i.e., one for each PC) instead of developing one model 
separately for each of the existing MIR traits. Then the existing calibration equations 
for MIR traits can be applied to the modeled spectra to predict the different phenotypes 
without additional calculations. Hence, it reduces the workload associated with the 
development of several models for the numerous MIR traits, as well as computation 
time and resources [e.g., there is no need to estimate variance components (REML) 
for each trait, which is computationally demanding]. Also, the information contained 
in the MIR spectrum is richer than the information in a few predicted traits and could 
be used as such. The information resulting from MIR spectra modeling could benefit 
farmers with their cow and herd management in many ways. Any unexpected 
variation from a usual pattern may indicate a problem. Consequently, the difference 
between observed and modeled (i.e., expected) spectra and resulting predicted MIR 
traits could be a way to detect problems like metabolic disorders, feeding problems, 
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or mastitis at the cow or herd level. It would help saving medical treatment costs and 
avoid loss of money caused by decreasing productivity or degradation of health. For 
example, changes in milk fat and protein ratio compared to an expected pattern can 
be used to detect the risk of metabolic disorders in lactating cows such as ketosis 
(Duffield et al., 1997); or unexpected changes in milk lactose, protein and minerals 
content can be used to detect mastitis (Hamann and Krömker, 1997). In addition, MIR 
spectra modeling could be used for simulations through adjustments of factors in the 
model (e.g., to predict the results of diet or genetic changes), for prediction of missing 
or future records or prediction of heifers productive potential. Also, as suggested by 
Mayeres et al. (2004), Koivula et al. (2007) and Bastin et al. (2009), studying any 
deviations in the solutions of the HTDr effect when running the model after each milk 
recording would enable the identification of herd-specific phenomena and 
management problems such as feeding problem, or seasonal difficulties. Following 
further research on the topic, also to reach sufficient accuracy, MIR spectra modeling 
and resulting tools could be implemented in practice into official milk recording 
systems. 

The results presented in this study showed that the model had a moderate accuracy. 
Consequently, its use in the current state would be limited for instance for imputation 
of missing data or rough estimations for simulations when precise data is not 
necessary. However, several improvements of the studied model are possible, and 
needed, to use it for more precise applications such as the detection of cow or herd 
problems. Adding extra effects in the model such as the age of the cow or the gestation 
stage could be necessary, but such data are not always easily available for all cows 
and herds. Besides, the studied model focused only on first-lactation cows, but, in a 
multi-lactation model, the herd effects and permanent environmental effects would be 
more precise as a consequence of having more individual data. Extending the model 
to a random regression model (e.g., using Legendre polynomials) might also improve 
predictions. There is also a need to explore further if capturing more spectral variation 
or more diverse variation would improve the accuracy, for instance using an 
alternative selection of PC or investigating other methods for the reduction of spectral 
variables. Moreover, utilization of co-variance between PC in REML and BLUP 
though multi-trait analysis would possibly improve the accuracy. Even though PC are 
phenotypically orthogonal, they have genetic, permanent environmental, HTDr and 
residual co-variance structures (Dagnachew et al., 2013a,b; Bonfatti et al., 2017; 
Belay et al., 2017). But such multi-trait models are currently very computationally 
demanding on large datasets and could impede the implementation, which is a reason 
why we preferred single trait models in this study. All these possible improvements 
need to be elaborated further, also to avoid limitations of the practical use of the 
model.  
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4. Conclusions 
This study demonstrated the moderate ability to predict milk MIR spectra using a 

test-day mixed model. The prediction accuracy varied for the different spectral 
wavenumbers and depended on the effects known in different situations. This 
influenced the prediction accuracy of related MIR traits. More research is required to 
improve the accuracy of predictions for potential promising applications for dairy herd 
management.  
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Outline 
This chapter illustrates the implementation of a MIR tool and the interest of 

combining MIR-predicted data with other data streams to provide more 
comprehensive information for decision-making. The research uncovers the 
relationships between MIR enteric methane (CH4) production and technical and 
economic variables of commercial dairy herds in the Walloon region of Belgium. 
Enteric CH4 is becoming an increasing concern because of its global warming 
potential and its importance in the environmental footprint of dairy production. The 
obtained results contribute to identifying practices associated with reduced lactating 
dairy cow CH4 production in practice, and to assess the economic viability of herds 
emitting little CH4 in a context of sustainable dairy farming. This could influence both 
farmers’ approach to achieving CH4 reduction and the ways in which policymakers 
could provide effective support, for example in the context of climate policies 
targeting agricultural emissions.  
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Abstract 
Considering economic and environmental issues is important in ensuring the 

sustainability of dairy farms. The objective of this study was to investigate univariate 
relationships between lactating dairy cow gastro-enteric methane (CH4) production 
predicted from milk mid-infrared spectra and technico-economic variables by the use 
of large scale and on-farm data. A total of 525,697 individual CH4 predictions from 
milk mid-infrared spectra [MIR-CH4 (g/day)] of milk samples collected on 206 farms 
during the Walloon milk recording scheme were used to create a MIR-CH4 prediction 
for each herd and year (HYMIR-CH4). These predictions were merged with dairy herd 
accounting data. This allowed a simultaneous study of HYMIR-CH4 and 42 technical 
and economic variables for 1,024 herd and year records from 2007 to 2014. Pearson 
correlation coefficients (r) were used to assess significant relationships (P < 0.05). 
Low HYMIR-CH4 was significantly associated with, amongst others, lower fat and 
protein corrected milk (FPCM) yield (r = 0.18), lower milk fat and protein content (r 
= 0.38 and 0.33, respectively), lower quantity of milk produced from forages (r = 0.12) 
and suboptimal reproduction and health performance (e.g. longer calving interval (r = 
-0.21) and higher culling rate (r = -0.15)). Concerning economic results, low HYMIR-
CH4 was significantly associated with lower gross margin per cow (r = 0.19) and per 
litre FPCM (r = 0.09). To conclude, this study suggested that low lactating dairy cow 
gastro-enteric CH4 production tended to be associated with more extensive or 
suboptimal management practices, which could lead to lower profitability. The 
observed low correlations suggest complex interactions between variables due to the 
use of on-farm data with large variability in technical and management practices. 

 

Keywords: dairy cow, methane production, economy, herd management, mid-
infrared 
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1. Introduction 
According to the Intergovernmental Panel on Climate Change (IPCC), agriculture 

and forestry are responsible for 24% of the greenhouse gases (GHG) emitted 
worldwide (Intergovernmental Panel on Climate Change, 2014). Cattle production 
represents the largest part of this, generating carbon dioxide, CH4 and nitrous oxide. 
Gastro-enteric CH4 from anaerobic fermentation of feed in the rumen and hindgut is 
the largest source of cattle GHG, representing 46.5% of total cattle emissions (FAO, 
2013). In addition to environmental pollution, 2 to 12% of gross energy is lost through 
CH4 emissions, which reduces the consumed energy available for the cow (Johnson 
and Johnson, 1995).  

Understanding factors influencing gastro-enteric CH4 production from dairy cows 
is an important step in reducing its impact. These factors have been widely studied 
and include: the level of dry matter intake (DMI); feed composition (e.g., starch, fiber, 
and lipid content); feed processing; herd management (e.g., breed, available 
grasslands); and genetics (e.g., Gerber et al., 2013; Hristov et al., 2013; Pickering et 
al., 2015). However, such studies were usually conducted using a small number of 
animals and farms. In addition, the effects of a limited number of factors at a time 
were usually studied under controlled conditions in experimental settings, with other 
factors being fixed (e.g., Brask et al., 2013; Hart et al., 2015; Hatew et al., 2016).  

Beyond this, results on the relationship between gastro-enteric CH4 and the 
economic performance of dairy herds are scarce in the research literature. The only 
economic aspects studied are the estimation of the cost of specific enteric CH4 
mitigation measures, such as the adoption of specific feeding strategies (e.g., Van 
Middelaar et al., 2014; Moraes et al., 2015). Studies analyzing the link between all 
GHG emissions at the farm level and economic results have also been carried out in 
several countries, but these did not focus on gastro-enteric CH4 production only and 
assumed equal CH4 emissions for all cows in the herd, often based on literature 
reference values or mechanistic models (e.g., Beukes et al., 2009; Thomassen et al., 
2009; O’Brien et al., 2015). Given the economic difficulties encountered by dairy 
farmers (i.e., volatile milk price, increasing input prices), it would be useful to study 
such relationships in order to avoid profitability loss when global management 
strategies to mitigate CH4 production are adopted.  

A major issue for any study of gastro-enteric CH4 at a herd level in a commercial 
environment is the difficulty in providing reasonable estimates of CH4 production on 
a large scale. Recent advances have been reported on the use of milk mid-infrared 
(MIR) spectra and lactation stage-based predictions (Vanlierde et al., 2015), which 
have already been used successfully in a large-scale study on lactating dairy cows 
(Vanlierde et al., 2016).  In this context, the objective of the present study was to 
investigate the univariate relationships between lactating dairy cow gastro-enteric 
CH4 production (g/day) predicted from milk MIR spectra and technical and economic 
variables in commercial dairy herds. To achieve this objective, individual cow milk 
MIR CH4 predictions were pooled for each herd and each year and associated with 
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technical and economic variables from the corresponding herds and years. 
Correlations were used to study univariate relationships between milk MIR CH4 and 
technico-economic variables. 

2. Materials and methods 
Operations of data editing, processing, and statistical analyses were implemented 

using SAS® 9.4 software (Statistical Analysis Software, SAS Institute Inc. Cary, NC, 
USA) and R 3.4.1. 

2.1. Data 
Two different datasets were merged to achieve the objectives of this study: the 

Walloon milk recording database and the dairy herd accounting database (containing 
economic and technical variables) both managed by the Walloon Breeding 
Association (awé groupe, Ciney, Belgium). The milk recording dataset includes milk 
production and milk composition data as well as milk MIR spectra expressed on 
individual cow and test-day level. Milk MIR spectra are obtained by the analysis of 
individual milk samples on MilkoScan FT6000 spectrometers (Foss, Hillerod, 
Denmark) at the ‘Comité du Lait’ laboratory (Battice, Belgium). Milk recording data 
were collected every 4 or 6 weeks. This study used 525,697 individual records from 
40,314 dairy cows in 206 herds registered for the Walloon milk recording from 
January 2007 to April 2014. The accounting dataset contains technical and economic 
data expressed at herd and year level. All studied herds had Holstein as the main breed, 
at least 5 months of milk recording per accounting year, more than 10 cows per 
recording day, and more than 60% of cows registered for milk recording. Data were 
combined to obtain 1,024 records including technical and economic variables as well 
as a milk MIR CH4 prediction calculated on a herd and year basis. 

2.1.1. Technical variables 

The list and descriptive statistics of technical variables, divided into four categories, 
are presented in Table 4-1. The category ‘dairy herd characteristics’ includes variables 
relative to the number of cows, calvings, and culling. ‘Meat production’ includes meat 
production per hectare of forage area. The category ‘milk production’ includes milk 
yield variables and milk composition variables. The category ‘feed’ relates to forage 
areas management and concentrate feed. All technical variables used in this study 
concern dairy cows only and do not take young stock into account, except the 
following variables: meat production per ha forage area, size of the forage area, 
mineral nitrogen on grasslands, number of livestock units per ha of forage area and 
percentage of conserved forages in the forage area. These apply to young animals 
from the dairy herd such as heifers and calves, as well as to the dairy cows. 

 

 



Chapter 4: Relationships between MIR CH4 production and technico-economic performances 

71 
 

Table 4-1. Description of the technical variables for the 1,024 dairy cow herd_year records 

Variables Mean SD 

Dairy herd characteristics   

No. dairy cows (n_cows) 84 36 

No. dairy cows per unit labour supply (n_cows.labour) 53 18 

Culling rate (%) (culling_percent) 25.7 7.7 

Age at first calving (month) (first_calving) 29 2.8 

Age of culled cows (month) (culling_age) 74.6 10.1 

No. calvings per cow (n_calvings) 0.92 0.12 

Calving interval (days) (CI) 436 28 

Meat production   

Meat production per ha of forage area (kg/ha) (meat.ha) 328.6 96.4 

Milk production   

Milk yield (l/cow per year) (milk) 7,253.4 1,007.4 

Fat and protein corrected milk (FPCM) yield (l/cow per year) 
(FPCM) 

7,534.7 1,023 

Milk produced per ha of forage area (l/ha) (milk.ha) 9,978.7 2,389.2 

Milk fat (%) (fat_percent) 4.26 0.16 

Milk protein (%) (prot_percent) 3.47 0.09 

Milk solids (kg/cow per year) (milk_solids) 560.5 76.7 

Feed   

Size of the forage area (ha) (forage_area) 61.6 23.7 

Mineral nitrogen on grasslands (kg/ha) (nitrogen_grass) 116 57 

No. livestock units (LU) per ha forage area (LU/ha) (LU.ha) 2.89 0.59 

Concentrate equivalents fed to dairy cows (kg/cow per year) 
(concentrate_feed) 

1,863.9 584.8 

Concentrate equivalents fed to dairy cows per litre FPCM 
(kg/l) (concentrate_feed.L) 

0.245 0.064 

Milk produced from forages (l/cow per year) (forage_milk) 3,801.8 1,027.4 

Milk produced from fresh grass (l/cow per year) (grass_milk) 861.3 1,255.6 

Percentage of conserved forages in the forage area (%) 
(conserved_forages) 

53.5 12.3 

 

2.1.2. Economic variables 

The list and descriptive statistics of economic variables, divided in six categories, 
are presented in Table 4-2. All economic variables are part of two economic 
indicators: the gross margin and profit allocated to the dairy cows, expressed per cow 
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(€/cow per year), or per litre of fat and protein corrected milk (FPCM) (€/litre FPCM). 
They are calculated in the accounting database as: 

 

Gross margin = (value of milk production 

+ value of meat production from cows 

+ value of meat production from calves) 

– (purchased feed costs 

+ proportional costs related to the forage area 

+ herd costs)     (1) 

 

Profit = gross margin – fixed costs  (2) 

 

All variables included in equations (1) and (2) and in Table 4-2 concern dairy cows 
only, without taking young stock into account. The value of meat production from 
calves, which only takes into account the value of new-born calves, is also included 
in the dairy cow gross margin and profit as it is a production from the dairy cows. 
Herd costs include veterinary costs, medicines, litter, and miscellaneous costs. The 
gross margin and profit (per cow or litre FPCM) were corrected to remove the year 
effect caused by large fluctuations in milk and purchased feed prices over the years. 
This step is necessary in order to analyze data from different years together as one 
dataset. The two variables ‘value of milk production’ and ‘purchased feed costs’ (per 
cow or litre FPCM) were therefore corrected as follows: 

 

Corrected value of milk production = 

 
௏௔௟௨௘ ௢௙ ௠௜௟௞ ௣௥௢ௗ௨௖௧௜௢௡

஺௩௘௥௔௚௘ ௔௡௡௨௔௟ ௣௥௜௖௘ ௙௢௥ ଵ଴଴ ௟ ௢௙ ௠௜௟௞
 

×Average price (for all years) for 100 l of milk     (3) 

 

Corrected purchased feed costs =  

  
௉௨௥௖௛௔௦௘ௗ ௙௘௘ௗ ௖௢௦௧௦

஺௩௘௥௔௚௘ ௔௡௡௨௔௟ ௣௥௜௖௘ ௢௙ ௧௛௘ ௖௢௡௖௘௡௧௥௔௧௘ ௘௤௨௜௩௔௟௘௡௧
 

×Average price (for all years) of the concentrate equivalent     (4) 

 

Corrected gross margin and profit were calculated by summing their respective 
components (equations (1) and (2)), including the two corrected variables (equations 
(3) and (4)). 
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Table 4-2. Description of the economic variables for the 1,024 dairy cow herd_year 
records 

Variables Mean SD 

Meat production   

Value of meat production from cows (€/cow per year ) 
(cow_meat) 

-143.8 73.1 

Value of meat production from cows per litre fat and protein 
corrected milk (FPCM) (€/l) (cow_meat.L) 

-0.019 0.010 

Price of culled cows (€) (culled_cows_price) 632.1 141.5 

Value of meat production from calves (€/cow per year) 
(calf_meat) 

124.5 36.6 

Value of meat production from calves per litre FPCM (€/l) 
(calf_meat.L) 

0.017 0.005 

Price of sold calves (€) (calves_price) 133.9 45.1 

Milk production   

Value of milk production (€/cow per year) (milk_production) 2,450.1 363.6 

Value of milk production per litre FPCM (€/l) 
(milk_production.L) 

0.325 0.014 

Feed costs   

Purchased feed costs (€/cow per year) (feed_costs) 519 163.7 

Purchased feed costs per litre FPCM (€/l (feed_costs.L) 0.068 0.017 

Other variable costs   

Variable costs related to the forage area (€/cow per year) 
(forage_area_costs) 

208 74.1 

Variable costs related to the forage area per litre FPCM (€/l) 
(forage_area_costs.L) 

0.028 0.009 

Herd costs (€/cow per year) (herd_costs) 161.2 56.1 

Herd costs per litre FPCM (€/l) (herd_costs.L) 0.021 0.007 

Fixed costs   

Fixed costs (€/cow per year) (fixed_costs) 900.7 219.9 

Fixed costs per litre FPCM (€/l) (fixed_costs.L) 0.121 0.031 

Economic indicators   

Gross margin (€/cow per year) (gross_margin) 1,542.6 287.9 

Gross margin per litre FPCM (€/l) (gross_margin.L) 0.205 0.028 

Profit (€/cow per year) (profit) 641.9 329.5 

Profit per litre FPCM (€/l) (profit.L) 0.084 0.041 
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2.1.3. Herd- and year-based milk MIR methane predictions 

Milk MIR CH4 predictions from individual cows were pooled to obtain one 
prediction for each herd and year. First, CH4 production (g/day) (MIR-CH4) from 
individual lactating dairy cows was predicted from the recorded milk MIR spectra 
using the dependent-lactation-stage equation developed by Vanlierde et al. (2016). 
The equation has cross-validation R2 and standard error of 0.70 and 70 g/day, 
respectively. We consider the equation to be appropriate for the milk MIR spectra 
used in this study as reference values in the calibration set came from similar Walloon 
herds (Vanlierde et al., 2016). MIR-CH4 records were predicted only for cows with 
days in milk between 5 and 365. To discard potential outlier records, MIR-CH4 
predictions with a standardized Mahalanobis distance from the calibration set higher 
than 10 were discarded (Whitfield et al., 1987) as well as the 0.5% upper and 0.5% 
lower data. Second, one MIR-CH4 prediction was calculated for each herd and each 
year (i.e., herd_year based MIR-CH4; HYMIR-CH4) in order to match technico-
economic variables expressed on a herd and year basis. In this way, for each herd and 
year, the median of individual MIR-CH4 records was calculated for each month of 
milk recording. The median was used instead of the mean because it is less affected 
by potential extreme values that could occur within a test day of milk recording. The 
median values were corrected for the year effect as follows: 

 

Corrected MIR-CH4 monthly median = (MIR-CH4 monthly median – annual MIR-
CH4 mean) + MIR-CH4 mean for all years 

 

Then, for each year, the corrected herd_year median values were modeled using the 
GLM with herd and month as fixed effects. The least squares mean of the herd effect 
obtained was finally used as HYMIR-CH4 for all further analyses. CH4 production 
(g/day) was used as methane trait preferentially to CH4 intensity (g/kg milk) in this 
study because it appeared that CH4 intensity was very highly correlated with milk 
yield (r = -0.94 vs. r = 0.11 for HYMIR-CH4), meaning that most studied relationships 
would have been dependent on milk yield. 

2.2. Relationships study 
The normality of the distribution for HYMIR-CH4 and technico-economic variables 

was assessed by measuring skewness and kurtosis. Non-normal variables were 
transformed using a base 10 logarithm function. The relationships between each 
technico-economic variable and HYMIR-CH4 were studied individually by using 
Pearson correlation coefficients (r). The correlation values were deemed significantly 
different from zero when P values were lower than 0.05. Relationships between 
HYMIR-CH4 and technico-economic variables were tested for quadratic effect by 
using the generalized linear model with a quadratic term to ensure they were 
appropriate for correlation analysis requiring approximate linear relation.  
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3. Results 
The mean for HYMIR-CH4 was 476 g/day, with a SD of 15.8 g/day. The minimum 

and maximum values were 423 g/day and 526 g/day, respectively.  

3.1. Technical variables 
Correlations between HYMIR-CH4 and technical variables are presented in Figure 

4-1. Significant r (P < 0.05) ranged between |0.06| and |0.38|. Regarding herd 
characteristics, low HYMIR-CH4 herds had a higher culling rate (r = -0.15), higher 
age at first calving (r = -0.09), lower age of culled cows (r = 0.06), longer calving 
interval (r = -0.21) and a lower number of calvings per cow (r = 0.10). Low HYMIR-
CH4 was also associated with a higher number of dairy cows (log10) (r = -0.13) and a 
higher number of dairy cows per unit labour supply (r = -0.10). Looking at meat 
production, the number of kilograms of meat produced per hectare of forage area did 
not change depending on the level of HYMIR-CH4 (P > 0.05). Concerning milk 
production variables, milk fat and protein percentages were lower in low HYMIR-
CH4 herds; the correlation with HYMIR-CH4 was the highest for these two variables 
(r = 0.38 and 0.33, respectively). Low HYMIR-CH4 herds produced less milk (r = 
0.11), less FPCM (r = 0.18), less milk solids (r = 0.20) and less milk per hectare of 
forage area (r = 0.08) compared to high HYMIR-CH4 emitters. As for feed, the size 
of the forage area (log10) was larger (r = -0.14) and the number of livestock units per 
hectare was lower (r = 0.07) for herds producing less HYMIR-CH4. Lower HYMIR-
CH4 production was associated with a lower quantity of mineral nitrogen applied on 
grasslands (r = 0.15) as well as a lower quantity of milk produced from forages (r = 
0.12) and from fresh grass (r = 0.09). The quantity of concentrate equivalents fed per 
litre FPCM and the proportion of conserved forages in the forage area did not show 
any significant trend for low or high HYMIR-CH4 herds (P > 0.05), though there was 
a trend (0.05 < P < 0.10) for higher concentrate equivalents per cow for high HYMIR-
CH4 herds.  

3.2. Economic variables 
Correlations between HYMIR-CH4 and economic variables are presented in Figure 

4-1. Significant r (P < 0.05) ranged between |0.07| and |0.19|. HYMIR-CH4 was 
positively linked to gross margin per cow and per litre FPCM (r = 0.19 and 0.09, 
respectively). The profit per cow and per litre FPCM followed the same positive trend 
as the gross margin (r = 0.18 and 0.16, respectively). Regarding meat production, low 
HYMIR-CH4 was associated with a lower value of meat production from cows 
expressed either per cow or per litre FPCM (r = 0.15 and 0.19, respectively). The value 
of meat production from calves per cow (log10), the price of culled cows, and the price 
of calves (log10) were also lower for herds producing less HYMIR-CH4 (r = 0.07, 0.08 
and 0.08, respectively). The value of milk production per cow was lower for herds 
producing less HYMIR-CH4 (r = 0.16), but there was no significant relationship for 
the value of milk production per litre FPCM (log10) (P > 0.05). Feed costs per cow 
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and per litre FPCM were not significantly different for herds with low or high 
HYMIR-CH4 (P > 0.05). Regarding other costs, low HYMIR-CH4 herds had lower 
variable costs related to the forage area per cow (r = 0.13). There was a trend (0.05 < 
P < 0.10) for lower variable costs related to the forage area per litre FPCM for low 
HYMIR-CH4 herds. No relation was observed for the herd costs per cow (P > 0.05), 
but low HYMIR-CH4 was associated with higher herd costs per litre FPCM (log10) (r 
= -0.07). Fixed costs per litre FPCM (log10) were higher for herds emitting less 
HYMIR-CH4 (r = -0.14), but there was no significant relationship for fixed costs per 
cow (P > 0.05). 

 

 

Figure 4-1. Heatmap of correlations between lactating dairy cow herd_year based milk MIR 
CH4 production (HYMIR-CH4) and herd_year technico-economic variables. Abbreviations 

for technico-economic variables are provided in Table 4-1 and Table 4-2. Variable with 
names ending with ‘.log10’ were log-transformed. White colour means non-significant 

relationship (P > 0.05). 
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4. Discussion 

4.1. Herd- and year-based milk MIR methane predictions  
HYMIR-CH4 values were within the range of CH4 measurements reported in the 

literature, varying from 300 to 600 g/day, though the SD was inferior to those reported 
in previous papers for individual cows, varying from 50 to 150 g/day (e.g., Hart et al., 
2015; Hatew et al., 2016; Hristov et al., 2016). The reason is that HYMIR-CH4 is 

expressed at the herd level, which reduces the individual cow variability existing 
within herds.  

An important consideration about the obtained results was that the univariate 
relationships between HYMIR-CH4 and technico-economic variables were weak as r 
were always lower than |0.38|. Despite this, significant relationships were highlighted 
and general assumptions could be made. The observed relationships could be direct 
or indirect and do not imply causality. 

4.2. Relationship with milk composition 
It was observed that, amongst technical variables, milk fat and protein content were 

the variables that best correlated with HYMIR-CH4 (r = 0.38 and 0.33 respectively; 
Figure 4-1). An increase in milk fat and protein content was associated with higher 
HYMIR-CH4 (Figure 4-1). These relationships were not just an artifact of the method 
used to predict CH4 in this study. Indeed, MIR-CH4 predictions obtained by the 
equation were not just the result of specific milk components already predicted by 
MIR but the result of the new recombination of global spectra information using other 
spectral regions (Dehareng et al., 2012; Vanlierde et al., 2015). The relationship 
between HYMIR-CH4 and fat content is partially explained by the fact that milk fat 
content and composition and CH4 production are both dependent on ruminal 
fermentation (Dehareng et al., 2012). Carbohydrates are the primary source of energy 
for the cow. The end products of carbohydrate degradation are, amongst others, 
volatile fatty acids (VFA; the three principle VFA are acetate, butyrate, and 
propionate), CO2, and H2. During the fermentation process, acetate and butyrate 
promote CH4 production. The same VFA also increase the fat content in milk, 
especially short-chain saturated fatty acids (Moss et al., 2000; National Research 
Council, 2001). In practice, on the one hand, Soyeurt et al. (2006) showed a 
correlation of 0.95 between milk fat content and the proportion of milk saturated fatty 
acids (FA) (constituting 70% of total milk FA). On the other hand, Chilliard et al. 
(2009) showed a positive relationship between daily CH4 production and milk 
saturated FA. This could explain why milk fat content was positively linked to 
HYMIR-CH4 in the present study.  

Regarding protein content, there is little evidence in the literature to suggest that 
milk protein content is related to CH4 production. A possible explanation might be 
that higher DMI might be needed in order to provide more energy for higher milk 
protein production. This would also lead to more CH4 production as DMI is a driver 
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for CH4 production (National Research Council, 2001; Muetzel, 2011). Additionally, 
there could be an indirect relationship between HYMIR-CH4 and milk protein content 
due to the positive correlation existing between milk fat content and milk protein 
content (Figure 4-1). 

4.3. Relationship with milk yield 
In the current study, increasing milk or FPCM production as well as milk solids 

yield was associated with increasing HYMIR-CH4 (Figure 4-1). Garnsworthy et al. 
(2012a) showed that CH4 production was positively related to milk yield (R² = 0.50). 
This also agrees with the findings of Gerber et al. (2011). The reason mentioned by 
Garnsworthy et al. (2012a) was that milk yield is positively linked to DMI, which is 
a primary driver for CH4 production. In contrast, Bell et al. (2014) showed that the 
link between milk yield and CH4 production (mg/l of eructed air) varied amongst 
commercial farms; CH4 production increased with increasing milk production on most 
farms, but decreased on some farms. The author suggested that this disparity may 
reflect differences in cow diet composition, energy efficiency, and management. 
Kandel et al. (2017) also cited similar arguments to explain the weak relationship 
observed between MIR CH4 production and milk yield (r = 0.33) in their study. For 
example, Holstein herds selected for higher feed efficiency can produce more milk at 
a given level of DMI compared to Holstein herds with a lower feed efficiency, which 
means higher milk yield without higher production of CH4 (as CH4 production is 
correlated with DMI) (Muetzel, 2011; Kristensen et al., 2015). The role of different 
diets fed to low- or high-yielding dairy cows (e.g., forages vs. concentrates) can also 
have an impact on the relationship between milk yield and CH4 production (cf. 
paragraph below). This might explain the weak relationships observed in the current 
study involving herds with different genetic performances and management practices.  

4.4. Relationship with feed 
The effect of diet type on CH4 has largely been studied in controlled experiments. 

For example, concentrate feed is known to decrease CH4 emissions per kg DMI 
through higher propionate production in the rumen (hydrogen sink) compared to 
acetate (hydrogen source used by methanogens to generate CH4) and through 
accelerated passage rate in the digestive tract. However, it could increase CH4 
production per cow and day in some cases because of increased feed intake, though 
different effects were observed depending on the context of the experiment (Moss et 
al., 2000; Knapp et al., 2014). In the current study, there was no relationship observed 
between HYMIR-CH4 and the quantity of concentrate equivalents given per cow or 
per litre FPCM. There was, however, a slight trend (0.05 < P < 0.01) towards lower 
HYMIR-CH4 for herds fed less concentrate equivalents per cow, in line with some 
literature results (Figure 4-1, Knapp et al., 2014). It also appeared that low HYMIR-
CH4 herds had a lower quantity of milk produced from forages and fresh grass (Figure 
4-1). This could be due to lower intake of forages and fresh grass. This lower intake 
could be the result of lower genetic DMI capacity, which is known to reduce CH4 
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production (Muetzel, 2011), or a lower proportion of grass in the diet compared to 
other feed for some herds. Indeed, a lower proportion of forages and grass may lead 
to less CH4 per unit DMI because of lower acetate production in the rumen compared 
to propionate (Moss et al., 2000). Lower DMI could also be due to lower forage 
quality (more fibrous and less digestible – reflected by less nitrogen on grasslands in 
this study; Figure 4-1) (Warner et al., 2015). Similarly to our study, Bell et al. (2014) 
investigated differences in CH4 production between different diets on commercial 
dairy farms in the same country (partial mixed ration v. partial mixed ration with 
grazed pasture), but found no significant difference. The reason suggested by the 
author was that diets could be all of relatively equal quality despite different 
components, or that more detailed information on diet composition was needed. 
Besides, in the current study low HYMIR-CH4 herds seemed to show some 
characteristics of more extensive management of forage areas – that is a lower number 
of livestock units per ha, lower milk production per ha, and lower quantity of mineral 
nitrogen applied on grasslands (Figure 4-1).  

4.5. Relationship with herd characteristics 
In addition, the obtained results revealed that herds producing less HYMIR-CH4 

seemed to have lower reproduction and health performances (i.e., herd characteristics, 
Figure 4-1). Information about similar relationships is scarce in the literature, but 
indirect relationships could be assumed. According to Lucy (2001), a longer calving 
interval or lower number of calvings per cow (observed in this study for low HYMIR-
CH4 emitters; Figure 4-1) might reflect reproduction problems. According to Drogoul 
et al. (2004), higher age at first calving, as observed for low HYMIR-CH4 emitters in 
this study (Figure 4-1), can be associated with suboptimal nutrition or reproduction 
problems in heifers. A higher culling rate and a lower age of culled cows, also 
observed for low HYMIR-CH4 emitters (Figure 4-1), could be associated with herds 
that have more health (e.g. lameness, mastitis), fertility or production problems 
(Adamczyk et al., 2017). According to Lucy (2001) and Windig et al. (2005), it is 
possible that suboptimal reproductive management could be linked to less global care 
of the herd by the farmer, suboptimal feeding and health conditions, all three of which 
are also often linked to lower milk production performances (associated with low 
HYMIR-CH4 in this study). A higher number of cows per labour supply for low 
HYMIR-CH4 emitters (Figure 4-1) might also mean that the farmer has less time to 
care for all cows well. These assumptions could explain the observed indirect 
relationships with HYMIR-CH4. 

4.6. Relationship with economic results 
Lower gross margin and profit per cow and litre FPCM were associated with low 

HYMIR-CH4, though large variability between herds was observed, meaning that it is 
possible to find lactating dairy herds with both reduced CH4 production and good 
economic results. Due to the lack of information regarding dairy cow gastro-enteric 
CH4 production and economy, the interpretation of the relationships between HYMIR-
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CH4 and economic variables was based on interactions with the technical variables 
discussed previously. 

The lower gross margin per cow for low HYMIR-CH4 herds was the result of the 
lower value of milk production and the lower value of meat production from cows and 
from calves expressed per cow (rvalue of milk production per cow|gross margin per cow = 0.75, rvalue of meat 

production from cows per cow|gross margin per cow = 0.28 and rvalue of meat production from calves per cow|gross margin 

per cow = 0.26, Figure 4-1). In this study, the value of meat production from cows was 
calculated on the basis of the value of the kg exported out of the dairy herd (i.e., sold 
animals such as culled cows, dead animals), plus kg related to inventory change, 
minus kg imported into the dairy herd (i.e., heifers becoming cows and purchased 
cows). The observed lower value of meat production from cows expressed per cow 
could thus partly be due to higher a culling rate observed in the technical part (rculling 

rate|value of meat production from cows per cow = -0.47, Figure 4-1). Indeed, a higher culling rate 
would mean more heifers are needed, which usually have higher value than culled 
cows. Another reason could be the slightly lower value for culled cows (rprice of culled 

cows|value of meat production from cows per cow = 0.36, Figure 4-1).  

The value of meat production from calves took into account the value of new-born 
calves sold or raised on the farm. The observed lower value of meat production from 
calves expressed per cow for low HYMIR-CH4 emitters could be partly explained by 
a lower number of calvings per cow (rnumber calvings per cow|value of meat production from calves per cow 
= 0.40, Figure 4-1). The observed lower value of milk production from cows 
associated with low HYMIR-CH4 emitters was the result of lower milk production 
(rmilk yield|value of milk production per cow = 0.95, Figure 4-1). The lower variable costs related to 
the forage area per cow for herds producing less HYMIR-CH4 might be partly 
explained by decreased chemical inputs for low HYMIR-CH4 emitters (rmineral nitrogen on 

grasslands|variable costs related to the forage area per cow = 0.20, Figure 4-1) or by lower contracting costs. 

Regarding the gross margin per litre FPCM, the observed lower value for low 
HYMIR-CH4 emitters was probably mainly the result of lower value of meat 
production from cows per litre FPCM and higher herd costs per litre FPCM (rvalue of 

meat production from cows per litre FPCM|gross margin per litre FPCM = 0.41 and rherd costs per litre FPCM|gross margin 

per litre FPCM = -0.51, Figure 4-1). Lower profit per litre FPCM for low HYMIR-CH4 
herds was also due to increased fixed costs per litre FPCM (rfixed costs per litre FPCM|profit per 

litre FPCM = -0.74, Figure 4-1). The lower value for meat production from cows per litre 
FPCM could partly be due to a higher culling rate (rculling rate|value of meat production from cows per 

litre FPCM = -0.46, Figure 4-1) or a slightly lower value for culled cows (rprice of culled 

cows|value of meat production from cows per litre FPCM = 0.40, Figure 4-1). The observed reduction in 
herd costs and fixed costs per litre FPCM with increasing HYMIR-CH4 was most 
probably due to the dilution effect of slightly higher FPCM yield, because herd costs 
and fixed costs per cow did not vary with HYMIR-CH4. 

4.7. Intensity of the relationships  
The weak relationships between HYMIR-CH4 and technico-economic variables in 

this study could be due to other factors in addition to those already explained above 
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for specific variables. First, this study used a CH4 indicator (cross-validation R² =0.70; 
Vanlierde et al., 2016) and no direct measurements on animals, which could have led 
to some imprecisions. In contrast, studies involving respiration chambers for CH4 
measurement are expected to reduce CH4 variation compared with on-farm CH4 
measurements (Garnsworthy et al., 2012b; Bell et al., 2014). Also, the present study 
comprised technico-economic variables and CH4 predictions expressed at the herd 
level. A similar study with individual cow data could make it possible to confirm these 
relationships or to find new ones, but some individual data are not easily available on 
a large scale. Besides, as mentioned in the introduction, CH4 production is influenced 
by several factors, with some important drivers reported in scientific literature being 
DMI and feed composition, which are themselves influenced by many other factors. 
Therefore, other variables that were not available in the databases used in this study 
might be more strongly associated with HYMIR-CH4 (e.g., herd genetics, concentrate 
and forage type and composition, farm environment, Hristov et al., 2013, Knapp et 
al., 2014). Moreover, it is important to highlight that there was a large diversity of 
animals and management practices between herds in the studied dataset. This means 
that several management factors varied simultaneously and in different ways for all 
commercial farms considered, with possible antagonistic effects and interactions. This 
differed from many studies reported in the literature in which animals often had a 
similar genetic background and were housed under the same conditions. In those 
studies, the effect of only one factor on CH4 production was usually assessed with 
other factors being fixed (e.g., Garnsworthy et al., 2012a; Warner et al., 2015). These 
reasons can explain the low correlations obtained in the present study, which arguably 
better represent the reality on commercial farms.  

5. Conclusion 
In conclusion, this study highlighted the fact that low lactating dairy cow gastro-

enteric CH4 production was associated, on a herd and year level, with lower milk fat 
and protein percentages and lower FPCM yield, as well as with other characteristics 
such as more extensive management of forage areas or suboptimal reproduction and 
health performances. Results suggested that some of these characteristics lead to 
lower economic performances for herds producing less CH4. Due to the use of on-
farm data, the relationships observed in the present study were weaker than in research 
conducted in controlled conditions, and large variability in technical and management 
practices was observed for herds with similar CH4 production. This implies that the 
numerous relationships between HYMIR-CH4 and technico-economic variables 
should be further studied in more detail, including the consideration of interactions 
and co-evolution aspects between variables. Conclusions drawn in this study 
regarding CH4 production could contribute to advanced studies taking into account 
other GHG and environmental impacts such as those assessed by life cycle analyses. 
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Outline 
The objective of this chapter is to explore, in the light of the work carried out in this 

thesis, some strengths as well as some issues and considerations regarding the 
development of management decision-support tools in dairy farming using milk MIR. 
In the end, a general conclusion and future prospects will be drawn. 
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1. Strengths of MIR for the development of decision-
support tools 

1.1. Easy, cheap and large-scale acquisition of MIR data  
Significant strengths of milk MIR for the development and utilization of decision-

support tools are the easy availability of milk MIR spectra and MIR traits at low cost 
and on a large scale via milk samples collected routinely in official milk recording 
schemes and milk payment systems. First, MIR data are easy to obtain because the 
collection of milk samples is simple to implement on the farms and does not require 
any supplemental manipulation of the animals beyond daily milking (i.e., non-
invasive method), and because subsequent analyses of milk samples are fast and 
inexpensive (i.e., a spectrometer can offer a high throughput of around 500 samples 
per hour – the main cost coming from the sample collection; Gengler and Soyeurt, 
2020). For instance, in the Walloon region of Belgium, the price for milk recording, 
including MIR analysis for conventional traits and somatic cell count, is 
approximately 250€ per test day for a herd of 90 cows and with samples collected by 
a technician (awé groupe, 2020). In addition, many existing and future MIR traits 
could be predicted at a low price for the farmers, because all traits are predicted on 
the same spectrum that is already collected (i.e., no supplementary sample collection 
or analysis in the laboratory would be required, apart from the costs associated with 
the development of the prediction equations). MIR data are collected regularly on a 
large scale, i.e., bulk tank milk samples are collected at each milk collection on the 
farm (± every 2 days) for all herds, and individual milk samples are collected usually 
on a monthly basis for herds enrolled in milk recording services. In practice, the 
proportion of dairy farmers participating in a milk recording scheme is still limited in 
some countries (e.g., approximately 35% of dairy cows are recorded in the Walloon 
region of Belgium and in Poland) while it is higher in other countries (e.g., around 
90% of German dairy cows and 70% of Canadian dairy cows are recorded; GGI-
Spermex, n.d; Bucek et al., 2014; awé groupe, 2018; Canadian Dairy Information 
Centre, 2018). Different assumptions can be made to explain the disparity in 
participation rates in official milk recording services, such as the education level of 
farmers, incentives or obligations from governments, or the understanding of benefits 
of MIR (e.g., farmers could be more likely to enroll in a milk recording program if 
scientists demonstrate its ability to translate into increased profits).  

1.2. Association and comparability of MIR data  
The use of MIR spectrometry through milk recording and milk payment systems 

enables to collect spectral data on individual farms and then associate data from 
different farms. Comparison of MIR spectral data within and between farms is quite 
straightforward because (1) milk samples are collected and analyzed following 
general standard procedures and the spectrometers regularly undergo quality controls 
to ensure the acquisition of accurate spectral data (ICAR, 2017, 2019), and (2) 
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collected data are gathered and can be saved in regional or national central databases 
for an extended period of time. For instance, in the Walloon region of Belgium, MIR 
spectra are available in a central database since 2007. Different spectrometers have 
specific instrumental responses, especially different models or brands. To associate 
spectra from different instruments (e.g., from different countries), adjustments of 
predicted data to reference standards can be made (i.e., slope and bias correction, 
Lynch et al., 2006). This method is only applicable when reference samples are 
available (e.g., for fat, protein and lactose contents), which is too expensive or even 
impossible for many new traits like CH4 production or body energy status (McParland 
et al., 2011; Vanlierde et al., 2018; Grelet et al., 2019). Hence, standardization 
procedures have been developed to harmonize directly the spectral responses of 
instruments and allow the merging of data from different instruments, as described by 
Grelet et al. (2015, 2017a), Bonfatti et al. (2017) and Tiplady et al. (2019). 
Standardization will be discussed further in connection with the research conducted 
in this thesis in section 2.2.2 of the present chapter. In comparison, associating and 
comparing information from different farms is more difficult with other tools such as 
on-farm precision farming tools, which are mostly separated from standard recording 
systems. Information collected by on-farm technologies often stays on the farm 
(Gengler, 2019). Comparing and sharing information is more complicated with these 
technologies, among others because standardization among apparatus is more difficult 
and because computer tools are required to exchange data between systems and to 
export data to central databases independent from the manufacturer (e.g., Ori-
Automate, FIDOCL Conseil Elevage, n.d.). Consistency and comparability of 
collected MIR spectral data are important for research studies and the development of 
MIR tools as well as for the application of the developed tools (Grelet et al., 2015). 
As a practical example, regarding Walloon milk recording services, statistics on milk 
composition predicted from MIR are reported monthly to the farmers (both for each 
animal and at the herd level) and the herd values for milk fat and protein contents are 
compared with the mean values of all enrolled Walloon farms so that the farmer has 
a concrete benchmark for comparison. The same procedure could be imagined for 
other predicted MIR traits. 

1.3. A versatile method for the development of customized tools 
at the herd and animal levels  
MIR has the advantage of being a versatile method, with multiple potential 

applications to support herd and individual cow management decisions. To make 
improvements in the dairy sector and enhance its resilience, more specific information 
to each herd and animal should be evaluated in the future (Marchewka et al., 2018). 
As such, MIR enables the development of customized tools at the herd or at the animal 
level, i.e., tools that provide personalized, and not generic, information for decision-
making about individual animals or a specific herd. Measuring indicators on 
individual animals to improve management strategies and performances is in the 
scope of precision dairy farming (Bewley, 2010). As already mentioned, MIR is 
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commonly used in the field to predict major milk components (e.g., fat and protein 
contents) of individual animals and the whole herd (ICAR, 2017). Besides, many 
research institutions have recently explored MIR to predict other direct or indirect 
traits of interest, although perspectives of applications on farms were more contrasted. 
These traits were related for instance to fine milk composition (e.g., Soyeurt et al., 
2006a; Bonfatti et al., 2011), milk technological properties (e.g., Visentin et al., 2015) 
or cow physiological status (e.g., Soyeurt et al., 2019; Ho et al., 2019), as also 
approached in Chapters 2 and 4 with the pregnancy status and CH4 production. In 
addition to the development of prediction equations, the large amount of available 
MIR spectra collected over long periods of time and stored in central databases allows 
to carry out research studies and develop tools requiring a great number of phenotypes 
and that can provide valuable information for decision-making, such as genetic 
evaluations or population studies. Test-day models using MIR traits are widely used 
in genetic studies (e.g., to derive breeding values in genetic evaluations) but, as shown 
in Chapter 3, they can also be used for individual cow and herd management purposes 
(e.g., for the detection of problems or prediction of future data). These models require 
a large number of records collected on a regular basis because a sufficient amount of 
data by class of each effect is needed to have a reliable estimation of solutions (Bastin 
et al., 2009). In the context of this thesis, 467,496 individual spectra from 53,781 
Holstein dairy cows in first lactation were used in Chapter 3 to model milk spectra 
using test-day models. Population studies (i.e., study of a MIR trait in a population) 
providing information to support decision-making, similar to the study in Chapter 4, 
are also possible thanks to the large-scale availability and comparability of MIR data. 
In Chapter 4, a high number of herds was required to conduct a large-scale study, and 
a high number of records was required for each herd, with an even distribution 
throughout the year, in order to have a representative estimate for CH4 production at 
the herd and year level.  

1.4. From day-to-day decisions to long-term impacts and 
strategic decisions  
Tools developed with MIR and applied to large databases, for instance as part of 

milk recording or milk payment, can guide decisions with short, medium or long-term 
impacts for dairy farming, and can also guide decisions at the political or research 
level. Thus, the scope of MIR to support decisions is quite large. 

Short-term impacts of MIR decision-support tools refer to day-to-day management 
decisions taken on dairy farms. In the field, milk recording agencies or dairy advisors 
would be able to interpret outputs of MIR tools and transfer them to farmers to advise 
or alert them (e.g., when threshold values for traits of interest are reached). This could 
help with feeding decisions (e.g., adjusting the diet based on herd or individual 
performances), culling decisions (e.g., identifying cows performing below the 
average), pasture management, mating decisions, heifers replacement, grouping 
decision (e.g., separating cows in different feeding or management groups), etc. 
(Bewley, 2010; ICAR, 2017). This better day-to-day monitoring of dairy farmers’ 
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management systems would improve their dairy production on numerous aspects 
including economic aspects (e.g., reducing costs or increasing revenues), reduction of 
adverse environmental impacts, improved animal welfare, or improved product 
quality (Bewley, 2010). In Chapter 2, we concluded that MIR, at the current stage, is 
probably not sufficient to diagnose pregnancy at early stages. However, a possible 
application that could arise from the model is the detection of mid and late-term fetal 
abortion because the model accuracy was promising for advanced pregnancy. That 
would help farmers decide, for example, which cows need to be re-inseminated after 
pregnancy loss (i.e., mating decisions) and avoid loss of money due to non-calving or 
long delay of calving (De Vries, 2006). This is an example of short-term decisions 
based on MIR and with an economic interest. In addition, in Chapter 3, the aim of 
potential future applications related to MIR spectra modeling (e.g., comparison of 
observed vs. expected MIR spectra or traits, or studying deviations in the solutions of 
the herd effects) is also to provide short-term decisions regarding individual cows and 
herd management (e.g., detecting problems by identifying meaningful deviations from 
the expected pattern). 

Medium and long-term impacts of MIR tools concern decisions about herd 
development (e.g., herd replacement) as well as breeding programs and selection 
decisions. MIR traits can help make decisions for breeding programs (e.g., cows with 
low milk solid content or poor fertility can be inseminated with appropriate bulls to 
improve these traits over time in the herd). MIR traits can also be used in genetic and 
genomic evaluations that support selection decisions, for example by deriving 
breeding values or selection indices using MIR traits (Gengler et al., 2016). From an 
environmental point of view, environmental-related traits such as MIR-predicted CH4 
could be included in selection indices to breed for CH4-efficient cows, providing it 
does not impede the selection of other important traits (Vanrobays, 2019). Also, 
decisions related to breeder association activities and selling breeding animals require 
recording data in many cases (ICAR, 2017).  

Beyond decisions taken on farms, MIR tools are interesting for research and 
strategic decisions, that can indirectly influence farm management practices. For 
example, MIR tool outputs can be used in research programs aiming to broaden 
general knowledge and understanding in dairy farming (e.g., Soyeurt et al., 2006b; 
Visentin et al., 2018), as shown in Chapter 4 of this thesis (i.e., the aim was, among 
others, to understand management practices associated with CH4 emissions). Outputs 
of MIR tools and subsequent research could also guide political decisions (or milk 
buyers) about possible incentives in dairy farming (e.g., bonus/subsidies or 
penalties/taxes). In Chapter 4, findings about the relationships between MIR-predicted 
CH4 production and technico-economic results could be useful to guide future 
research on the carbon footprint of milk or for policymakers. We found out that low 
MIR enteric CH4 production (g/day) tended to be associated with more extensive or 
suboptimal management practices, which could lead to lower profitability. However, 
an important point is that observed relationships (i.e., correlations) were weak, which 
made it difficult to associate specific practices with CH4 emissions with certainty. This 
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indicates that the links between CH4 production and farm practices are complex, with 
possible antagonistic effects and interactions with various management factors. These 
results suggest that relationships between CH4 and farming practices should be studied 
in more detail in future research (i.e., with real farm data, and not experimental data 
in a controlled environment) to know more about determinants of CH4 emissions. This 
is also a sign that policymakers should not take decisions on policies aiming to reduce 
enteric CH4 emissions on farms before it is studied and understood further. 

2. Issues and considerations regarding the 
development of MIR decision-support tools 
Following on from the above discussion, we cannot deny that MIR has many 

strengths for the development of management decision-support tools. Recently, 
several research projects (e.g., OptiMIR – developing prediction tools based on MIR) 
have been optimistic regarding the ability of MIR to predict many traits of interest for 
practical use. However, as also stated in the introduction, finally only a limited number 
of MIR management tools are currently used on farms. Several models developed in 
a research context proved to be too little accurate or robust, either at the first research 
stages or during the validation process (e.g., Soyeurt et al., 2009; Eskildsen et al., 
2014; Visentin et al., 2016; Bonfatti et al. 2020). In addition, challenges also appear 
at the implementation stage, thereby limiting the number of tools effectively used in 
practice. In this context, the research conducted in the framework of this thesis raised 
several issues and considerations regarding the development of MIR tools to support 
decision-making. For more clarity, we separated our different remarks in four sub-
categories: (1) the prediction of indirect MIR traits, (2) data selection (quality and 
variability of data), (3) choice and validation of models, and (4) practical 
implementation of the developed tools. 

2.1.  On the prediction of physiological status-related traits and 
other indirect MIR traits 
MIR has proven to be an accurate method for the quantification of the main milk 

components that have a direct footprint in the milk spectrum and that are present in a 
high concentration such as fat, protein, or lactose contents. In this case, the final 
purpose of MIR is to replace the gold standard/reference values even if slope and bias 
corrections must be performed regularly to ensure this high reliability (Barbano and 
Clark, 1989; Lynch et al., 2006). Subsequently, MIR has been explored for the 
quantification of minor milk components present in lower concentration in milk (e.g., 
mineral contents, fatty acids, protein fractions), with somewhat more limited accuracy 
(e.g., Soyeurt et al., 2006a; Soyeurt et al., 2009; Bonfatti et al., 2011). More recently, 
MIR has been used to investigate the prediction of several physiological status-related 
traits and other indirect traits with the aim of improving economic or environmental 
performances of dairy production or animal welfare. Examples are the body energy 
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status (McParland et al., 2011), likelihood of conception (Ho et al., 2019), methane 
emissions (Vanlierde et al., 2018), body weight (Soyeurt et al., 2019) or pathologies 
like ketosis (Grelet et al., 2016, 2019). Indeed, milk composition is considered as a 
biomarker and accessible source of information on the physiological status of dairy 
cows because of the interaction between blood circulation and milk composition 
(Gengler et al., 2016). However, many of these traits have complex relationships with 
milk composition and an indirect and sometimes little detectable footprint in the milk 
spectrum. MIR is not expected to detect very small differences in milk composition 
or differences in components present in very low concentration in milk, and changes 
in milk composition must be relevant to be captured by chemometric methods 
(Eskildsen et al., 2014). Besides, the relationship between some indirect traits (e.g., 
lameness, early pregnancy) and milk composition might be quite erratic or not obvious 
(Bonfatti et al., 2020). Therefore, the prediction accuracy for such traits is often 
limited (i.e., poor to moderate) and sometimes MIR fails altogether to predict the 
targeted trait. For example, Bonfatti et al. (2020) concluded that results of the 
prediction of the lameness score using MIR were considered to be too poor to envisage 
a practical application as on-farm tools or to be used as large-scale phenotype for 
animal breeding purposes. Grelet et al. (2017b) found out that MIR was able to predict 
the energy status of dairy cows (i.e., energy balance, residual feed intake, dry matter 
intake, and blood metabolites) with only limited accuracy as R² of cross-validation 
ranged between 0.33 and 0.68 depending on the trait.  

Similarly, low ability of MIR to predict the pregnancy status of dairy cows was 
observed in Chapter 2 of this thesis. Early stages of gestation were the most interesting 
stages to diagnose, but they could not be predicted successfully from MIR 
information. Only the model developed using data recorded at 151 days or more after 
insemination (i.e., late pregnancy) showed promising prediction accuracy with the 
average value of AUC of 0.78 and 0.76 obtained through cross-validation and testing, 
respectively. This low global ability to predict pregnancy with MIR could be partly 
attributed to the indirect and complicated relationship between pregnancy and milk 
composition and to the uncertain existing footprint in milk spectra in early gestation 
stages. Indeed, different factors such as endocrine changes, reduced feed intake and 
greater nutritional demand for the growing fetus during pregnancy potentially 
contribute to altering milk composition, and several research studies reported changes 
in milk composition only after a few months of gestation (e.g., Olori et al., 1997; 
Roche, 2003; Penasa et al., 2016). Beyond what has been discussed in Chapter 2, we 
noticed that testing AUC were slightly higher than 0.5 (i.e., between 0.59 and 0.65) 
for the models at early stages after insemination (before 151 days after insemination). 
We hypothesized that these values could partly reflect the ability of the cow to get 
pregnant (i.e., likelihood of conception), as studied by Hempstalk et al. (2015) and Ho 
et al. (2019), and not only the true pregnancy status. One must be careful that a trait 
might actually be related to another and the model might not predict only the true 
effect of the targeted trait, but also catch the signal associated with a closely related 
trait, as also suggested by Eskildsen et al. (2014).  
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Likewise, the MIR CH4 equation used in Chapter 4 of this thesis had a moderate 
prediction accuracy (i.e., cross-validation R² and standard error of 0.70 and 70 g/day, 
respectively; Vanlierde et al., 2016). Enteric CH4 production is a complex trait and 
has an indirect relationship with milk composition (especially fatty acids) because 
both are dependent on fermentations in the rumen (Dijkstra et al., 2011; Vanrobays et 
al., 2016). In ruminants, milk fatty acids come from dietary lipids transported in the 
blood (long-chain fatty acids) and de novo synthesis in the mammary gland based on 
the volatile fatty acids acetate and butyrate coming from dietary carbohydrates (short- 
and medium-chain fatty acids). CH4 emissions are also associated with higher acetate 
and butyrate concentration in the rumen (Moss et al., 2000; Dehareng et al., 2012), 
which explains the relationship between milk fatty acids and CH4 emissions. CH4 is 
also a good illustration of the influence of other factors on the relationships between 
a trait and milk components. Indeed, milk fatty acid profiles are influenced by 
lipomobilization during the lactation, leading to a non-constant link between CH4 and 
fatty acids and therefore non-constant prediction coefficients throughout the lactation 
(Vanlierde et al., 2015; Vanrobays et al., 2016).  

In short, physiological status-related traits and other indirect traits usually have 
complex relationships with milk composition; their prediction is not always 
straightforward and requires good knowledge about how these traits interact with milk 
composition. As many of these traits are difficult to predict with high accuracy, they 
can be used as indicators or proxies that have a low cost but are reliable enough, rather 
than replace reference methods (De Marchi, 2014; Gengler et al., 2016). The 
utilization of MIR indicators will be discussed further in section 2.4.1. Nevertheless, 
we have to acknowledge that MIR is not flawless and can fail to predict certain traits 
with sufficient accuracy for practical use, even as indicators (e.g., early pregnancy), 
especially if the fingerprint/signal in the milk MIR spectrum is not strong enough to 
be detectable. 

2.2. Data selection 
This section addresses the importance of the quality and variability of reference and 

spectral data as a prerequisite for the development of accurate and robust MIR tools 
and for appropriate implementation. The accuracy of a model is the degree to which 
its results conform to the correct value or standard (Lexico, n.d.). The robustness of a 
model is its ability to take uncertainties into account and to perform well even if it is 
applied in various situations or if its assumptions are somewhat violated (i.e., 
flexibility; Mathematical Modelling Company, n.d.). Robustness is particularly 
important for practical implementation purposes.  

2.2.1. Quality of reference data  

MIR spectrometry is an indirect technique and needs precise reference analyses (i.e., 
good quality phenotypes) to develop accurate prediction equations. However, this is 
difficult for some traits like lameness, CH4 emissions, mastitis, or pathologies like 
ketosis (e.g., Bonfatti, 2020; Grelet et al., 2019; Vanlierde et al., 2018). Regarding the 
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MIR CH4 prediction equation used in Chapter 4, reference values were measurements 
conducted with the sulfur hexafluoride (SF6) tracer gas technique (Vanlierde et al., 
2016). The basic idea behind the method is that CH4 production is measured based on 
the CH4/SF6 ratio in a representative gas sample from which the emission of SF6 (the 
tracer gas in a bolus placed in the rumen) is known (Storm et al., 2012). As explained 
by Vanlierde (2019), adaptations of the classical protocol were made to ensure reliable 
SF6 measurements of CH4 emissions. However, the open-circuit respiration chamber 
method, measuring all gas flows and composition, is still regarded as the gold standard 
for CH4 measurement (Grainger et al., 2007). Reasons for the use of SF6 over 
chambers is the lower cost (i.e., no need for special expensive infrastructures), it does 
not require confinement of the animals (e.g., measurements can be done for grazing 
animals) and it is less labour-intensive (Grainger et al., 2007; Storm et al., 2012). 
Recently, Vanlierde (2019) added chamber reference values to the SF6 values to refine 
the prediction of MIR CH4, also adding more variability to the dataset (i.e., increased 
number of countries, cows, breeds, lactation stages, parities and herd management 
practices). Repeating the study in Chapter 4 using the latest MIR prediction equation 
would be useful to see if results would be modified.  

As for reference values in Chapter 2, the pregnancy status was defined using records 
of insemination and the corresponding calving date. These reference data can be 
considered very accurate. The only minor concern is that early embryonic losses 
(during the first days after insemination) might not have been detected, i.e., the cow 
was pregnant for a short period and then returned to heat, but in the data this short 
pregnancy period was not mentioned if it was not noticed by the farmer. Thus, a small 
proportion of spectra could have been erroneously associated with open status even if 
their status was actually pregnant. From a hypothetical point of view, this might affect 
the model. However, as this happens at very early stages after insemination, it is not 
expected to affect milk composition yet and, as such, it should not affect the model 
accuracy. Data related to later abortions were excluded from the beginning already. 

2.2.2. Quality of spectral data 

The quality of spectral data is important for both the development and the 
implementation of MIR tools such as prediction equations and test-day models. This 
quality is ensured, among others, by the milk sampling procedure, laboratory analyses, 
cleaning and preprocessing of spectra, and potential standardization of spectra if 
required (Rinnan et al., 2009b; Grelet et al., 2015; ICAR, 2019).  

Quality checks should be performed on spectral data to identify inconsistent or 
inaccurate data (i.e., outliers) that should be removed in order to avoid adverse effects 
on subsequent analyses or models (Zhang et al., 2019). For example, in this thesis, 
unusual spectral records were removed based on inconsistent values for some 
common MIR-predicted traits such as fat or protein contents (cf. Chapter 3) or based 
on the standardized Mahalanobis distance (i.e., global H distance, GH; cf. Chapter 2). 
Other methods also exist, for instance regarding quantitative prediction models, 
samples with residuals higher than 2.5 times the standard deviation of all residuals 
could be considered as outliers (Rousseeuw et al., 2006; Grelet et al., 2019).  
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In addition, spectral preprocessing is a suitable step to remove unwanted variation 
(e.g., instrumental artifacts) to focus more on the variation of interest (Engel et al, 
2013). Spectral preprocessing compensates for deviations from linear relationships 
between absorbance and concentration and consequently improves the linear 
relationships between the spectral signal and analyte concentrations (i.e., Lambert-
Beer’s law; Rinnan et al., 2009b). The most common types of preprocessing 
techniques are those which do not need reference values for the preprocessing 
operations; they are referred to as reference-independent preprocessing (Rinnan et al., 
2009b). Reference-independent preprocessing techniques can be divided into two 
subgroups: derivative methods (e.g., first or second derivatives, Savitzky–Golay) and 
scatter correction methods (e.g., multiplicative signal correction, standard normal 
variate; Rinnan et al., 2009b; Engel et al., 2013). Based on previous experience from 
our research team, the first derivative was chosen as preprocessing method in Chapters 
2 and 3 to remove baseline variation that may occur because of instabilities between 
instruments of a given brand and over time (Owen, 1995). In Chapter 4, a first 
derivative was also calculated on the raw spectra, as required to use the MIR CH4 
equation developed by Vanlierde et al. (2016). Besides, in Chapters 2 and 3, spectra 
were centered and scaled as a common preprocessing technique in PLS-DA models 
and PCA, and this also corrects for scattering effects (Rinnan et al., 2009b). We only 
chose the first derivative as main pre-correction to avoid applying too severe 
preprocessing that could remove the valuable information, as suggested by Rinnan et 
al. (2009a). In many cases, preprocessing strategies are selected based on past 
experience or on the identification of artifacts in the spectra, but this does not always 
guarantee appropriate selection. Indeed, as stated by Engel et al. (2013), the choice of 
one or several optimal preprocessing method(s) may strongly influence the results of 
the spectral analyses or models, but it is not straightforward, and different techniques 
need to be tested depending on the characteristics of our specific dataset and the goal 
of our analyses. This is a point we need to address more conscientiously for future 
research.  

Before developing a model using MIR spectra, it is common to select the spectral 
wavenumbers located in the most informative regions and to remove noisy regions 
with low signal-to-noise ratio induced by water absorption (e.g., Iñón et al, 2004; 
Capuano et al., 2014; Grelet et al., 2016). Water absorption regions are situated 
between ~1,600 and 1,700 cm-1 (O-H bending region) and above ~3,000 cm-1 (O-H 
stretching region; Tiplady et al., 2019). In Chapter 2, we selected 538 spectral 
wavenumbers out of 899 (i.e., Bentley spectrometer) for the study, in the regions from 
928 to 1,596 cm−1 and from 1,693 to 3,025 cm−1. In Chapter 3, a total of 311 
wavenumbers out of the 1,060 (i.e., Foss spectrometer) were retained, covering the 
regions from 933 to 1,589 cm-1, from 1,704 to 1,809 cm-1 and from 2,553 to 2,981 cm-

1. Similar regions were conserved in both studies, even though more restrictive regions 
were used in the second one. Figure 3-3 in Chapter 3 revealed that the variance in the 
regions from 1,790 to 1,809 cm-1 and from 2,553 to 2,773 cm-1 was mainly explained 
by the herd-test-day effect (i.e., the wavenumbers are influenced by test-day factors, 
such as daily changes of feed, climatic conditions or laboratory environment). Some 
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authors reported that the spectral wavenumbers between ~1,800 and ~2,800 cm-1 
(encompassing the two abovementioned regions with high herd-test-day variance) 
have no specific bands or useful chemical information (e.g., Iñón et al., 2004; 
Dagnachew et al., 2013). Hence, this region was removed in some studies in the 
literature (e.g., Grelet et al. (2016), Grelet et al. (2019), and Lainé et al. (2017) retained 
in total 212 spectral wavenumbers). Nevertheless, other authors stated that, although 
these wavenumbers are not associated with main chemical information, they could be 
associated with minor components (e.g., Socrates, 2001). Regions with high herd-test-
day variance may be useful to study test-day effects for the purpose of detecting daily 
herd or analysis problems. Further, some authors even stated that water absorption 
regions should still be considered for investigation (after reduction of interference 
from water absorption) because they include absorbance peaks for chemical bonds 
related to non-water milk components (e.g., Bittante and Cecchinato, 2013; Wang and 
Bovenhuis, 2018). These noisy water absorption regions could also be used to identify 
potential dependence structures in the data that could affect model accuracy (Wang 
and Bovenhuis, 2019). These considerations are worth exploring in the development 
of future MIR tools. 

Standardization was described in section 1.2 of this chapter in the context of the 
combination of spectra from different spectrometers that have different instrumental 
responses (Grelet et al., 2017a; Bonfatti et al., 2017; Tiplady et al., 2019). In addition, 
when the spectra are collected over different years, there might be some shifts in the 
machine response and spectra across time, even when using the same instrument 
(Tiplady et al., 2019). These variations can be the consequence of, for example, 
electric drift or detector instability (Bonfatti et al., 2017). Standardization of spectra 
can be used to correct for such shifts over time. However, we used non-standardized 
spectra in the three studies carried out in this thesis. The reasons were that we used 
spectra from the same spectrometer brand and the same laboratory in each study, and 
we applied a first derivative on the spectral data, which partly corrects for potential 
spectral drifts over time (Owen, 1995). Regarding spectra modeling (Chapter 3), we 
tried to build the same model with standardized spectra and the results were very 
similar, showing that standardization was not needed. However, when we want to use 
data coming from different laboratories and/or spectrometer brands, the 
standardization of MIR spectra is useful. In future studies, we can make sure that there 
are not any potential spectral drifts over time (even when using standardization 
because shifts might also appear if standardization coefficients are not calculated 
frequently enough) using exploratory analysis such as plotting the scores of principal 
component analysis (PCA) performed on the spectra over time (Bonfatti et al., 2017).  

2.2.3. Variability of reference and spectral data 

A sufficient number of reference data and spectral data with the largest possible 
variability (e.g., various cows, breeds, lactation stages, parities, diets, management 
practices) is needed to develop robust MIR models for practical use (Berry et al., 2013; 
Vanlierde et al., 2018). The dataset used to build a model must include a maximum of 
variability that could be encountered in the field. Applying a model to a sample not 
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covered by the calibration dataset used to build the model is likely to lead to flawed 
predictions. Consequently, it is also important to ensure that the model is suitable for 
each new milk spectrum, for instance by assessing if the new data are in the variability 
covered by calibration data or by calculating the GH between the spectrum to be 
predicted and the calibration spectra used to build the model (Berry et al., 2013; 
Grelet, 2019). Collecting a large number of data with high variability is often 
challenging (especially for reference data), mainly because of the cost and time 
required. Many MIR prediction equations reported in the literature were developed on 
a limited dataset, sometimes because they were first developed for research purposes 
(e.g., Bonfatti et al., 2011; Grelet et al., 2019; Visentin et al., 2015). When publishing 
results of a prediction equation and other models, it is important to mention clearly 
the limits of validity and, when appropriate, to advertise that the models developed on 
limited data need to be refined with a larger amount of data and more variable data to 
increase their robustness for practical implementation. 

In Chapter 2 of this thesis, we used a moderate number of available data to develop 
the MIR prediction equation for the pregnancy status, especially for the second and 
third strategy (i.e., 6,754 calibration records the first approach, 1,664 calibration 
records for the second approach and between 348 and 1,566 calibration records for 
the third approach depending on the class). Data were from a limited number of herds 
(19) with mainly similar management practices (pasture-based). Adding extra data 
with higher variability, for example following collaboration with other countries, 
would be beneficial to confirm the obtained results, including the potential application 
to detect fetal abortion. In this case, standardization of spectral data would be needed 
for harmonization of spectral data among different spectrometers (Bonfatti et al., 
2017; Grelet et al., 2017a; Tiplady et al., 2019).  

In Chapter 4, the MIR CH4 prediction equation used was created using, among 
others, reference values from Walloon dairy cows (Vanlierde et al., 2016). Therefore, 
we considered the equation to be appropriate for the MIR spectra used in the study, 
originating from the Walloon milk recording scheme. Additionally, the GH was used 
to discard spectra that were too distant from spectra in the calibration set used to build 
the equation. The MIR CH4 equation validity domain has been extended recently, 
among others by including data from more countries with different management 
practices (Vanlierde, 2019). 

Regarding Chapter 3, MIR spectra used in the test-day models were limited to herds 
enrolled in the Walloon milk recording system and we selected only first lactation 
Holstein cows. Consequently, one has to be aware that the accuracy (cf. Figure 3-4 
and Table 3-2) and utilization of the model is only valid within these limits. When the 
model is applied to a different population or when there are changes over time (i.e., 
when there is a potential (co)variance change), variance components need to be re-
estimated (van der Werf, n.d). There is a need to add more data, including other 
lactations (at least until the third lactation then we can assume that the variance 
components estimated for this third lactation could be equal to the ones estimated for 
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later lactations) and breeds (e.g., multiple-lactation model and one separate model per 
breed) to expand the use of the model to more diverse situations. 

2.3. Model development 
The choice of an appropriate model according to the data and the objective, and the 

subsequent validation of the model are important to have accurate and robust MIR 
tools that are easy to implement. Some aspects of model selection and validation will 
be discussed based on Chapters 2 and 3. 

2.3.1.  Choice of the model 

In Chapter 2, we used the classical PLS-DA method to classify cows as open or 
pregnant based on MIR spectra. PLS-DA is the most widely used supervised 
discrimination method for spectral data because it performs dimensionality reduction 
while carrying out classification at the same time, which is appropriate when there are 
many highly correlated explanatory variables (Rozenstein et al., 2015). Accordingly, 
this method is relevant due to the high number of spectral wavenumbers, of which 
some, especially the ones close to each other, are highly correlated (i.e., collinearity). 
However, other machine learning algorithms have recently been used in the 
development of MIR prediction models (e.g., Shahinfar et al., 2014; Hempstalk et al., 
2015; Pradle et al., 2018; Tremblay et al., 2019). Machine learning is an application 
of artificial intelligence that provides computers the ability of automatically building 
statistical models that can generate predictions based on what they have learned and 
without being explicitly programmed (Hempstalk et al., 2015). It is legitimate to ask 
if alternative machine learning algorithms could outperform PLS-DA for the 
prediction of the pregnancy status, so we did extra research to find out more. 
Following on from the results in Chapter 2, we focused on the third strategy (the most 
promising strategy studied), i.e., the consideration of separate models for 7 classes of 
records based on the number of days after insemination (progressively greater 
gestation). We tested several alternative machine learning algorithms to classify cows 
as open or pregnant (using the Caret package in R, version 3.6.0; Kuhn, 2019), i.e. 
random forest, support vector machine (SVM), artificial neural network (ANN), 
logistic regression, naive Bayes classifier and k-nearest neighbors (KNN). The models 
used are classifiers. More information about how these algorithms work can be found 
in Kotsiantis et al. (2006) and Hempstalk et al. (2015). These particular models were 
selected because they are commonly used for classification, they represent different 
machine learning approaches to classify data and they have different levels of 
complexity. For example, the three last machine learning methods (naive Bayes 
classifier, logistic regression, and KNN) are simple methods that can be more 
appropriate for small datasets than more abstract methods like ANN (Forman and 
Cohen, 2004; Kotsiantis et al., 2006). A limitation in the use of other methods than 
PLS-DA lies in the collinearity and the high dimensionality of spectral data, especially 
compared to the little number of data in each of the 7 classes after insemination 
(between 348 and 1,566 records for calibration). A large number of predictive 
variables could among others cause the models to overfit (i.e., the model fits too 
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closely to a particular dataset and learns from features that represent noise) and 
perform poorly in external validation (Hempstalk et al., 2015). Therefore, dimension 
reduction while limiting collinearity is recommended before implementing the 
machine learning models. Many methods for variable selection and dimension 
reduction exist (e.g., Andersen and Bro, 2010; Anzanello and Fogliatto, 2014), 
including the popular PCA method and the partial least squares (PLS; or PLS-DA for 
classification) factorization method. PCA is commonly used to reduce the dimensions 
of datasets with correlated variables. This methodology takes into account only the 
variability of the independent variables (i.e., spectral data) and not the variability of 
the trait to predict (i.e., the pregnancy status), which could lead to loss of relevant 
information. Therefore, we decided to use PLS-DA factorization, for which the latent 
variables are calculated in such a way to explain the greatest variance between the 
predictors and the response (Nguyen and Rocke, 2002). PLS-DA latent variables were 
extracted from the PLS-DA model used in Chapter 2. The optimal number of PLS-
DA latent variables was chosen by the PLS-DA model (i.e., number maximizing 
cross-validation performances) and could be different for each of the 7 classes. 
Validation of the models and performance evaluation were carried out as presented in 
Chapter 2 (same protocol as for strategy 3, but other machine learning algorithms with 
prior dimension reduction were tested instead of PLS-DA). The results for the test set 
are presented in Table 5-1 for the 2 last classes of records after insemination only (i.e., 
151 days or more after insemination), because these are the groups for which the 
results were the most promising. The area under the receiver operating characteristic 
curve (AUC), sensitivity, and specificity of the alternative machine learning 
algorithms were very similar to PLS-DA. The class probabilities for correctly 
classified records (i.e., “score of certainty” for classification) are not comparable 
between different algorithms because they are calculated differently. In short, given 
these results, we cannot conclude that any other algorithm tested was superior to PLS-
DA for the prediction of the pregnancy status in dairy cows. Conclusions for the 5 
first classes of records after insemination were similar (results not shown). Other 
methods of dimension reduction or variable selection to reduce the number of 
predictors are worth exploring for future research, such as recursive feature 
elimination (Granitto et al., 2006; Spetale et al., 2016; Bahl et al., 2019).  

Beyond the accuracy of the model, it is interesting to consider the computational 
efficiency and ease of implementation when the goal is to deploy MIR models through 
a production environment, which is not often taken into account and discussed in 
scientific papers. For example, some powerful algorithms such as neural networks 
usually take a long time to run the first time but, when new data are incorporated in 
the calibration set, it is possible to update the coefficients in some models considering 
only the new data instead of having to train the entire model again (i.e., incremental 
learning, Castro et al., 2018). This is appreciated when new data are regularly 
available. Figuring out the best algorithm to use in terms of accuracy and efficiency 
is relative to each specific problem and application needed. This is a point we need to 
consider as a perspective for future research. 
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Table 5-1. Strategy 3 (stages after insemination): results of different machine learning 
algorithms for the cow independent test sets for the 2 last classes of records based on the 

number of days after insemination1 

 Class 6 (151–180 d) Class 7 (≥181 d) 

 AUC Sens. Spec. AUC Sens. Spec. 

PLS-DA 0.71 0.71 0.55 0.82 0.75 0.74 

Random forest  0.71 0.71 0.56 0.81 0.78 0.72 

Linear SVM  0.71 0.74 0.55 0.82 0.77 0.74 

ANN  0.70 0.73 0.59 0.80 0.78 0.68 

Logistic regression  0.70 0.74 0.53 0.82 0.78 0.71 

Naïve bayes  0.68 0.61 0.61 0.81 0.79 0.69 

KNN  0.71 0.77 0.53 0.82 0.74 0.74 
1AUC = area under the receiver operating characteristic curve; sens. (sensitivity) = proportion of 

records belonging to pregnant cows that were correctly classified as pregnant; spec. (specificity) = 
proportion of records belonging to open cows that were correctly classified as open 

 

In Chapter 3, there were different possibilities of test-day models for the modeling 
of MIR spectra for management purposes. We decided to start with a simple model 
(i.e., single trait mixed test-day model with a limited number of effects) as this 
research was an exploratory study on the prediction of MIR spectra. Nonetheless, we 
are aware that further research should be carried out to refine the model, as also 
mentioned in Chapter 3. In our mixed test-day model, random effects variations in the 
course of the lactation were assumed to be constant. However, this assumption that 
random effects variances are homogenous throughout the lactation is suboptimal (Ptak 
& Schaeffer, 1993; Vanderick, 2017). Therefore, a first step to improve the model 
would be using random regression coefficients for each random effect (e.g., using 
Legendre polynomials). In this case, the shape of the modeled trait along the lactation 
for an individual cow could be viewed as two sets of regressions on DIM. Fixed 
regressions for cows belonging to the same class of fixed effects describe the general 
shape of the modeled trait throughout the lactation, and the random regressions for a 
given cow describe the deviations from this general shape, which allows each cow to 
have its own shape (Jamrozik and Schaeffer, 1997). Other potential improvements 
explained in Chapter 3 could be the addition of extra effects in the model, such as the 
age of the cow or the calving date and the development of a multi-lactation model. 
However, it should be noticed that, even with the best model possible, many 
predictions will still differ from observations. This is one of the benefits of such 
models for management purposes, for example to identify suspect observations by 
comparison with their expected (i.e., modeled) value to detect problems. Practically 
speaking, test-day models are known to be computationally demanding (Swalve, 
2000), which can sometimes hinder easy development and practical use even if recent 
advances in high-performance computing have the potential to make them more 
viable. A challenge for the practical implementation of test-day models is the 
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computing time and memory required to estimate variance components and, to a lesser 
extent, to calculate the solutions of the model. The re-estimation of variance 
components is done every now and then, e.g., when there is a (co)variance change 
over time due to environmental and/or genetic change (van der Werf, n.d.). In contrast, 
the calculation of model solutions (e.g., BLUP) is carried out each time we want to 
have new predictions, but requires less computing power. That is why (1) we assumed 
that it would be easier to model the MIR spectrum instead of the various existing and 
future MIR traits, and to subsequently apply developed MIR prediction equations to 
the modeled spectrum (this reduces the computational requirements and workload of 
developing several test-day models adapted to each trait); and (2) we reduced spectral 
information using PCA and we modeled each selected principal component (PC) 
separately using a single-trait model. Parallel computing of several single-trait models 
was preferred over a multi-trait model including several PC for computational reasons 
and because PC are phenotypically de-correlated, meaning that genetic correlations 
are also assumed to be small (Soyeurt et al., 2008; Shallue et al., 2019). However, 
excessive reduction in the complexity of the model for computational reasons should 
not be done at the expense of model performances. This research study was 
preliminary and there is still food for thought regarding the most suitable test-day 
model (in terms of accuracy, robustness, and computational requirements) for the 
prediction of MIR spectra. 

As we have seen, the choice of an appropriate model to develop a MIR tool is not 
trivial. It is wise to start with simple models that are easy to deploy as a baseline to 
understand our problem better and inform us on the best way to approach it. Once we 
have built a baseline model, we are in the best position to decide which steps to take 
next to attempt to improve it. Regarding the calibration of MIR prediction equations, 
classical methods (e.g., PLS) are most often used, but it is worth exploring other 
algorithms. Besides, when developing a model at the research stage, it is important to 
think about the potential practical applications and build a model that is easy to 
implement (e.g., not too computationally demanding). 

2.3.2. Model validation 

Validation is the process by which model outputs are compared to independent real-
world observations to judge the correspondence with reality and confirm that the 
model actually achieves its intended purpose (Jager, 2016). This is, therefore, an 
important part of model development. 

Many MIR prediction equations performances presented in scientific papers are 
based on the commonly-applied random cross-validation (i.e., a random subset, or 
subsets, of data is excluded from model training and used for evaluation), especially 
at the first stages of the development of the model and when the dataset is too small 
to carry out external validation (e.g., Dehareng et al., 2012; Bonfatti et al., 2016; 
Grelet et al., 2019). However, this technique is sub-optimal and might lead to 
dependencies between the training and validation sets, for instance if there are 
multiple records per animal as it is often the case in models involving MIR data or if 
there are unaccounted experimental treatment structures within the data (e.g., Shetty 
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et al., 2017; Wang and Bovenhuis, 2019). If different records of the same cow appear 
both in the training and validation sets, this could lead to an overoptimistic evaluation 
of model accuracy because the training sets learn from data that have similarities with 
the validation sets (i.e., validation data are not entirely new). In this situation, block 
cross-validation, where data are split strategically rather than randomly, would be 
preferred. Therefore, in Chapter 2, we decided to carry out random cow-independent 
10-fold cross-validation (i.e., for each fold, cows in the training set were different 
from cows in the validation set) because of repeated records per cow in the dataset. 
Comparison of the results for PLS-DA with classic random 10-fold cross-validation 
and random cow-independent 10-fold cross-validation is presented in Table 5-2 for 
scenario 2 (i.e., spectral differences, cf. Chapter 2). This scenario was selected because 
of more distinct differences between both cross-validation methods. The results 
clearly illustrate the overoptimistic performances of classical random 10-fold cross-
validation. 

Table 5-2. Strategy 2 (spectral differences, cf. Chapter 2): comparison of the results of 
partial least squares discriminant analysis with classical random 10-fold cross-validation and 

random cow-independent 10-fold cross-validation (i.e., block cross-validation)1 

 Random cow-
independent 10-fold 

cross-validation 

Random 10-fold 
cross-validation 

AUC 0.59 0.69 

Sensitivity 0.58 0.64 

Specificity 0.54 0.65 
1AUC = area under the receiver operating characteristic curve; sensitivity = proportion of records 

belonging to pregnant cows that were correctly classified as pregnant; specificity = proportion of records 
belonging to open cows that were correctly classified as open 

 

In our study, we also performed external validation on a cow-independent test set 
consisting of cows that were not used to build up and tune the model. Ideally, 
implementing for instance a herd-independent external validation or herd- and year-
independent external validation would have been better as cows from the same herd 
have common information that could both be found in the calibration sets and in the 
test sets (e.g., same diet, environmental or management practices), leading to 
dependencies. This is also a way to test the robustness of the model. Such external 
independent validation was for example implemented by Ho et al. (2019) and Wang 
and Bovenhuis (2019). However, this was difficult to implement properly in our study 
because of the little number of herds and the highly different number of records per 
herd. An issue was to be able to keep sufficient information in the calibration set to 
cover the variability encountered in the test set. This could be resolved using a larger 
and more diverse dataset, for example combining data from different countries. 

In Chapter 3, the test-day mixed model for the prediction of MIR spectra was 
assessed in different situations (i.e., scenarios) with more or less information known 
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about the cows. This can be considered as a kind of validation of the model in new 
real-world based situations (e.g., prediction of the production potential of heifers, 
prediction of future records). In addition to the assessment of the prediction quality of 
spectral wavenumbers, we applied MIR prediction equations for milk fat, protein, and 
lactose contents to the observed spectra and to the modeled spectra and we compared 
the predictions for the modeling dataset and the scenarios. This lets us know if MIR 
spectral wavenumbers were predicted with sufficient accuracy to enable subsequent 
satisfying predictions of MIR traits. However, milk fat, protein, and lactose contents 
are very accurately predicted milk components (i.e., R² of cross-validation (R²cv) of 
0.99, 0.99, and 0.91 for the equations used in Chapter 3, respectively). It would also 
be interesting to assess traits that are predicted with lower accuracy (e.g., novel MIR 
traits) to see if the modeled MIR spectra are also able to predict such traits 
satisfactorily. Therefore, to complement our results presented in Chapter 3 (Tables 3-
3- and 3-4) and validate the model further, we examined the correlations between 
novel MIR traits predicted from observed spectra and from modeled spectra (Table 5-
3). We selected the following traits: minor milk components (calcium (Ca), potassium 
(K)), indicators of metabolic diseases (citrate, beta-hydroxybutyrate (BHB)), an 
indicator of udder health (lactoferrin) and fatty acids (omega-3 fatty acids and omega-
6 fatty acids). Calibration equations of these novel traits originated from different 
research projects. They were developed using 212 spectral wavenumbers and their 
R²cv ranged from 0.55 to 0.89. Complementary information about the equations is 
available in Table A-1 in the Appendix. 

Table 5-3. Correlations between novel MIR traits predicted from the observed spectra and 
from the modeled spectra for the modeling dataset and the 4 scenarios. For comparison, the 
results for fat, protein, and lactose contents (extracted from Table 3-3), were added in the 

first 3 columns 

 
1 Ca=calcium, K=potassium, BHB= beta-hydroxybutyrate 
2 R²cv = R² of cross-validation of the prediction equation for each trait (cf. Table A-1 in Appendix for 

additional information) 
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Regarding the modeling set, we see that correlations between traits predicted from 
observed and modeled spectra were somewhat lower for the novel traits compared to 
fat, protein, and lactose contents, except for citrate (Table 5-3). Correlations for the 
scenarios tended to be lower too, but it was not always the case. For example, K has 
the lowest R²cv but, regarding some scenarios, correlations between traits predicted 
from observed or modeled spectra were higher than some other traits. One reason is 
that the different traits are predicted using different spectral regions which can be 
more or less well modeled. In addition, we examined the mean values and standard 
deviation for each trait predicted from observed spectra or modeled spectra (Table 5-
4). Mean values were close, although the standard deviation tended to be smaller for 
traits predicted from modeled spectra, as also observed for fat, protein, and lactose 
contents in Chapter 3 (Table 3-4). These mean and standard deviation values were 
also in the same range as reference values used to build the prediction equations (i.e., 
they were within normal ranges; cf. Table A-1 in Appendix). 

As mentioned several times in Chapter 3 and the discussion, a valuable perspective 
of test-day models for management is to detect problems by comparisons between 
observations and expectations (i.e., modeled values). Validation of such a forecasting 
tool will require direct comparison with the happenings on farms. Reliable field 
records on individual animal health, feed, herd management, and environmental 
conditions will be essential to link the deviations between observed and modeled 
records to modeling inaccuracies or real cow or herd problems. 

In brief, this section emphasizes the importance of proper validation to avoid 
overoptimistic results and to confirm that the model achieves its intended purpose for 
practical use. 

2.4. Implementation of MIR tools 
This section addresses some considerations regarding the implementation of 

developed MIR tools, more specifically the utilization of MIR indicators, the studies 
of MIR traits in relation with other data streams, the timing of milk sampling, and the 
uptake of MIR tools by dairy farmers. 

2.4.1. On the utilization of MIR indicators 

As previously mentioned, most MIR traits related to cow physiological status or 
indirect traits (e.g., pregnancy in Chapter 2 and CH4 in Chapter 4), but also some 
minor milk components, are not accurate enough to be proposed for analytic purposes, 
i.e., they cannot replace the reference methods. However, some of these traits can be 
used for instance as indicators for screening in routine, for acquiring phenotypes for 
research purposes or as phenotypic information to genetically improve the trait in 
question on a large scale (Visentin et al., 2016). Using single indicators for 
management purposes is acceptable when used at the herd level (i.e., average of a 
group) because, under the hypothesis that prediction errors are random, the accuracy 
of predictions for the group will increase (Gengler et al., 2016). However, we should 
be careful at the individual level. It is for example wiser to use several indicators and 
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not just one to avoid imprecisions and faulty conclusions or diagnosis, or use relative 
scales or thresholds instead of a quantitative value that could be misleading. For 
example, in Chapter 4 of the present thesis, the moderate accuracy of the MIR CH4 
prediction equation means that MIR CH4 is considered as an indicator of CH4 
production. The use of this indicator was appropriate in Chapter 4 because individual 
MIR CH4 predictions were pooled at the herd and year level before comparison with 
technico-economic data expressed at the same scale. If used at the individual level, an 
idea could be to assign a class (i.e., relative scale) to MIR CH4 predictions, e.g., low 
emitters – moderate emitters – high emitters, instead of a quantitative value. In 
Chapter 2, if further studies confirm the possibility to develop a tool to detect 
pregnancy loss in mid- to late pregnancy, this could be used as an indicator in routine 
alerting the farmer when there is a risk that a cow aborted (i.e., screening tool in 
routine). This way, the farmer could verify the assumption of the MIR prediction by 
an accurate method such as rectal palpation. Regarding genetic evaluations, MIR 
indicators are particularly important in the case of traits that are expensive and 
difficult to measure directly such as CH4 production or health traits (Gengler et al., 
2016; Gengler and Soyeurt, 2020). In this context, the genetic correlation with the trait 
of interest is important, rather than the phenotypic correlation. It has been 
demonstrated that low prediction accuracy (e.g., R² < 0.50) in a chemometrical and 
management context can be considered sufficient to extract useful spectral variation 
in an animal breeding context (Gengler and Soyeurt, 2020). 

2.4.2. The interest to study MIR traits in the population  

Studying MIR traits evolution and behavior in a population, as well as relationships 
with other variables, is a good way to demonstrate their usefulness and learn more 
about their sources of variation or associated management practices (cf. Chapter 4). 
This could provide information for decision-making, for example regarding the 
adjustment of management practices to influence a MIR trait of interest. Although 
such large-scale population studies can be considered as strengths of MIR due to the 
availability and quantity of spectral data (cf. section 1.3 of this Chapter), an issue is 
that large-scale studies combining novel MIR traits with external data to milk 
recording or milk payment databases such as economic or management data are not 
often considered in the literature. Examples of phenotypic population-level studies 
with novel MIR traits, using only milk recording or milk payment data or in 
combination with management data, are described by Santschi et al. (2016) for BHB, 
Visentin et al. (2018) for mineral components, and Woolpert et al. (2016) for fatty 
acids. Vanlierde et al. (2016) previously demonstrated the usefulness of a developed 
MIR CH4 prediction by applying it on spectra from the Walloon milk recording and 
revealed, among other, interesting individual, herd, seasonal and regional patterns. 
They suggested that further explanations were needed to explain differences in CH4 
emissions between Walloon herds. This was a reason for the research presented in 
Chapter 4. In this study, relationships between MIR CH4 and technico-economic data 
were analyzed globally and results showed general trends, but studying these 
relationships between and within different groups with similar characteristics 
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(typology) might strengthen or highlight some interesting tendencies (Dalcq et al., 
2018). This would ideally require a larger amount of data. Among others, the access 
to accounting data from other accounting associations could be useful to increase the 
number of data and be more representative of the Walloon Region of Belgium, but 
standardization of accounting data from different sources would be needed. Databases 
from feed companies could also bring useful and more detailed information about 
feeding and diet composition for large-scale studies in combination with MIR data, 
but an obstacle is to make them available for research institutions. 

2.4.3.  Timing of milk sampling  

A disadvantage of the current usage of milk recording to obtain individual MIR 
spectra is that samples are collected on a monthly basis and not in real time, in contrast 
to some on-farm precision tools providing daily monitoring. This is a limit when rapid 
and frequent monitoring is needed in the context of individual management on farms, 
for example to quickly detect troubles and find prompt solutions. In the case of health 
or status-traits prediction, metabolic changes have to occur at the right moment to be 
detectable in milk if milk tests are distant. For example, timely detection of early-
lactation diseases like ketosis requires MIR data early in the lactation (Luke et al., 
2019); pregnancy or abortion detection (cf. Chapter 2) would require more frequent 
recordings to take prompt decisions. Increasing the milk sampling frequency in the 
framework of classical milk recording or even altering milk recording procedures to 
focus on some critical periods of the lactation would be ideal (e.g., analyses from 
postpartum cows may provide more valuable information than analyses from cows in 
late lactation). However, it would be more costly, and farmers will be willing to alter 
their milk-testing practices only if the benefits outweigh the costs. More frequent 
testing of postpartum cows might also be technically rather impractical because, in 
many herds, cows calve at different periods and are at all times at different lactation 
stages, making the organization of milk testing difficult.  

On-farm daily milk analysis would provide high-throughput valuable information, 
but until now, MIR has not been used on farms for real-time monitoring for economic 
and technical reasons. MIR technology is still expensive and, practically speaking, the 
MIR spectrometers need a very thin homogeneous layer of milk, which would be a 
challenge in on-line systems, and regular reference measurements would be needed to 
ensure accurate analyses (Waaben, 2016). The possibility that these technical limits 
will be resolved in the future and enable MIR analysis on the farm cannot be excluded. 
Nevertheless, because of these current limits, other technologies better adapted to 
daily on-farm measurements, such as near-infrared (NIR) spectrometry, are currently 
under investigation (e.g., Melfsen et al., 2012; Kaniyamattam and De Vries, 2014; 
Hanus et al., 2016). Advantages of NIR on-farm systems compared to MIR are among 
others their lower cost, robustness to tougher conditions, and easier on-line sampling 
of milk (Waaben, 2016).  Drawbacks of NIR are that (1) the signal is not as strong as 
MIR, (2) the accuracy and repeatability are not as good as MIR, and (3) as mentioned 
in section 1.2 of this Chapter, it is more difficult to associate and compare data 
between farms and to standardize process among apparatus (Kaniyamattam and De 
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Vries, 2014; Waaben, 2016). Even if on-farm milk testing systems are implemented 
successfully in the future, official MIR analyses in a laboratory will most probably 
still be needed to benchmark and correct on-farm systems for deviations. Hence, on-
farm and off-farm systems will most likely be complementary. 

In contrast to milk recording, bulk tank milk samples are collected and analyzed 
more often (i.e., at every milk collection on the farm) via milk payment systems. 
Despite the loss of individual animal monitoring, this opens a door for the 
development of herd-level decision-support tools fed with higher throughput 
information, providing that bulk tank data are available for research and development 
institutions. For example, observing values for specific traits predicted from bulk tank 
spectra or modeling periodic trends in comparison with other herds (for 
benchmarking) is a way to identify poor or superior performances and detect 
problems. Using bulk tank milk data allows to have access to information about all 
dairy herds in a research context and would provide management tools for all herds, 
in contrast to milk recording data that are limited to herds enrolled in official milk 
recording systems (e.g., approximately 30% in the Walloon region of Belgium; awé 
groupe, 2018). However, a disadvantage of bulk tank milk is that the quantity and 
quality of milk in the tank are influenced by high-yielding cows (i.e., the milk 
composition is the weighted average by milk production of individual cow milk 
compositions). For example, a cow producing 30 litres of milk on a specific day will 
contribute twice more to bulk tank milk than a cow producing 15 litres of milk. 
Consequently, we should be aware that MIR traits predictions from bulk tank milk 
would not represent the average herd, but would be drawn towards cows producing 
more milk, and conclusions based on bulk tank milk may be biased for some traits or 
more difficult to interpret correctly. Also, some MIR equations were developed for 
individual spectra and are less adapted to bulk samples. This is the case with the 
equation for enteric CH4 production used in Chapter 4, which takes into account the 
DIM of the cow (i.e., the evolution of the trait along the lactation) and is therefore 
designed for individual milk spectra (Vanlierde et al., 2016). It could be interesting to 
investigate the possibility to adapt such equations to bulk tank milk to be able to 
predict a global value for the herd with a single analysis of tank milk. Moreover, novel 
traits such a pregnancy (cf. Chapter 2), body weight (Soyeurt et al., 2019), or 
likelihood of conception (Ho et al., 2019) are only interesting at the individual level. 

In short, MIR tools used in the framework of classical milk recording may be limited 
by the discontinuous periodic milk sampling. On-farm milk analysis would be a 
promising solution, but it is still challenging at the moment. Bulk tank milk analysis 
provides high-throughput information, but it is limited to herd management under 
certain conditions. 

2.4.4. Uptake and acceptability of MIR tools by the farmers 

Although research institutions have generated many MIR tools, of which some are 
suitable for implementation in the field, on-farm integration and acceptability by the 
farmers sometimes remain difficult and limit the number of tools effectively used in 
practice. Farmers will be more likely to adopt and pay for a specific tool if direct or 
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indirect economic interests have been demonstrated. To illustrate this in the 
framework of this thesis, it is unlikely that farmers will pay for the prediction of CH4 
without economic incentives for the reduction of greenhouse gas emissions or the 
tangible proof that reducing CH4 production will improve economic returns, even 
though CH4 can be considered as a direct loss of gross energy (2-12%; Johnson and 
Johnson, 1995). Likewise, farmers selling their milk to a dairy plant will most 
probably show little interest in MIR predictions for milk technological properties 
without incentives, in contrast to farmers processing milk on the farm. However, 
beyond deliberate choice, farmers could be forced by governments or dairy industries 
to adopt some MIR tools, for example in the context of milk quality or environmental 
controls or regulations. For instance, assessing CH4 production using MIR predictions 
could be an obligation in the future to monitor the carbon footprint of dairy products. 
Such MIR traits related to quality insurance or environment were often first developed 
following industry or governmental interests, in contrast to traits related for example 
to cow health or fertility that are rather a request from farmers.  

Moreover, it is useful to inform farmers about the benefits of some novel MIR traits 
and tools that they may be too little aware of. An example is the fatty acid profiles 
that could help with better feeding strategies decisions, but that is used in a minority 
of countries (Valacta, 2018). The wish to predict fatty acids originated from an 
analytics company providing MIR spectrometers at first and not directly from dairy 
advisors, which is also a reason why some MIR tools are less used in practice. Sub-
optimal transfer of information and knowledge about potential MIR decision-support 
tools, as well as their little visibility, constitutes an obstacle to their implementation 
in practice. In the future, proposing a clear document or online platform to farmers 
listing tools available in the framework of their national or regional milk recording 
and milk payment systems, with the associated price, reliability, explanation of 
benefits, etc. would give them the opportunity to choose tools that would fit best to 
their individual needs. Regarding MIR trait predictions, these could be grouped in 
packages corresponding to different objectives (e.g., milk processing, milk quality, 
health indicators, feed monitoring, etc). For instance, in the Walloon region of 
Belgium, a package with several MIR predictions related to milk processing (i.e., milk 
technological properties and quality) is under study to be included in the milk 
recording reports transferred to farmers (C. Bastin, 2020, personal communication). 

When transferring a tool to farmers for implementation, we need to be careful about 
how it would shape actions that farmers should make. We should not only transfer the 
tool as it is, but we should also give some advice regarding the actions to make or how 
to adapt management practices depending on the results obtained from the tool. 
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3. Conclusion and perspectives 
Good decision-making regarding actions to make on farms is required to maintain 

satisfying economic performances and limit environmental impacts in dairy farming. 
Analysis of milk by MIR spectrometry provides a large amount of information on 
milk composition. This technique has demonstrated qualities to support decision-
making, for example through the well-established predictions of milk fat and protein 
contents or the recent development of prediction models for novel traits. However, its 
full potential remains partly uninvestigated. Hence, the objective of this thesis was to 
contribute to the development of decision-support tools with economic and 
environmental interests for the dairy sector using milk MIR spectrometry.  

In practical terms, the different approaches for pregnancy diagnosis using a MIR 
prediction equation (Chapter 2) unfortunately failed to detect satisfactorily early 
pregnancy stages that are of great importance in dairy farming. However, a first tool 
arising from the findings of this research could be a screening tool for the detection 
of mid- to late-term abortion in individual cows, because we obtained promising 
results for the prediction of advanced pregnancy. Such a screening tool could be 
implemented in routine in official milk recording programs to alert the farmers when 
there is a risk that a cow aborted several months after an insemination, so that they 
can identify problem cows more easily and find prompter solutions. The next step 
would be to validate the model on a larger and more variable dataset to confirm the 
obtained results and explore further the prediction of this trait. More generally, further 
improvement to models aiming to predict novel traits (e.g., health and wellness traits) 
using MIR could be made by incorporating zootechnical parameters routinely 
recorded on farms such as milk yield, parity or DIM, or other easily available data 
streams such as information from rumination collards and accelerometers. However, 
the inclusion of several data sources increases the technical difficulty for data 
consolidation and quality control (especially for data from on-farm tools). In the 
recent years, there has also been interest in combining phenotypic data like MIR traits 
and genetic information to help improve prediction accuracy (Ho et al., 2019; van der 
Heide et al., 2020; Wang and Bovenhuis, 2020). Besides, using omics approaches 
(e.g., metabolomics or proteomics) may elucidate some relationships between novel 
traits and milk composition or, if appropriate, they may be combined with MIR to 
improve prediction models (e.g., Chapinal et al., 2012; Melzer et al., 2013; Goldansaz 
et al., 2017). If large datasets are available for calibration, it is worth exploring deep 
learning algorithms that can discover new features in complex and high dimensional 
datasets (LeCun et al., 2015). In addition, when combining different types of data, the 
relationships between predictor and response variables may be more complicated than 
linear. This puts more emphasis on the need to explore non-linear machine and deep 
learning algorithms. 

A second tool with potential future application in practice would be the test-day 
model to predict MIR spectra (Chapter 3). It would rather be aimed at advisors (who 
can interpret results and communicate them to farmers) and researchers. Examples of 
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utilization of this tool are the comparison between traits predicted from the expected 
(i.e., modeled) and observed spectra for the detection of anomalies at the herd or cow 
level (this could for example result in economic savings) or simulations of 
modifications of effects in the model (e.g., to assess the evolution of environmental-
related traits such as MIR CH4 or urea). Different improvements of the model are 
needed before potential applications. The first enhancements to make would be the 
use of random regression coefficients, adding second and third lactations in the model, 
and testing the possibility to use a multi-trait model including several principal 
components without being computationally too excessive. If used as a forecasting tool 
to detect problems, the model should be validated using reliable field recordings to 
identify whether deviations are due to modeling problems or to herd or cow problems.  

The last research study (Chapter 4) used an existing MIR tool (i.e., MIR CH4 
prediction equation applied to a large database) in combination with technico-
economic data to provide additional information for decision-making. This is not a 
new tool per se, but rather a study including an existing tool and with an objective of 
decision support. Results of this study are primarily dedicated for research purposes 
to better understand management practices associated with CH4 production, but these 
could contribute to guiding potential decisions at the political level (e.g., which 
practices should be supported on farms to reduce CH4 production?) and subsequently 
affect actions to make at the farm level. Given the obtained results, revealing complex 
relationships and low correlations between MIR-predicted CH4 production and 
technico-economic variables, it is difficult to make any clear choice regarding 
management practices that should be adopted on farms to reduce CH4 production. This 
implies that further studies, with real farm data, are needed to better understand the 
factors associated with CH4 emissions and its impact on profitability in order to better 
target mitigation strategies (e.g., studies with more precise data about diets and feed 
composition or segmenting the data into different typology groups). As additional 
perspective, MIR CH4 production could also be associated with other environmental 
variables or indicators to carry out a more comprehensive study on relationships 
between dairy farm environmental footprint and technico-economic factors. Indeed, 
MIR CH4 covers only partly the environmental impacts of milk production because 
CH4 emissions from young stock, other greenhouse gas emissions, carbon sinks, and 
other environmental aspects (e.g., eutrophication, biodiversity conservation) are not 
considered. In our study, we considered MIR CH4 expressed in g/day, but CH4 
emissions can be expressed in different metrics, which have different interpretations 
(e.g., g/day, g/kg dry matter intake, or g/kg milk). The unit of CH4 measurement to 
consider depends mainly on the specific research question and application, but there 
is no general concencus and research efforts have been concerned with all of these 
metrics. 

In addition to the three research studies using MIR for decision support, this thesis 
highlighted strengths of MIR spectrometry for the development of decision-support 
tools for the dairy sector, but also raised some issues and consideration in the light of 
the work conducted in the framework of this thesis. MIR spectrometry is a non-
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invasive, fast, and cost-effective technology, allowing the collection of individual and 
herd MIR data on a large scale. The standard procedures for milk sample collection 
and analysis, and the storage of MIR data in central databases facilitate the comparison 
of data within and between herds. These advantages enable the development of 
various customized tools and studies requiring large amounts of comparable data, 
which can support decision-making in dairy farming with impacts from the short to 
the long term. Still, MIR has some limitations, and considerations need to be 
accounted for at the development and implementation stages of decision-support 
tools. Among others, issues and considerations were raised about the prediction of 
indirect MIR traits, the quality and variability of spectral and reference data, the 
choice and validation of models, the utilization of MIR indicators, the study of MIR 
traits in the population, the timing of milk sampling, and the uptake of MIR tools by 
farmers. As we have seen, the development of MIR tools is not straightforward and is 
a lengthy process that requires reflection at every step. 

To conclude, this thesis contributed to the first steps of the development of MIR 
tools and studies to support decision-making with potential economic and 
environmental benefits for the dairy sector; and contributed to stimulate thinking and 
gain insight into the benefits and points of attention regarding the development of 
decision-support tools using milk MIR spectrometry. This thesis is not an end to itself: 
additional studies are required to refine the research developed in this manuscript for 
potential practical applications, and it is worth continuing to explore deeper the 
potential of milk MIR spectrometry to provide innovative and valuable tools for 
progressing towards more sustainable dairy farming. 
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