
Journal of Neural Engineering

PAPER • OPEN ACCESS

Enhancing clinical communication assessments
using an audiovisual BCI for patients with
disorders of consciousness
To cite this article: Fei Wang et al 2017 J. Neural Eng. 14 046024

 

View the article online for updates and enhancements.

Related content
Detecting awareness in patients with
disorders of consciousness using a hybrid
brain–computer interface
Jiahui Pan, Qiuyou Xie, Yanbin He et al.

-

A P300 auditory brain-computer interface
based on mental repetition
Alessandro Marassi, Riccardo Budai and
Luca Chittaro

-

An independent SSVEP-based brain--
computer interface in locked-in syndrome
D Lesenfants, D Habbal, Z Lugo et al.

-

Recent citations
The Self-Face Paradigm Improves the
Performance of the P300-Speller System
Zhaohua Lu et al

-

The N400 for brain computer interfacing:
complexities and opportunities
K V Dijkstra et al

-

Motor imagery EEG recognition with KNN-
based smooth auto-encoder
Xianlun Tang et al

-

This content was downloaded from IP address 139.165.39.137 on 10/04/2020 at 16:53

https://doi.org/10.1088/1741-2552/aa6c31
http://iopscience.iop.org/article/10.1088/1741-2560/11/5/056007
http://iopscience.iop.org/article/10.1088/1741-2560/11/5/056007
http://iopscience.iop.org/article/10.1088/1741-2560/11/5/056007
http://iopscience.iop.org/article/10.1088/2057-1976/aab7d4
http://iopscience.iop.org/article/10.1088/2057-1976/aab7d4
http://iopscience.iop.org/article/10.1088/1741-2560/11/3/035002
http://iopscience.iop.org/article/10.1088/1741-2560/11/3/035002
http://dx.doi.org/10.3389/fncom.2019.00093
http://dx.doi.org/10.3389/fncom.2019.00093
http://iopscience.iop.org/1741-2552/17/2/022001
http://iopscience.iop.org/1741-2552/17/2/022001
http://dx.doi.org/10.1016/j.artmed.2019.101747
http://dx.doi.org/10.1016/j.artmed.2019.101747
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssxLBuX1OzNG8_JieacTj0vZAHHpQPv-mH_uOXBGicxKIhg0GmSIwU9k3ZdVWdHBejJp7WC8d0JQAg_wu1He1krpFclTV-6DHaTj5rITGZpRKBs2xE4sZXX67GIKgiknglKvUtchuBb7oTjeN5jZiSCtecV8NFlD3Df8tlDVeCAePXVdQd15Tf-G0DcTpVMh_5FGuocwrN7S1287BNb2qlakJV6YYTx5zH1czqLBAHT29ndG_QY&sig=Cg0ArKJSzAty6l39r2xc&adurl=https://brightrecruits.com/jobs/translational-bioengineering


1 © 2017 IOP Publishing Ltd  Printed in the UK

Journal of Neural Engineering

Enhancing clinical communication 
assessments using an audiovisual BCI for 
patients with disorders of consciousness

Fei Wang1,3,6, Yanbin He2,4,6, Jun Qu1,3, Qiuyou Xie2, Qing Lin2, Xiaoxiao Ni2, 
Yan Chen2, Jiahui Pan1,3, Steven Laureys5, Ronghao Yu2,7 and Yuanqing Li1,3,7

1  School of Automation Science and Engineering, South China University of Technology, Guangzhou 
510640, People’s Republic of China
2  Coma Research Group, Centre for Hyperbaric Oxygen and Neurorehabilitation, Guangzhou General 
Hospital of Guangzhou Military Command, Guangzhou 510010, People’s Republic of China
3  Guangzhou Key Laboratory of Brain Computer Interface and Applications, Guangzhou 510640, 
People’s Republic of China
4  Southern Medical University, Guangzhou 510515, People’s Republic of China
5  Coma Science Group, Cyclotron Research Centre and Neurology Department, University and  
University Hospital of Liège, B-4000 Liège, Belgium

E-mail: auyqli@scut.edu.cn and gesund@139.com

Received 16 January 2017
Accepted for publication 10 April 2017
Published 14 June 2017

Abstract
Objective. The JFK coma recovery scale-revised (JFK CRS-R), a behavioral observation scale, 
is widely used in the clinical diagnosis/assessment of patients with disorders of consciousness 
(DOC). However, the JFK CRS-R is associated with a high rate of misdiagnosis (approximately 
40%) because DOC patients cannot provide sufficient behavioral responses. A brain–computer 
interface (BCI) that detects command/intention-specific changes in electroencephalography (EEG) 
signals without the need for behavioral expression may provide an alternative method. Approach. 
In this paper, we proposed an audiovisual BCI communication system based on audiovisual ‘yes’ 
and ‘no’ stimuli to supplement the JFK CRS-R for assessing the communication ability of DOC 
patients. Specifically, patients were given situation-orientation questions as in the JFK CRS-R and 
instructed to select the answers using the BCI. Main results. Thirteen patients (eight vegetative 
state (VS) and five minimally conscious state (MCS)) participated in our experiments involving 
both the BCI- and JFK CRS-R-based assessments. One MCS patient who received a score of 1 
in the JFK CRS-R achieved an accuracy of 86.5% in the BCI-based assessment. Seven patients 
(four VS and three MCS) obtained unresponsive results in the JFK CRS-R-based assessment but 
responsive results in the BCI-based assessment, and 4 of those later improved scores in the JFK 
CRS-R-based assessment. Five patients (four VS and one MCS) obtained usresponsive results in 
both assessments. Significance. The experimental results indicated that the audiovisual BCI could 
provide more sensitive results than the JFK CRS-R and therefore supplement the JFK CRS-R.

Keywords: audiovisual brain-computer interface, disorders of consciousness (DOC), 
coma recovery scale-revised (CRS-R), communication, assessment
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1.  Introduction

Disorders of consciousness (DOC), such as vegetative state 
(VS) and minimally conscious state (MCS), are clinically 
diagnosed on the basis of behavior scales such as the JFK 
coma recovery scale-revised (JFK CRS-R) and the Glasgow 
coma scale (GCS), which rely on motor responses to external 
stimulation [1]. People in a vegetative state may awaken 
but show no awareness of themselves or their environment, 
whereas patients in a minimally conscious state may demon-
strate inconsistent but reproducible signs of awareness [2]. 
Furthermore, emergence from MCS (EMCS) is characterized 
by a reliable and consistent demonstration of functional inter-
active communication or the functional use of two different 
objects [3]. Patients in locked-in state (LIS) similarly show 
very limited signs of awareness due to profound sensory and 
motor deficits but have retained self-awareness and normal or 
near-normal cognitive capacities [4]. Several studies have not 
included LIS as a DOC [3, 5].

Among these behavior assessment methods, the JFK 
CRS-R is suggested to be reliable and widely applied in clin-
ical assessments [6]. The JFK CRS-R was first introduced 
by Giacino et  al in 1991 and was revised in 2004 [7]. The 
JFK CRS-R contains six subscales, including auditory, visual, 
motor, oromotor, communication and arousal functions. The 
score in each subscale depends on whether the DOC patient has 
specific behavior responses to sensory stimuli. For example, 
in the communication subscale, if clear, discernible and accu-
rate responses occur for all situational orientation questions, 
the patient receives a score of 2. If clear, discernible responses 
occur for at least two but not all questions, the patient receives 
a score of 1. Otherwise, a score of 0 is given. However, 
behavior-based scales, such as the JFK CRS-R, have some 
problems [8]. First, many patients with DOC cannot maintain 
a stable state during the evaluation. Second, these patients are 
usually unable to make normal physical movements [9]. As 
a consequence, high rates of clinical misdiagnosis can occur. 
For example, recent studies have observed that 37% to 43% 
of patients diagnosed as being in a VS actually show signs of 
awareness [6, 10, 11].

Considering these limitations of behavioral assessment 
scales, brain–computer interfaces (BCIs) could be used as an 
assistance tool for clinical evaluation because they can detect 
command/intention-specific changes in brain signals, such as 
electroencephalography (EEG), without requiring any behav-
ioral expression [9, 12]. Several BCI systems have recently 
been applied in awareness detection for patients with DOC 
[13–16]. Cruse et al accessed 16 VS patients by having them 
complete a motor imagery (MI) task in which they were 
instructed to imagine movements of their right hand and toes 
in response to commands [13]. Three of the patients could 
repeatedly and reliably generate appropriate EEG responses 
to two distinct commands. Pan et al reported a visual hybrid 
BCI that combined P300 and SSVEP to detect awareness in 
four VS, three MCS and one LIS patients [14]. They suc-
cessfully demonstrated command following in three patients 
(one VS, one MCS and one LIS). In our previous study, we 
applied an audiovisual BCI system to detect the awareness of 
seven DOC patients; the patients were instructed to selectively 

attend a target of two different number stimuli [15]. Five of the 
patients exhibited command following. These studies focused 
on DOC patients’ overall awareness levels and did not eval-
uate the patients’ functional consciousness in detail, as might 
be done with the JFK CRS-R. In addition, several studies have 
reported that BCIs could detect functional communication in 
LIS patients. Lulé et al tested a four-choice (Yes, No, Stop 
and Go) auditory oddball BCI with 18 patients (13 MCS,  
3  VS and 2 LIS) [17]. Their results showed that one LIS 
patient had a correct response rate of 60% and therefore was 
able to communicate using the BCI. Overall, the performance 
of these BCIs designed for DOC patients is generally poor. 
This is mainly because DOC patients’ recognition levels, such 
as attention, are substantially lower than those of healthy sub-
jects, and recognition levels are associated with the perfor-
mance of a BCI system. Furthermore, to our knowledge, no 
BCI has been designed to directly assist in behavioral scale-
based assessments. It is difficult to obtained sensitive results 
for several items in traditional behavioral scales. BCI methods 
are superior to clinical assessment because the former does 
not depend on the patients’ behavioral responses. However, 
the performance of BCIs in DOC patients is generally poor. A 
statistical test can be performed to show whether BCI results 
are significant. Furthermore, we need to develop novel BCIs 
that are suitable for DOC patients. Previous studies have 
validated the effectiveness of audiovisual BCIs [15, 18]. In 
this study, we used an audiovisual paradigm to improve BCI 
performance.

In this paper, we propose a new protocol to assist JFK CRS-R 
for assessing the communication ability of DOC patients. The 
new protocol was designed following JFK CRS-R commu-
nication subscale-based assessment. Specifically, the new 
audiovisual BCI system was based on semantically congruent 
audiovisual stimuli, i.e. ‘Yes’ and ‘No’. We imitated the JFK 
CRS-R communication subscale by administering situation-
orientation questions to DOC patients. After a question was 
proposed, two flashing buttons with the Chinese words ‘Yes’ 
and ‘No’ appeared on the computer screen. When a button 
was flashing, the corresponding spoken word ‘Yes’ or ‘No’ 
(in Chinese) was heard simultaneously. The patients were 
instructed to selectively focus on the flashing button corre
sponding to the correct answer (‘Yes’ or ‘No’) to the question 
and the corresponding spoken word. The BCI system deter-
mined the patient’s choice by detecting event-related poten-
tials (ERPs), such as P300. The detection result was presented 
as online feedback. Based on the feedback results, the clinical 
examiners could make a determination of the communica-
tion ability of the patient. Thirteen patients participated in 
our experiments with BCI- and JFK CRS-R-based commu-
nication assessments. The experimental results demonstrated 
the efficacy of our BCI approach in supplementing the JFK 
CRS-R assessment of communication in DOC patients.

2.  Methods

2.1.  Subjects

Thirteen patients (eight VS and five MCS; mean  ±  SD, 
±37 12 years of age; twelve males; see table 1) from a local 
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hospital participated in the experiment. None of the patients 
had a history of impaired visual or auditory acuity. The Ethics 
Committee of the General Hospital of the Guangzhou Military 
Command of PLA in Guangzhou, China, which complies 
with the Code of Ethics of the World Medical Association 
(Declaration of Helsinki), approved the experimental proce-
dures. Each patient’s legal guardian provided written informed 
consent for the experiment and for the publication of their 
individual details in this manuscript. The clinical diagnoses 
were based on the JFK CRS-R, which comprises six subscales 
addressing auditory, visual, motor, oromotor, communication 
and arousal functions [7]. Details, including the JFK CRS-R 
scores of the thirteen patients, are shown in table 1.

2.2.  Data acquisition

EEG data were amplified using a SynAmps2 device 
(Compumedics, Neuroscan, Inc., Australia) sampled at 250 Hz  
and filtered between 0.01 and 30 Hz. The EEG signals were 
recorded from 30 electrodes using an EEG cap (LT 37) based 
on the international 10–20 system and referenced to the right 
mastoid. All electrode impedances were maintained below 
5 kΩ during data collection.

2.3.  Experimental procedure

The thirteen patients participated in two assessments: the JFK 
CRS-R-based behavioral assessment and the BCI-based com-
munication assessment. The JFK CRS-R-based behavioral 
assessment was conducted by a clinician from the General 
Hospital of the Guangzhou Military Command of PLA. 
Following the standard protocol, the clinician administered 
the following 6 situation-orientation questions to the patient 
in random order. Questions 1–4: ‘Am I touching my ear/nose 
right now? The clinician touched or did not touch his/her ear/
nose’; Questions 5–6: ‘Am I clapping my hands right now? 
The clinician clapped or did not clap’. The communication 

scale score depended on the patient’s discernible verbal or 
nonverbal communication response. If clearly discernible 
and accurate responses were given for all six questions, the 
patient received a score of 2. If a clearly discernible response 
(e.g. head nod/shake, thumbs up) was given within 10 s for 
at least two of the six questions, the patient received a score 
of 1. If no discernible verbal or nonverbal communication 
response was given for any question, the patients received a 
score of 0. The thirteen DOC patients underwent three JFK 
CRS-R-based assessments shortly before and after the BCI 
experiment and again two months after the BCI experiment, 
as shown in table 1.

The graphical user interface (GUI) of our audiovisual BCI 
system is shown in figure 1. First, a situation question and an 
instruction were presented in the upper part of the screen. The 
number of questions with an answer of ‘yes’ was equal to the 
number of questions with an answer of ‘no’, and the questions 

Table 1.  Summary of patients’ clinical status. TBI, traumatic brain injury; NTBI, non-traumatic brain injury; VS, vegetative state; MCS, 
minimally conscious state; EMCS, emergence from MCS; LIS, locked-in state. JFK CRS-R subscales: auditory, visual, motor, oromotor, 
communication, and arousal functions.

Patients Age Gender Aetiology
Time since 
onset (months)

JFK CRS-R (Subscale scores) clinical diagnosis

Before the  
experiment

Shortly after the 
experiment

Two months after the 
experiment

P1 29 M NTBI 8.5 4(1-0-1-0-0-2) VS 4(1-0-1-0-0-2) VS 4(1-0-1-0-0-2) VS
P2 37 M NTBI 2 5(0-0-2-1-0-2) VS 5(0-0-2-1-0-2) VS 5(0-0-2-1-0-2) VS
P3 38 M TBI 1 7(1-1-2-1-0-2) VS 7(2-1-3-1-0-2) VS 7(2-1-3-1-0-2) VS
P4 33 M TBI 2 7(1-0-2-2-0-2) VS 7(1-0-2-2-0-2) VS 7(1-0-2-2-0-2) VS
P5 40 M NTBI 2 5(1-0-2-0-0-2) VS 6(1-0-2-1-0-2) VS 7(1-1-2-1-0-2) VS
P6 52 M NTBI 4.5 5(1-1-0-1-0-2) VS 8(2-3-0-1-0-2) MCS 9(2-3-1-1-0-2) MCS
P7 42 M NTBI 4 7(1-1-2-1-0-2) VS 11(3-2-3-1-0-2) MCS 11(3-2-3-1-0-2) MCS
P8 26 M NTBI 1 7(1-1-2-1-0-2) VS 15(4-5-2-1-1-2) MCS 15(4-5-2-1-1-2) MCS
P9 19 M NTBI 1.5 8(1-1-3-1-0-2) MCS 8(1-1-3-1-0-2) MCS 8(1-1-2-2-0-2) VS
P10 17 M TBI 2 8(1-1-3-1-0-2) MCS 11(1-3-3-2-0-2) MCS 17(2-4-6-2-1-2) EMCS
P11 46 F TBI 1.5 7(1-0-3-1-0-2) MCS 19(3-5-6-2-1-2) EMCS 20(3-5-6-2-1-3) EMCS
P12 46 M NTBI 2 9(1-1-4-1-0-2) MCS 11(1-1-5-2-0-2) MCS 20(4-5-6-2-1-2) EMCS
P13 59 M NTBI 2 14(3-4-2-1-1-2) MCS 18(4-5-3-1-2-3) LIS 18(4-5-3-1-2-3) LIS

Figure 1.  The GUI of the audiovisual BCI system. The question 
and instructions are presented in the upper part of the screen. Two 
buttons (‘Yes’ and ‘No’) are randomly presented on the left and 
right sides of the screen. When a button flashes with the color 
changing from black to green, the color of the word included in the 
button changes from white to black, and the corresponding spoken 
word is simultaneously presented from the headphone on the same 
side as the button.
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were presented in random order. Two word buttons with ‘Yes’ 
and ‘No’ in Chinese were randomly presented on the left and 
right sides of the screen. When an audiovisual stimulus was 
presented, the color of the corresponding button changed 
from green to black, and the color of the word included in 
the button changed from white to black. Simultaneously, the 
corresponding spoken word (65 dB) was presented in the 
headphone on the same side as the button.

The experimental paradigm of the audiovisual BCI-based 
communication assessment is shown in figure 2. Before the 
online experiment, each patient performed a calibration run 
of 12 trials. The test run contained five blocks, and each block 
consisted of 12 trials. Each block was conducted on a separate 
day because patients were easily fatigued. The test run lasted 
from one to two weeks.

In the BCI experiment, each trial began with an audiovisual 
instruction of approximately 20 s. During the instruction, an 
experimenter administered a situation question to the patient 
twice; the questions were the same as those used in the clinical 
evaluation. The patient was asked to focus on the button with 
the answer and count its repetitions silently. The experimenter 
and family members explained the instructions repeatedly so 
that the patients paid attention to the audiovisual target stimuli. 
There were two rounds of audiovisual stimulations following 
the instruction period. In the first round, the audiovisual stim-
ulus of one button (randomly chosen from the two buttons, 
such as ‘No’ in figure 2) was presented five times, and the audi-
ovisual stimulus of the other button, such as ‘Yes’ in figure 1, 
was then repeated five times. The second round of audiovisual 

stimulations was the same as the first round. Each audiovisual 
stimulus lasted 300 ms. The time interval between every two 
adjacent audiovisual stimuli was randomly chosen from 700, 
900, 1100, 1300, and 1500 ms. If the target was detected by the 
classification algorithm after two rounds of audiovisual stimu-
lations, the sound of applause and the detected result were pre-
sented for 4 s as the feedback; otherwise, a cross appeared on 
the screen for 4 s. Finally, there was a break at the end of each 
trial of at least 10 s depending on the patient’s level of arousal. 
In the BCI-based assessment, if the patients showed sustained 
eyelid closure during a trial, the recorded trial was discarded, 
and an arousal facilitation protocol was administered, such as 
presenting deep pressure stimulation to the shoulder. The next 
trial began after the patient reawakened. This arousal facilita-
tion protocol was similar to that used in the clinical assessment.

2.4.  Data processing

For all trials, the EEG signals recorded from 30 channels were 
band-pass filtered (0.1–20 Hz). We then extracted epochs 
corresponding to each stimulus from 0 to 600 ms after stimulus 
onset for each channel. All epochs were baseline corrected 
using a baseline of 100 ms before the stimulus onset and downs-
ampled by a rate of 5. Next, we concatenated the epochs from 
all 30 channels to obtain a data vector. Finally, a feature vector 
corresponding to each button was constructed by averaging the 
vectors from all ten corresponding stimulations. Using EEG 
data from the calibration run, we first trained an SVM classi-
fier in which the feature vectors corresponding to the target and 

... ...

√ 

Figure 2.  The experimental paradigm of the audiovisual BCI-based communication assessment. The test run contains five blocks, and each 
block consists of 12 trials. Each trial includes audiovisual instructions (20 s), audiovisual stimulation (20–48 s), feedback of the detection 
results (48–52 s), and a rest period (not fixed, e.g. 52–62 s). The audiovisual stimulation involves five repetitions of an audiovisual stimulus, 
such as ‘No’; five repetitions of another audiovisual stimulus, such as ‘Yes’; five repetitions of the first audiovisual stimulus; and five 
repetitions of the second audiovisual stimulus.
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nontarget numbers were labelled as  +1 and  −1, respectively. 
Furthermore, the classification model was updated after each 
test block using the data from this test block. For example, we 
used the data from Block 2 to re-train/update the SVM model 
for the test in Block 3. We used this model training method 
because (i) the blocks were conducted on separate days for 
each patient; and (ii) the patients’ statuses did not allow them 
to perform a training run before each block. For each test trial, 
the trained SVM was applied to the two feature vectors corre
sponding to the two buttons, and the predicted result corre-
sponded to the button with the higher score.

For each patient, the online classification accuracy was 
calculated as the ratio of the number of trials with correct 
responses to the total number of presented trials. To assess the 
significance of the accuracy, we used a binomial test based on 
Jeffreys’ Beta distribution in which the significance level in a 
two-class paradigm is calculated as follows [19, 20]:

{ ( )
( )

} ( )
λ = +

−
+

+
−
+

a
N m z

N N
z

a a

N

2 2 0.5

2 3

1

2.5
� (1)

where N is the number of actual trials (in this experiment, 
=N 60—the numbers of discard trials); m is the expected 

number of successful trials (in this study, m  =  N/2 for a two-
class problem); a is the expected accuracy (0.5 in this study); 
λ is the accuracy rate; and z is the z-score based on the stan-
dard normal distribution. At a significance level of 0.05 for a 
one-sided test, z is 1.65. Using this formula, for our two-class 
BCI, the accuracy rate λ corresponding to the significance 
level was 60.4% for 60 trials in this study. If given an accuracy 
rate λ, we can calculate z using this formula and obtain the p 
value based on the standard normal distribution.

3.  Results

Table 2 summarizes the online accuracy of the BCI experi-
ment and the JFK CRS-R communication subscale scores for 
each patient. One MCS patient (P13) achieved a score of 1 

on the JFK CRS-R-based communication assessment and an 
accuracy of 86.5% in the BCI-based assessment. Five patients 
obtained unresponsive results (four VS and one MCS; P1, 
P2, P3, P4 and P9) in both the BCI-based and JFK CRS-R-
based assessments. The other seven patients (four VS and 
three MCS; P5, P6, P7, P8, P10, P11 and P12), who all had 
scores of 0 on the JFK CRS-R communication subscale before 
the experiment, achieved accuracies ranging from 65.5% to 
86%, which were significantly higher than the chance level 
(p  <  0.05, the binomial test). In addition, the results of the 
two JFK CRS-R-based communication assessments after the 
experiment showed that four patients (P8, P10, P11 and P12) 
who achieved responsive results in the BCI-based assessment 
improved on the scores they obtained in the JFK CRS-R-
based assessment before the experiment.

Based on whether the online classification accuracy 
of the BCI experiment was significantly higher than the 
chance level we classified the patients into two groups: the 
responsive group, which included patients P5, P6, P7, P8, 
P10, P11, P12 and P13, and the unresponsive group, which 
included the remaining patients. The average accuracy of the 
responsive group with standard deviation was 77.3%  ±4.88. 
For the patients in the responsive group, the group-average 
ERP waveforms and each patient’s waveform from the ‘Cz’ 
channel are shown in figure 3. The ERP waveforms of each 
patient were extracted by time-locked averaging of the EEG 
signal across all trials in the test run for each stimulus type, 
whereas the group-average waveforms were obtained by aver-
aging the ERP waveforms of all patients in that group. As 
shown in figure 3, obvious P300 responses were observed for 
the target stimuli in the group-average ERP waveforms and in 
each patient’s waveforms.

Figure 4 shows the group-average ERP waveforms and 
each patient’s waveforms in the unresponsive group. In the 
group-average waveforms, P300 responses seemed to be 
elicited by both target and nontarget stimuli, but they could 
not be distinguished. Furthermore, for patients P1 and P4, 
no P300 responses were observed for the target stimuli. For 

Table 2.  The accuracy of the BCI-based experiment and the scores of the JFK CRS-R communication subscale for all patients. Note that 
the accuracies that were significantly higher than the chance level (50%) are highlighted in bold.

Patients
Clinical 
diagnosis Trials Hits Accuracy (%) p value

JFK CRS-R communication subscale scores

Before the 
experiment

Shortly after the 
experiment

Two months after 
the experiment

P1 VS 54 24 44.4 0.2018 0 0 0
P2 VS 60 34 56.7 0.1459 0 0 0
P3 VS 58 35 60.3 0.0538 0 0 0
P4 VS 60 34 56.7 0.1459 0 0 0
P5 VS 52 40 76.9 <0.0001 0 0 0
P6 VS 56 39 69.2 0.0013 0 0 0
P7 VS 57 43 75.4 <0.0001 0 0 0
P8 VS 53 41 77.4 <0.0001 0 1 1
P9 MCS 60 36 60.0 0.0569 0 0 0
P10 MCS 53 42 79.2 <0.0001 0 0 1
P11 MCS 53 42 79.2 <0.0001 0 1 1
P12 MCS 54 41 75.9 <0.0001 0 0 1
P13 MCS 52 45 86.5 <0.0001 1 2 2

J. Neural Eng. 14 (2017) 046024
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Figure 3.  The group-average ERP waveforms and ERP waveforms for each patient in the responsive group of the BCI-based assessment 
from the ‘Cz’ channel. The solid curves correspond to the target stimuli, whereas the dashed curves correspond to the nontarget stimuli.

Figure 4.  The group-average ERP waveforms and ERP waveforms for each patient in the unresponsive group of the BCI-based assessment 
from the ‘Cz’ channel. The solid curves correspond to the target stimuli, whereas the dashed curves correspond to the nontarget stimuli.
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patients P2, P3 and P9, P300 responses were elicited by both 
target and nontarget stimuli, but these responses could not be 
distinguished.

The results of the comparison between responsive and 
unresponsive groups based on several clinical parameters 
(age, time since onset, JFK CRS-R total scores) are reported 
in table 3. There were no significant differences between the 
responsive and unresponsive groups in age, time since onset 
and JFK CRS-R scores before the experiment. However, a 
significant difference was observed between the two groups 
in JFK CRS-R scores shortly after the experiment ( <p 0.05) 
and the JFK CRS-R scores two months after the experiment 
( <p 0.01). This result implies that the patients in the respon-
sive group recovered better than those in the unresponsive 
group.

4.  Discussion

BCI-based methods could evaluate DOC patients’ responses 
to external stimuli based on brain signals instead of behav-
iors and may provide an assistive tool for clinical evaluation. 
Previous studies mainly focused on using BCI to detect the 
awareness of DOC patients [13–15]. These studies deter-
mined whether patients were aware by verifying whether the 
patients followed commands. However, BCI-based methods 
have not been used to assess the single consciousness func-
tion included in behavioral scales, such as the 6 subscales in 
the JFK CRS-R. In this paper, we proposed an audiovisual 
BCI-based communication assessment system to supplement 
the JFK CRS-R in testing DOC patients’ communication 
ability. The combination of the JFK CRS-R- and BCI-based 
assessments may provide more sensitive and precise diagnosis 
results than the JFK CRS-R alone.

In our previous study [15], we proposed an audiovisual BCI 
system for awareness detection in patients with DOC based on 
semantically congruent audiovisual stimuli, including visual 
and spoken numbers. Our experimental results for healthy 
subjects showed that the audiovisual BCI outperformed the 
corresponding visual-only and auditory-only BCIs, whereas 
the experimental results for the patients demonstrated satis-
factory performance of the system in awareness detection. In 
this study, we used an audiovisual BCI that was a variant of 
the BCI system described in a previous study [15], to assess 
communication in DOC patients. Thirteen patients (eight VS 
and five MCS) participated in our experiment. Among these 
patients, one MCS patient (Patient 13) who received a score 
of 1 in the JFK CRS-R communication subscale before the 

experiment and a score of 2 in the JFK CRS-R-based assess-
ment shortly after the experiment achieved an accuracy of 
86.5% in the BCI experiment, which demonstrated the effec-
tiveness of our BCI-based communication assessment system. 
The other twelve patients (eight VS and four MCS) received a 
score of 0 in the JFK CRS-R communication subscale before 
the experiment. However, seven of these patients (four VS 
and three MCS) achieved accuracies that were significantly 
higher than the chance level in the BCI-based assessment. 
This means that the seven patients could understand the exam-
iner’s situation questions and answer these questions through 
our BCI system.

In the JFK CRS-R communication subscale, a score of 1 
indicates that the patient can answer some questions, and a 
score of 2 indicates that the patient can answer all questions 
correctly. Therefore, scores of 1 and 2 in the JFK CRS-R com-
munication subscale are responsive results, and a score of 0 is 
an unresponsive result.

We now compare the sensitivity of the two assessment 
methods. First, we assumed that the responsive samples in 
the JFK CRS-R-based assessment were actual positives. The 
true positive rate (TPR) is often used to estimate the sensi-
tivity of a test and can be defined as follows: the number of 
true positives (TP) / (number of true positives (TP)  +  number 
of false negatives (FN)). The number of total actual positive 
samples (TP  +  FN) is denoted by a and the number of TP 
in the BCI-based assessment is denoted by TPb. Then, the 
TPR corresponding to the BCI-based assessment is TPb/a, 
denoted by TPRb. The number of TP in each JFK CRS-R-
based assessment are denoted by TPc1, TPc2, and TPc3, and 
the TPR in each JFK CRS-R-based assessment is denoted by 
TPRc1, TPRc2, and TPRc3. Because TPc3  >  TPc2  >  TPc1 (see 
table  2), TPRc3  >  TPRc2  >  TPRc1. Furthermore, all respon-
sive results in the three JFK CRS-R-based assessments were 
detected by the BCI-based method (see table 2). Therefore, 
we had TPb  ⩾  TPc3  >  TPc2  >  TPc1, and TPRb  ⩾  TPRc3  >  TP
Rc2  >  TPRc1. However, as the number of responsive patients 
was small in this study, the statistical test for the above results 
was intractable. But we could still conclude that the discrep-
ancy between the BCI- and JFK CRS-R-based assessments 
suggested a potentially higher sensitivity of the BCI-based 
assessment in consciousness detection.

The specificity of a test can be evaluated by the true nega-
tive rate (TNR), which is calculated as follows: the number of 
true negatives (TN) / (the number of true negatives (TN)  +  the 
number of false positives (FP)). The number of FP in the BCI- 
and JFK CRS-R-based assessments is denoted by FPb and 

Table 3.  Results of the comparison between the responsive and unresponsive groups in the BCI-based assessment based on clinical 
parameters.

Clinical parameters
Responsive group  
mean (SD)

Unresponsive group  
mean (SD) p value (ANOVA)

Age (years) 41 (13.617) 31.2 (7.694) 0.174
Time since onset (months) 2.375 (1.217) 3 (3.102) 0.613
JFK CRS-R scores before the experiment 7.75 (1.643) 6.2 (1.643) 0.299
JFK CRS-R scores shortly after the experiment 12.375 (4.596) 6.2 (1.643) 0.016
JFK CRS-R scores two months after the experiment 14.625 (5.041) 6.2 (1.643) 0.004
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FPc, and the TNRs in the BCI- and JFK CRS-R-based assess-
ments are denoted by TNRb and TNRc. In this study, since we 
assumed that the responsive patients in the JFK CRS-R were 
true positives, FPc  =  0, and TNRc  =  1. Furthermore, FPb  ⩾  0, 
thus TNRc  ⩾  TNRb. However, because we had no evidence of 
FP in the BCI-based assessment, it is difficult to compare the 
specificity of the two methods.

Among eight patients in the responsive group in the BCI 
experiment, one patient (P13) obtained responsive results in 
the JFK CRS-R-based assessment before the experiment. The 
JFK CRS-R-based assessments shortly after and two months 
after the experiment confirmed that four patients (one VS 
and three MCS; P8, P10, P11 and P12) could communicate 
to some extent. Although three other patients (P5, P6 and 
P7) who achieved significant scores in the BCI-based assess-
ment still had scores of 0 in the JFK CRS-R communication 
subscale, their total JFK CRS-R scale scores later improved. 
These results indirectly indicate the effectiveness of our BCI-
based assessment. An interesting observation in this study is 
that all eight patients in the responsive group in the BCI experi-
ment had improved JFK CRS-R scores after the experiment (as 
shown in tables 1 and 3). Specifically, two MCS patients (P10 
and P12) from the responsive group of BCI experiment, who 
obtained unresponsive results in the JFK CRS-R-based assess-
ments before and shortly after the experiment but responsive 
results in the JFK CRS-R two months after the experiment, 
recovered and were released from the hospital three month 
after the experiment. Furthermore, as shown in figure 3, the 
ERP waveforms of the patients in the responsive group showed 
that the target stimuli elicited obvious P300 responses, whereas 
the nontarget stimuli did not. For patients in the unresponsive 
group, no P300 response was elicited by the target stimuli (see 
figure 4). These results and those in table 3 show that our BCI 
paradigm might indicate the prognosis for DOC patients to 
some extent but requires further study.

Recent studies have explored the effectiveness of BCI tech-
nology as a communication tool for patients with amyotrophic 
lateral sclerosis (ALS) [21, 22]. For example, Sellers et  al 
evaluated the effectiveness of a BCI operated by detecting a 
P300 elicited by one of four randomly presented stimuli (i.e. 
Yes, No, Pass and End) in three ALS patients and three con-
trols. The offline analysis indicated that two of the three ALS 
patients’ classification rates were equal to those achieved by 
the controls [22]. Nijboer et al reported that six ALS patients 
achieved mean online and offline accuracies of 62% and 82%, 
respectively, using a visual 6  ×  6 P300 speller [21]. Several 
studies have also reported successful attempts to restore com-
munication with brain-computer interfaces for LIS patients 
[17, 23]. In Lulé et al’s study [17], eighteen patients (three 
VS, thirteen MCS and two LIS) were evaluated with a four-
choice (Yes, No, Stop and Go) auditory oddball BCI. One 
LIS patient obtained a significant online accuracy of 60%, 
whereas the online accuracies for the other patients were not 
significantly higher than the chance level. De Massari et  al 
proposed a two-class (Yes and No) paradigm based on the 
slow cortical potentials for communication [23]. The offline 
analysis results involving three LIS patients indicated that one 
patient obtained an accuracy (70%) significantly higher than 

the chance level, whereas the other two did not. If the subjects 
achieved an overall accuracy higher than or equal to 80%, 
they were deemed proficient in the BCI [24]. In this study, an 
MCS patient obtained an accuracy higher than 80% in the BCI 
experiment, whereas the others did not. Therefore, only this 
patient could proficiently use the system for communication.

5.  Conclusion

Overall, our experimental results demonstrate that the BCI-
based method can provide some degree of correction for a 
doctor’s clinical diagnosis and that a more precise evaluation 
could be obtained for DOC patients by combining the JFK 
CRS-R- and BCI-based assessments. Furthermore, one MCS 
patient (P13 in this study) could proficiently use this simple 
communication BCI system to exchange messages with the 
outside world. In the future, we will establish a practical com-
munication system for this patient.

Acknowledgments

This work was supported in part by the National Natural 
Science Foundation of China under Grant 61633010 and 
Grant 91420302, in part by the National Key Basic Research 
Program of China (973 Program) under Grant 2015CB351703, 
and in part by Guangdong Natural Science Foundation under 
Grant 2014A030312005.

References

	 [1]	 Seel R T et al 2010 Assessment scales for disorders of 
consciousness: evidence-based recommendations for 
clinical practice and research Arch. Phys. Med. Rehabil. 
91 1795–813

	 [2]	 Jennett B and Plum F 1972 Persistent vegetative state after 
brain damage a syndrome in search of a name Lancet 
1 734–7

	 [3]	 Giacino J T et al 2002 The minimally conscious state: 
definition and diagnostic criteria Neurology 58 349–53

	 [4]	 Haig A J, Katz R T and Sahgal V 1987 Mortality and 
complications of the locked-in syndrome Arch. Phys. Med. 
Rehabil. 68 24–7

	 [5]	 Monti M M, Laureys S and Owen A M 2010 The vegetative 
state BMJ 341 c3765

	 [6]	 Schnakers C, Vanhaudenhuyse A, Giacino J, Ventura M, 
Boly M, Majerus S, Moonen G and Laureys S 2009 
Diagnostic accuracy of the vegetative and minimally 
conscious state: clinical consensus versus standardized 
neurobehavioral assessment BMC Neurol. 9 35

	 [7]	 Giacino J T, Kalmar K and Whyte J 2004 The JFK coma 
recovery scale-revised: measurement characteristics and 
diagnostic utility Arch. Phys. Med. Rehabil. 85 2020–9

	 [8]	 Giacino J T, Schnakers C, Rodriguez-Moreno D, Kalmar K, 
Schiff N and Hirsch J 2009 Behavioral assessment in 
patients with disorders of consciousness: gold standard or 
fool’s gold? Prog. Brain Res. 177 33–48

	 [9]	 Demertzi A, Vanhaudenhuyse A, Bruno M-A, Schnakers C, 
Boly M, Boveroux P, Maquet P, Moonen G and Laureys S 
2008 Is there anybody in there? detecting awareness in 
disorders of consciousness Expert Rev. Neurotherapeutics 
8 1719–30

J. Neural Eng. 14 (2017) 046024

https://doi.org/10.1016/j.apmr.2010.07.218
https://doi.org/10.1016/j.apmr.2010.07.218
https://doi.org/10.1016/j.apmr.2010.07.218
https://doi.org/10.1016/S0140-6736(72)90242-5
https://doi.org/10.1016/S0140-6736(72)90242-5
https://doi.org/10.1016/S0140-6736(72)90242-5
https://doi.org/10.1212/WNL.58.3.349
https://doi.org/10.1212/WNL.58.3.349
https://doi.org/10.1212/WNL.58.3.349
https://doi.org/10.1136/bmj.c3765
https://doi.org/10.1136/bmj.c3765
https://doi.org/10.1186/1471-2377-9-35
https://doi.org/10.1186/1471-2377-9-35
https://doi.org/10.1016/j.apmr.2004.02.033
https://doi.org/10.1016/j.apmr.2004.02.033
https://doi.org/10.1016/j.apmr.2004.02.033
https://doi.org/10.1586/14737175.8.11.1719
https://doi.org/10.1586/14737175.8.11.1719
https://doi.org/10.1586/14737175.8.11.1719


F Wang et al

9

	[10]	 Andrews K, Murphy L, Munday R and Littlewood C 1996 
Misdiagnosis of the vegetative state: retrospective study  
in a rehabilitation unit BMJ 313 13–6

	[11]	 Childs N L, Mercer W N and Childs H W 1993 Accuracy 
of diagnosis of persistent vegetative state Neurology 
43 1465–7

	[12]	 Wolpaw J R, Birbaumer N, McFarland D J, Pfurtscheller G 
and Vaughan T M 2002 Braincomputer interfaces 
for communication and control Clin. Neurophysiol. 
113 767–91

	[13]	 Cruse D, Chennu S, Chatelle C, Bekinschtein T A,  
Fernndez-Espejo D, Pickard J D, Laureys S and Owen A M 
2012 Bedside detection of awareness in the vegetative state: 
a cohort study Lancet 378 2088–94

	[14]	 Pan J, Xie Q, He Y, Wang F, Di H, Laureys S, Yu R and Li Y 
2014 Detecting awareness in patients with disorders of 
consciousness using a hybrid braincomputer interface 
J. Neural Eng. 11 056007

	[15]	 Wang F, He Y, Pan J, Xie Q, Yu R, Zhang R and Li Y 2015 
A novel audiovisual brain-computer interface and its 
application in awareness detection Sci. Rep. 5 9962

	[16]	 Li Y, Pan J, He Y, Wang F, Laureys S, Xie Q and Yu R 2015 
Detecting number processing and mental calculation in 
patients with disorders of consciousness using a hybrid 
brain-computer interface system BMC Neurol. 15 259

	[17]	 Lul D et al 2013 Probing command following in patients with 
disorders of consciousness using a braincomputer interface 
Clin. Neurophysiol. 124 101–6

	[18]	 Belitski A, Farquhar J and Desain P 2011 P300 audio-visual 
speller J. Neural Eng. 8 025022

	[19]	 Berrar D, Bradbury I and Dubitzky W 2006 Avoiding 
model selection bias in small-sample genomic datasets 
Bioinformatics 22 1245–50

	[20]	 Noirhomme Q, Lesenfants D, Gomez F, Soddu A, Schrouff J, 
Garraux G, Luxen A, Phillips C and Laureys S 2014 Biased 
binomial assessment of cross-validated estimation of 
classification accuracies illustrated in diagnosis predictions 
NeuroImage Clin. 4 687–94

	[21]	 Nijboer F et al 2008 A p300-based brain-computer 
interface for people with amyotrophic lateral sclerosis 
Clin. Neurophysiol. 119 1909–16

	[22]	 Sellers E W and Donchin E 2006 A p300-based  
brain-computer interface: initial tests by als patients 
Clin. Neurophysiol. 117 538–48

	[23]	 De Massari D, Ruf C A, Furdea A, Matuz T, van der Heiden L,  
Halder S, Silvoni S and Birbaumer N 2013 Brain 
communication in the locked-in state Brain 136 1989–2000

	[24]	 He B, Baxter B, Edelman B J, Cline C C and Wenjing W Y 
2015 Noninvasive brain-computer interfaces based on 
sensorimotor rhythms Proc. IEEE 103 907–25

J. Neural Eng. 14 (2017) 046024

https://doi.org/10.1136/bmj.313.7048.13
https://doi.org/10.1136/bmj.313.7048.13
https://doi.org/10.1136/bmj.313.7048.13
https://doi.org/10.1212/WNL.43.8.1465
https://doi.org/10.1212/WNL.43.8.1465
https://doi.org/10.1212/WNL.43.8.1465
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1016/S0140-6736(11)61224-5
https://doi.org/10.1016/S0140-6736(11)61224-5
https://doi.org/10.1016/S0140-6736(11)61224-5
https://doi.org/10.1088/1741-2560/11/5/056007
https://doi.org/10.1088/1741-2560/11/5/056007
https://doi.org/10.1038/srep09962
https://doi.org/10.1038/srep09962
https://doi.org/10.1186/s12883-015-0521-z
https://doi.org/10.1186/s12883-015-0521-z
https://doi.org/10.1016/j.clinph.2012.04.030
https://doi.org/10.1016/j.clinph.2012.04.030
https://doi.org/10.1016/j.clinph.2012.04.030
https://doi.org/10.1088/1741-2560/8/2/025022
https://doi.org/10.1088/1741-2560/8/2/025022
https://doi.org/10.1093/bioinformatics/btl066
https://doi.org/10.1093/bioinformatics/btl066
https://doi.org/10.1093/bioinformatics/btl066
https://doi.org/10.1016/j.nicl.2014.04.004
https://doi.org/10.1016/j.nicl.2014.04.004
https://doi.org/10.1016/j.nicl.2014.04.004
https://doi.org/10.1016/j.clinph.2008.03.034
https://doi.org/10.1016/j.clinph.2008.03.034
https://doi.org/10.1016/j.clinph.2008.03.034
https://doi.org/10.1016/j.clinph.2005.06.027
https://doi.org/10.1016/j.clinph.2005.06.027
https://doi.org/10.1016/j.clinph.2005.06.027
https://doi.org/10.1093/brain/awt102
https://doi.org/10.1093/brain/awt102
https://doi.org/10.1093/brain/awt102

