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Spaceflight-induced neuroplasticity in humans as measured by
MRI: what do we know so far?
Angelique Van Ombergen1,2,3, Steven Laureys4, Stefan Sunaert5, Elena Tomilovskaya6, Paul M. Parizel7 and Floris L. Wuyts1,3

Space travel poses an enormous challenge on the human body; microgravity, ionizing radiation, absence of circadian rhythm,
confinement and isolation are just some of the features associated with it. Obviously, all of the latter can have an impact on human
physiology and even induce detrimental changes. Some organ systems have been studied thoroughly under space conditions,
however, not much is known on the functional and morphological effects of spaceflight on the human central nervous system.
Previous studies have already shown that central nervous system changes occur during and after spaceflight in the form of
neurovestibular problems, alterations in cognitive function and sensory perception, cephalic fluid shifts and psychological
disturbances. However, little is known about the underlying neural substrates. In this review, we discuss the current limited
knowledge on neuroplastic changes in the human central nervous system associated with spaceflight (actual or simulated) as
measured by magnetic resonance imaging-based techniques. Furthermore, we discuss these findings as well as their future
perspectives, since this can encourage future research into this delicate and intriguing aspect of spaceflight. Currently, the literature
suffers from heterogeneous experimental set-ups and therefore, the lack of comparability of findings among studies. However, the
cerebellum, cortical sensorimotor and somatosensory areas and vestibular-related pathways seem to be involved across different
studies, suggesting that these brain regions are most affected by (simulated) spaceflight. Extending this knowledge is crucial,
especially with the eye on long-duration interplanetary missions (e.g. Mars) and space tourism.
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INTRODUCTION
More than 50 years of manned spaceflight have taught us that
space is a hostile environment for human health; microgravity,
ionizing radiation, absence of circadian rhythm, confinement and
isolation are just some of the stressors space travelers encoun-
ter.1,2 Obviously, all of the latter can have an impact on human
physiology and lead to detrimental changes.3 An example of this
is the microgravity-induced cephalic fluid shift, which has been
thought to cause to a wide range of symptoms such as increased
intracranial pressure, visual impairment (named the visual
impairment intracranial pressure syndrome, VIIP syndrome)4,5

and alterations in cerebral oxygenation6 and cerebral blood flow
(CBF)7,8 (for a full synthesis on spaceflight-induced cephalic fluid
shift, readers are referred to.9

It is important to acquire insight into the precise effect of
spaceflight as this can aid in the development of adequate
countermeasures and guarantee safety and efficiency in future
space missions. Some organ systems have been studied
thoroughly under space conditions, such as the cardiovascular,10

immune11,12 and musculoskeletal systems.13,14 Although there is
an increasing interest on the effect of spaceflight on the human
central nervous system (CNS),15,16 up to date, not much is known
about the functional and morphological effects of microgravity on
the human CNS. Previous studies have already shown that CNS
changes occur during and after spaceflight in the form of

neurovestibular problems,17,18 alterations in cognitive function
and sensory perception,19 problems with motor function,20

cephalic fluid shift9 and psychological disturbances.21 For
example, neurovestibular problems originate partially at the level
of the peripheral vestibular organ that suddenly is deprived of the
sense of gravity,22–24 so an intravestibular conflict emerges
between the different angular and linear acceleration detectors.
Therefore, one could hypothesize that this may also have an effect
on the vestibular nuclei in the brain as well as on the cortical
projections where sensory integration takes place between
‘disturbing’ vision, ‘altered’ proprioception and ‘conflicting’
vestibular information, such as the insular cortex, the temporo-
parietal junction and the thalamus.25,26 In addition, it is known
that the primary somatosensory and the somatosensory associa-
tion cortical networks are involved in proprioception.27 Zero-
gravity induced modifications in these network interactions could
therefore underlie the deficits in sensory perception as seen in
astronauts and vice versa.28 Also, the cerebellum is known to be
involved in fine motor control, coordination and equilibrium29 and
changes in cerebellar function and connectivity could therefore
explain typically-seen motor coordination and movement-timing
problems during and after spaceflight.28

In general, literature on the impact of spaceflight on space
travelers has mainly focused on the extra-cerebral or peripheral
systems, e.g. the musculoskeletal and the cardiovascular system.
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Yet, studies on CNS dysfunction are scarce. However, in the past
few years more and more interest has been attributed to this
topic. The latter is probably due to recent advances in structural
and functional neuroimaging techniques over the past 20 years
leading to a growing role of these technologies in Earth-bound
medicine. Additionally, the increasing interest in interplanetary
missions adds to the importance to probe the changes occurring
in the human brain in relation to short- and long-duration
spaceflight.

Aim of this review
Previous reviews on spaceflight-induced neuroplasticity,30–34

dating from the 1990’s or early 2000, are largely based on animal
studies and do not include more recent findings from more
advanced neuroimaging techniques. Furthermore, the effect of
space analogs -in particular head-down bed rest (HDBR)- on the
human brain has received increasing interest in the past few years
and has resulted in novel findings, some of which are translatable
to long-duration spaceflight. An updated overview of this
emerging literature could help to synthesize our current under-
standing, as well as to address the current shortcomings in order
to direct and enhance future research.

Neuroplasticity and how to measure it
Neural plasticity or neuroplasticity can be defined as the capability
of the brain to alter its structure or function in response to
exposure to new stimuli or environments. It is a crucial underlying
component of skill learning in healthy individuals (i.e. learning-
dependent or experience-dependent neuroplasticity) and func-
tional recovery after injury.35 Neural plasticity can take place at
several levels: from synaptic plasticity at the (sub)cellular level to
plasticity at the system and network level.35 In this review, we will
focus on systems plasticity across neural networks in human
beings. Brain plasticity of the CNS can be studied with a number of
methods. Examples of techniques commonly used in neuroplas-
ticity studies are electroencephalography (EEG)/evoked potentials
(ERPs), structural and functional magnetic resonance imaging
(MRI) and transcranial magnetic stimulation (TMS). These techni-
ques can be used to study the cortical dynamics, e.g. magnitude
of task-related or resting-state neural activity, changes in activity
patterns, representational map size and cortical excitability. Other
commonly used techniques include positron emission tomogra-
phy (PET) and magnetic resonance spectroscopy, but up until
now, no space-related studies have been carried out with the
latter techniques, so we will only describe the applied techniques
related to real and simulated spaceflight.
When it comes to spaceflight, EEG is the most commonly used

technique. This is associated with the portability of EEG and the
fact that this technique can easily be used in extreme environ-
ments.36 In EEG, electrical activity of the brain is monitored and
measured by placing multiple electrodes along the scalp.
Examples of the use of EEG in regards to spaceflight are the
studies on electrocortical activity in astronauts during space-
flight37 or in subjects during parabolic flights.38 EEG has a high
temporal resolution, but on the contrary, it has a low spatial
resolution making it tricky to attribute EEG findings to a precise
cortical or subcortical region. Current state of the art neuroima-
ging techniques such as MRI, as further described below, have a
high spatial sensitivity and therefore allow a detailed assessment
of brain structure and function.39 We will not go into detail on
EEG-based space studies on neuroplasticity, but we will focus on
spaceflight-induced neuroplasticity as measured by MRI. However,
EEG studies have been proven to be very useful in better
understanding the effect of spaceflight and microgravity on the
human brain and ideally, would be combined with functional MRI
in a multimodal fashion to cover both temporal and spatial
aspects of neuroplasticity as good as possible. Readers are referred

to Marušič et al. for a recent and thorough review on EEG-based
neuroplasticity studies in relation to spaceflight, microgravity and
hypergravity.36

MRI is an imaging technique that allows measuring structural,
functional, metabolic and vascular events in vivo. An example of
an anatomical MRI-technique is volumetric T1-weighted anatomi-
cal imaging to assess regional differences of a specific brain
region, i.e. gray matter (GM), WM and cerebrospinal fluid (CSF),
between groups. A common technique to perform this type of
brain morphometry is called ‘voxel-based morphometry’.40

Another MRI technique is diffusion tensor imaging (DTI). DTI is
based on the molecular Brownian motion (i.e. diffusion) of the
water molecules in the brain.41,42 Several local microstructures
such as myelin, cell membranes and other organelles will limit free
diffusion in the brain. The DTI MRI technique uses this limitation of
free diffusion by measuring the diffusion path of water molecules.
In DTI, it is assumed that the signal in each voxel can be described
as a diffusion tensor. This diffusion tensor will determine the
orientation of the longest axis of the ellipsoid, which will be ideally
aligned with the orientation of the underlying white matter
architecture. From the diffusion tensor, several parameters can be
defined, such as fractional anisotropy (FA) and mean diffusivity.
Therefore, DTI allows, up to some extent, to study the underlying
white matter (WM) structure and microstructural features.41,42 A
semi-automated procedure can now be implemented to connect
neighboring voxels where the diffusion tensor points towards
each other, and by doing so the underlying WM bundle can be
reconstructed. This process is called diffusion tensor tractogra-
phy.43,44 Another technique called tract-based spatial statistics, an
automated and observer-independent approach, allows to assess
FA in the major WM tracts on a voxel-wise basis across groups of
subjects.45

Functional MRI (fMRI) is also a MRI-based technique in which
stimulus or activity-induced brain patterns can be investigated.
fMRI is based upon the fact that neural activation is associated
with a local vascular response, constituting the blood-oxygen-level
dependent (BOLD) signal. The magnitude of the BOLD-signal
resembles the hemodynamic response and can indirectly be
linked to the magnitude of neural activation in specific brain areas.
fMRI has been crucial in the determination of functional
organization in the human brain.46,47 A derivative of fMRI is the
resting-state fMRI technique (rsfMRI) in which neural activity at
rest, without any stimulus or activity, is measured. For a complete
summary on the use of MRI-based techniques in neuroplasticity
studies, readers are referred to.48

Lastly, TMS is a technique that allows stimulation of an area of
the cortex non-invasively through the scalp by means of brief
pulses, administered by a stimulation coil using time-varying
magnetic fields.49 By doing so, alterations in cortical excitability
can be induced and measured. For example, when TMS is applied
over the primary motor cortex (M1), TMS can depolarize the
corticospinal tracts and evoke contralateral muscle contractions.49

For a review on the use of TMS in neuroplasticity studies, readers
are referred to e.g.49 or.50 TMS has been used previously to
investigate corticospinal excitability in relation to hypergravity and
microgravity, however, this was a preliminary investigation and
data from only 3 parabolic flyers were included.51

Ground-based space alternatives for human studies
Research on humans in space is complicated, expensive and
subject to several logistic and payload restrictions. In addition,
only few subjects can be investigated at the same time, leading to
reduced study power and limited generalization. Therefore, space
researchers have developed Earth-based models in which some
aspects of spaceflight can be simulated in order to set-up
investigations on a bigger scale and by which the difficulties of
actual space research can be overcome.
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Immersion was the first ground-based model ever used for
investigating the consequences of spending time in a reduced
gravity environment. Dry immersion involves immersing the
subject in thermo-neutral water while being covered in an elastic
waterproof fabric in order to keep the subject dry and to
overcome the unpleasant consequences of long-term direct water
exposure.52 Immersion is an adequate spaceflight alternative,
since it mimics several spaceflight features such as ‘supportless-
ness’ (i.e. lack of a supporting structure against the body),
centralization of bodily fluids, confinement, immobilization and
hypokinesia.52 Although dry immersion is a good model, it is not
(yet) widely implemented and so far, it has not been used to
quantify the neural changes associated with it. For a more general
review on dry immersion and its implementation, readers are
referred to.52

HDBR is an acceptable, reliable and the most implemented
alternative to simulate most of the changes occurring due to
spaceflight, both of a physiological53,54 and a psychological kind.55

In principle, HDBR consist of a subject being in a bed that is
inclined with the head down (−6° in most cases). This can be done
for short-term investigations (e.g. 72 hours in56) or long-term
studies (e.g. 90 days in57). The head down tilt induces an upward
fluid shift, similar to the one seen in space. Spaceflight-induced
cephalic fluid shift is thought to cause a wide range of symptoms
such as increased intracranial pressure, visual impairment
(together named the VIIP syndrome), alterations in cerebral
oxygenation and changes in CBF. In addition, HDBR is also
characterized by immobilization, inactivity and confinement. This
leads to equivalent alterations as seen in spaceflight in calcium
homeostasis, musculoskeletal deterioration (e.g. muscle loss and
changes in bone architecture) and a psychological load, respec-
tively. For a review on bed rest and its application in space
research, readers are referred to the publication by Pavy-Le Traon
and colleagues.54

A third “ground-based” alternative to spaceflight is parabolic
flight (PF). During a PF, a specific flight trajectory wherein the
acceleration of the aircraft cancels the acceleration due to gravity
is carried out. By doing so, normo-, hyper- and microgravity
phases are alternatingly experienced by the subjects on board of
the PF aircraft. The hypergravity phase precedes and follows the
microgravity phase and is characterized by 1.5 to 1.8 g and lasts
around 30–35 s. The microgravity phase on the contrary resembles
0 g during which approximately 0 g is experienced lasting around
20–25 s (Fig. 1). In addition, the flight profile can be modified to fly
parabolas of Martian gravity (0.38 g) and lunar gravity (0.16 g). In
between parabolas, the aircraft flies in normal 1 g conditions. In
general, one PF consists of 31 parabolas and lasts around 3 to 3.5 h.
For more information on the underlying dynamics of a PF, readers

are referred to the paper of.58 Important to note is that PF is the
only Earth-based method that allows researchers to conduct life
science studies in microgravity.
Another approach to mimic spaceflight-related features, is to

investigate human deployment analogs, such as Antarctic over-
wintering, undersea missions, etc… Sensory deprivation, high
stress loads, confinement, isolation and shifted circadian rhythm
are all replicated to high fidelity and therefore, these missions
form an acceptable spaceflight analog (except for space-related
changes in gravity). Furthermore, space mission simulation studies
in the form of isolation missions, e.g. the MARS500 study, can also
be used as a spaceflight analog, in particular to investigate the
effects of long-term isolation and confinement. An example hereof
is the assessment of peripheral and central (assessed by means of
EEG) stress markers in the MARS500 mission.59

Search method
For this review, the Medline (PubMed) and EMBASE databases
were searched for papers using the term “spaceflight”, “micro-
gravity”, “bed rest”, “PF”, “dry immersion” or “head-down tilt” and
“brain”, “neuroplasticity”, “neuro”, “MRI”, “DTI” or “fMRI” without
restriction of publication date. Reference lists from retrieved
articles were also searched manually for relevant publications that
were not included in the lists created through the Medline
database. Non-English studies were excluded. The abstracts of the
resulting articles were screened to select the relevant articles, i.e.
articles describing new findings on spaceflight-induced neuro-
plasticity or commenting on previously reported results in the
field. Only studies on human subjects were included. As stated
above, EEG-based studies were excluded from this review.

OVERVIEW AND CRITICAL APPRAISAL OF THE CURRENT
LITERATURE
A synthesis and critical appraisal of the MRI-based studies
included can be found in Table 1. For clarification, a summary of
brain regions found to be affected in (simulated) microgravity can
be found in Fig. 2.

Neuroplasticity and spaceflight
So far, there has only been one study examining the neuroplastic
effects after actual spaceflight by means of MRI. In this single-
subject case study, it was shown, by means of rsfMRI, that long-
duration spaceflight is associated with alterations in cerebellar-
motor connectivity, as well as a decrease in vestibular connectiv-
ity, more specifically a decrease in intrinsic connectivity strength
in the right insula (Fig. 3).60 This case report showed that the

Fig. 1 Typical flight trajectory of a PF for 0 g parabola’s
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typical spaceflight-related problems such as space motion
sickness, postural instability and disorientation could not solely
be attributed to the peripheral end organs, i.e. the vestibular
system in the inner ear, but may also have a central cortical
component. However, interpretation and generalization should be
very carefully made due to the anecdotal evidence. On-going
longitudinal studies are aiming to extend these preliminary
investigations in a larger cohort of astronauts.

Neuroplasticity and space analogs
Up until now, no MRI-based studies with dry immersion have been
performed. In addition, there are no published MRI-based PF
studies in humans.
Concerning HDBR, Roberts and colleagues were the first to

implement a MRI-based study.57 They investigated whether
simulated gravity by means of 90 days of HDBR induced changes
in functional brain connectivity. In addition, they investigated
corticospinal tract excitability by means of TMS. In summary, they
found reduced cortical activity in the motor areas with leg
representation and a decrease in corticospinal excitability after
HDBR. According to the authors, these reductions in cortical motor
function could underlie motor-related difficulties in astronauts.
Additionally, in the post-HDBR period, they continued TMS and
reported an increase in corticospinal excitability. Interestingly,
they observed that the larger the increase in motor cortex
excitability, the smaller the functional mobility impairment,
leading them to assume that TMS could be used as a possible
countermeasure against lower extremity dysfunction. Additionally,
their findings could be of clinical importance, e.g. pertaining to
immobilized patients or patients with lower extremity disuse.
Liao et al. initiated a HDBR study in which they investigated

short-term alterations in functional connectivity.56 After 72 h, they
found decreased thalamic connectivity during resting-state, which
they attributed to reduced motor control abilities and decrements
in executive function in astronauts. In a follow-up study, they
corroborated further on their initial results by linking them with a
mental transformation test, during which the ability to perform a
mental rotation strategy (i.e. mentally rotate an internal repre-
sentation) is assessed.61 Interestingly, they found a correlation
between intrinsic connectivity in the left inferior parietal lobe (IPL)
and the mental transformation task. In addition, they found a
decreased regional homogeneity (ReHo) in the IPL region, known
to be involved in mental rotation strategies,62 which could explain
the decrease in mental function in microgravity. Their study is
interesting for the fact that they combined neuroimaging with
behavioral data for the first time in regards to (simulated)
spaceflight, providing an interesting insight into the link of
changes in cognitive function and their underlying neural
correlate.
In another fMRI study, Rao and coworkers investigated whether

bed rest would influence an individual’s risk-taking behavior and
the underlying neural basis of this possible effect.63 They
implemented the Balloon Analog Risk Task tool64 to assess risk-
taking. In general, they found no effect of bed rest on risk-taking
behavior; however, they did find a significant deactivation of the
ventromedial prefrontal cortex (VMPFC) post-HDBR when com-
pared to before. The VMPFC is a principal component of the
decision-making circuitry during risky decision-making. The
finding of less deactivation of the VMPFC after HDBR is in
accordance to the assumed neural adaptation process and
changes in neuroplasticity after spaceflight. Furthermore, risk-
taking is a high-level cognitive function and therefore, plays an
important role in extreme and demanding environments such as
spaceflight. Therefore, their results are highly relevant, as they
suggest a detrimental effect of (simulated) spaceflight on riskfull
decision-making.63Ta
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Zhou and colleagues performed a study in which they
investigated 16 healthy male individuals before and after 45 days
−6° HDBR.65 They found changes in the anterior insular and
middle cingulate cortex (MCC) network, both key regions of the
resting state network, that they attributed to the induced cephalic
fluid shift and the concurrent increase in CBF, intracranial pressure
and oxygenated hemoglobin. In addition, the authors also
suggested decreases in autonomic nervous function (i.e. sympa-
thetic and parasympathetic) as another plausible explanation for
the underlying decreases in intrinsic functional connectivity in the
aINS and the MCC network. Furthermore, they postulated that the
decreased anti-correlation with the superior frontal gyrus, a part of
the default mode network, together with the decreased correla-
tion within the aINS-MCC network could be the underlying neural
correlates of the previously observed alterations in cognitive
function occurring during microgravity. Lastly, they did not find
any association with emotional state after their 45-day HDBR
study. In their study, they presented a very detailed and thorough
analysis of the underlying neural correlates in simulated micro-
gravity.65 Although they did not include a direct control group as
such, they still validated their results by means of an independent
data set acquired in healthy male volunteers, not exposed to
head-down tilt bed rest, at different time points. However, like all
simulated studies, it lacks the direct comparison to actual
spaceflight. Spaceflight remains a unique model that even the
best simulation model can’t substitute and therefore, all space
analog studies most likely underestimate and deviate from the
complexity and multi-modal effects of human spaceflight.
Recently, Liao and colleagues published their findings from a

rsfMRI study in subjects that underwent a 7-day HDBR experi-
ment.66 They postulated that their findings, i.e. reciprocal
alterations in the posterior cingulate cortex and anterior cingulate

cortex, respectively a decrease and an increase, could account for
changes in the autonomic nervous system, as seen in space
travelers. In addition, they found an increase in functional activity
in the left cerebellar posterior lobule, which could indicate a

Fig. 2 Cortical and subcortical brain areas most affected by spaceflight analogs or actual spaceflight, as described in the rsfMRI studies
discussed in this review (figure modified after26, with permission, originally from111). For simplification, laterality of the findings was not taken
into account. A more extensive description of the findings can be found in Table 1

Fig. 3 The figure shows decreased connectivity strength in the right
insula, a critical region of the vestibular cortex, when comparing
post-flight to pre-flight in a cosmonaut. The bars represent the
average connectivity strength in the respective cluster with 90%
confidence interval (whiskers) for the pre-flight and post-flight scan.
The statistical map is rendered on the normalized MRI scan of the
cosmonaut (axial view) (from,60 used with permission)
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compensatory role by the cerebellar posterior lobule to overcome
the concurrent decline in functional connectivity in the para-
central lobule. This compensatory role of the cerebellum is
postulated to be necessary to sustain adequate fine motor control
and could be transferred to astronauts in a microgravity condition,
where fine motor control is known to be significantly hampered.67

In another study, Li and co-workers demonstrated that 30 days
of HDBR is associated with local GM and WM alterations.68 More
specifically, they found decreases in GM volume (GMV) in the
bilateral frontal lobes, temporal lobes, parahippocampal gyri,
insula and hippocampus, while observing increases in GMV in the
vermis, the paracentral lobules, precuneus gyrus, precentral and
postcentral gyri. They related these GM changes to the decline
seen in performance, locomotion, learning, memory and coordi-
nation in space travelers. Their findings should be interpreted
cautiously, as their subjects experienced significant changes in
weight and blood pressure after the HDBR trial, which could
possibly underlie the changes in GMV.
Roberts and colleagues recently published their results from a

volumetric MRI analysis in 8 subjects after long-term HDBR.69 They
found several structural changes due to the simulated micro-
gravity, with the most prominent one being the fact that the brain
underwent an upward shift and posterior rotation relative to skull.
Furthermore, they found a correlation between the posterior brain
rotation and ventricular volume. The authors relate this to a
change in CSF homeostasis and urge for further research in order
to determine the exact role of this when it comes to the VIIP
syndrome and its concurrent symptoms such as increased
intracranial pressure, headache and visual impairment. However,
a recent review doubts the feasibility of HDBR studies to
investigate the effect on vision.70 Since there is no loss of tissue
weight during HDBR (and any other spaceflight analog for that
matter), long-duration HDBR is not a good analog for studies on
vision impairment. In addition, no previous HDBR studies have
reported vision impairments.70 Therefore, HDBR might not be the
best model to assess VIIP syndrome and other vision-related
impairments and a link with spaceflight should be made
cautiously.
Very recently, a 70-day study investigated the effect of long-

duration HDBR on brain connectivity and behavior in 17
participants.71 A behavioral assessment as well as rsfMRI scans
were conducted at 7 time points: two measurements pre-HDBR,
three measurements during HDBR and two measurements post-
HDBR. In addition, a control group of 14 subjects was added to the
study, to take into account the effects of time and practice.
Interestingly, this set-up allows investigating not only the changes
in brain connectivity after HDBR compared to baseline, but also
the temporal changes during the HDBR. The authors reported
changes in functional brain connectivity in vestibular, sensor-
imotor and somatosensory networks. More specifically, they
observed connectivity increases during HDBR, followed by
decreased connectivity after HDBR, in the motor and somatosen-
sory cortices. The latter might imply a possible adaptive response
to the HDBR environment. Therefore, the authors suggest it is
plausible that motor control regions play a crucial role in this
adaptation to HDBR, which is corroborated by the findings by
Roberts and colleagues that 90 days of HDBR are associated with
an increased motor cortex activity during foot movement
immediately after HDBR and a subsequent reversal of these
changes after a recovery period.57 In contrast, decreases in brain
connectivity were observed between the temporoparietal regions,
part of the vestibular network, and an increased functional
connectivity between the right parietal operculum 2, a key region
of the vestibular cortex,25 and the ipsilateral cerebellum. These
findings, in conjunction to the earlier described results from61

and,60 suggest that spaceflight-related sensorimotor problems can
be attributed to cortical changes at the central level. Moreover,
the previously observed diminished functioning of the peripheral

neurosensory organs22–24 could also be due to a central inhibition
of disturbing erroneous signals coming from the vestibular organs.
Furthermore, Cassady and colleagues linked their brain connec-
tivity data with behavioral data and reported a correlation
between motor-somatosensory network connectivity and stand-
ing balance performance, i.e. an individual with the greatest
increase in connectivity strength between the motor and
somatosensory cortices demonstrated least behavioral impair-
ment following bed rest. This result, together with the findings
from Roberts and colleagues,57 suggests that changes in body
orientation and unloading, as seen in HDBR, may induce
compensatory neural processes,71 a finding highly relevant for
spaceflight and future space missions. Moreover, it might be the
case that individual variability in neural adaptation compensates
for the detrimental effects of HDBR, and spaceflight in that matter,
more in some participants than in others.71

The same research group also investigated the effect of long-
duration HDBR on dual task performance and the underlying brain
activation.72 They found increased brain activation in the frontal,
parietal, cingulate and temporal cortices for dual task execution
during HDBR, with a recovery to baseline levels after cessation of
the HDBR. The latter implies a reduced neural efficiency in this
spaceflight analog. This lower neural efficiency has been shown
already during spaceflight by means of EEG recordings73 and
therefore, the HDBR findings seem to be transferable to space-
flight. In addition, the aforementioned study showed that HDBR
resulted in nearly immediate changes in brain activation.72

Therefore, future studies should also focus on the temporal
dynamics of spaceflight-induced neuroplasticity, as indicated by
these Earth-based model findings. As discussed above, preliminary
spaceflight results have also found a similar effect after 6 months
of spaceflight,60 but it is unknown if prolonged spaceflight has a
linear or exponential effect or after which time the effects level off.
A better understanding regarding the temporal characteristics of
neuroplasticity is of major importance for future manned missions
to the Moon and Mars.
In regards to all above-mentioned studies, it must be

mentioned that HDBR induces a cephalic fluid shift that might
increase CBF and thus, change the hemodynamics of the brain.74

Furthermore, also the increased intracranial pressure and oxyge-
nated hemoglobin might alter brain hemodynamics. Therefore,
this alone might already induce changes in the brain and might
underlie some of the changes found in the above-mentioned
studies. However, one could argue to expect more global changes
in structural and functional connectivity due to fluid shifts, rather
than regional specific and localized changes as described in the
studies above.
Overall, we conclude, at this point of research, the HDBR analog

has primarily shown alterations related to motor-related tasks (e.g.
fine motor control66) and more advanced cognitive function such
as executive function,56 mental transformation,61 spatial working
memory71 and dual tasking.72 Consequently, most studies found
changes in sensorimotor, somatosensory and cognitive-related
brain regions (for a full overview, see Table 1 and Fig. 2). In
addition, a study in actual microgravity have additionally shown
the alterations in vestibular-related cortical areas such as the
insula.60 However, conclusions in regards to spaceflight need to be
made carefully by both the indirect comparison of space analogs
to actual spaceflight56,61,63,65,66,68,71,72 and the small sample size in
some of the current studies.57,60,69

GENERAL DIFFICULTIES AND LIMITATIONS OF SPACE
RESEARCH
Several HDBR studies found a large inter-subject variability.57,69

Previous spaceflight studies have already shown that inter-subject
variability in space travelers is quite high, also for other
physiological processes such as sensorimotor adaptation75,76 and
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vestibular and otolith deconditioning.77,78 High inter-subject
variability is therefore a feature that should be kept in mind
when analyzing and interpreting spaceflight studies, in particular
with regards to studies on spaceflight-induced neuroplasticity.
Earth-based studies have already shown that neuroplasticity is a
process that is highly individually dependent and is related to
several factors such as demographics (e.g. age and gender),
genetic variation35 and physical activity.79

In the same line, it should be taken into account that
microgravity effects on brain activation have been shown to be
task dependent, as found by previous EEG studies.37,73 Therefore,
the factors found to be influencing neural activation during
simulated spaceflight might not only differ from actual spaceflight,
they might also differ per individual and might be dependent on
the specific task being executed, e.g. during task fMRI protocols.
Several other limitations are also inherent to space research

with the most prominent being the small sample sizes. Up to date,
approximately 150 crew members have spent 6 months in the
International Space Station (ISS), of which US astronauts [National
Aeronautics and Space Administration (NASA)], Russian cosmo-
nauts (ROSCOSMOS) and astronauts from the other space
agencies (ESA, Canadian Space Agency, Japan Aerospace Explora-
tion Agency).80 Space shuttle missions comprised more crew-
members, but the amount of time in space was not more than
2 weeks, limiting also its effects, and the space shuttle program
was suspended in 2011. Unfortunately, it is very difficult to acquire
data in a large group of space travelers within a reasonable time
frame. Therefore, it takes quite some time for most studies to get
up to an acceptable sample size, which can lead to changes in
setting, equipment and team members. As an example with
regards to MRI-based studies, longitudinal studies could lead to
variability in MRI acquisition parameters between scans and
therefore, potentially confound observed changes.81 In addition,
MRI acquisition technology changes rapidly and state-of-the-art
pre-processing and statistical analysis techniques develop at a fast
rate.82 Therefore, a longitudinal study over a long period of time
could lead to the fact that out-dated techniques are being used
for consistency among measurements.
In addition, also due to logistic restrictions, it is very difficult and

often impossible to assess space travelers in the first few hours or
days after returning from space due to restrictions in the schedule
of astronauts. For neuroplasticity measurements, it could be
possible that there is a critical time frame within which changes
are detectable by means of MRI measurements. Also, when
assessment can only take place a couple of days after returning to
Earth, one is not only measuring the spaceflight-induced changes,
but also the changes taking place due to re-adaptation back on
Earth.60 This can hamper the detection of more subtle changes or
can even counteract these processes in some cases. Especially in
the framework of neuroplasticity, it is known that changes can
take place on a very short period of time, e.g. alterations in WM
structure can already take place after 90 min of a spatial learning
task.83,84 Therefore, neuroplasticity assessments must be made at
well-considered and repeated time points. This is also relevant for
studies in which a spaceflight alternative is implemented,
however, in general the logistic and scheduling restrictions are
easier to overcome or adjust compared to spaceflight.
When focussing on neuroplasticity measured by MRI only, we

can only assess the human brain before and after spaceflight. Due
to loads of technical, logistic and payload restrictions, there is no
possibility to take an MRI-scanner into space or to the ISS.
Therefore, it is not possible to assess neuroplastic events, probed
by MRI-techniques, during spaceflight, although this would lead to
very interesting insights. However, we could complement before-
after MRI assessment with more portable neuroimaging techni-
ques on board such as EEG, TMS or near-infrared spectroscopy
(NIRS) and by correlating post-spaceflight changes as measured by
MRI with behavioral measurements taken on board.

Another complicating factor is the specific demographic profile
of space travelers. In general, there is a well-known majority of
male space travelers compared to female space travelers with a
ratio of roughly 9 to 1 respectively85 (In addition, the mean age of
astronauts on their first-time flight to space is slightly different for
males and females: 44.5 years vs. 42.5 years80). It is therefore
important that Earth-based space analogs take this into account in
order to resemble the demographic profile as much as possible. It
is also known that gender can have an impact on the adaptation
of several physiological systems to spaceflight.80,86–88 Previous
studies on neuroplasticity showed that gender and age could
influence the degree and extent of neuroplasticity. The menstrual
cycle for example can impact on structural and functional neural
adaptations.89 Therefore, if space analog studies on neuroplasticity
want to transfer their findings to make assumptions or conclusions
on spaceflight-induced neuroplasticity, they should match age
and gender features as much as possible.

IMPLICATIONS FOR COUNTERMEASURES AND
NEUROIMAGING IN SPACEFLIGHT-RELATED STUDIES
We should aim to accurately determine and map the effect of
changes in brain structure and function on the motor, vestibular
and cognitive system in order to make long-duration missions
(e.g. during several years) feasible and possible. In a second phase,
suitable countermeasures should be determined and applied. The
ability to perform landing and post-landing tasks (e.g. on Mars)
may be hampered by impaired motor control, movement and
motor coordination. This could encumber crew performance, crew
safety and may even compromise the mission. Furthermore,
higher cognitive tasks (e.g. working memory, risk-taking and dual-
tasking) might be influenced, possibly leading to unacceptable
risks and hazards in spaceflight, where there is a high working
load and stress situations might occur frequently and/or suddenly.

Countermeasures
Recently, the idea of motor imagery (MI), an experimental
paradigm already widely used in sports, has been proposed as
an inexpensive and rather simple approach to prepare space
travelers for the absence of gravity they will encounter.90 MI is a
process during which a specific and pre-decided action is
internally reproduced in working memory, from a first-person
perspective, without any overt motor output.91 It typically includes
multiple sensory modalities, e.g., mentally visualizing a specific
motor task and mentally feeling muscle contractions.92 Imagined
and executed movements have been shown to have the same
vividness and temporal structure93,94 and in addition, it has been
proven that MI activates similar brain regions as is the case with
executed movements, e.g. primary and secondary motor cortices,
posterior parietal cortex, basal ganglia and the cerebellum.95,96

This kind of mental practice could be applied to prepare
astronauts to the sudden absence of gravity and to the re-
adaptation phase when coming back to Earth.90

Additionally, the study from Roberts and colleagues showed
TMS to be a possible countermeasure.57 TMS is portable and
therefore, possible to be implemented in space. The authors
suggest TMS to become part of a countermeasure regime for
astronauts on long-duration space missions to counteract lower
extremity dysfunction,57 e.g. prior to operations on a planetary
surface as might be the case for interplanetary missions. Another
topic well discussed among space researchers, is artificial gravity
as a countermeasure. By introducing continuous or intermittent
exposure to artificial gravity (or some sort of gravitational levels),
the adaptation to e.g. Martian gravity or re-adaptation to Earth’s
gravity might be facilitated.97 For example, this could be done by
introducing a centrifuge on board.98 By doing so, the physiological
deconditioning, as seen after exposure to weightlessness, could
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be counteracted. Undoubtedly, this will also affect the human
brain and the underlying neural adaptation to spaceflight. Future
studies should investigate to what extent artificial gravity (by
means of centrifuge or otherwise) plays a possible role in
neuroplasticity.

Neuroimaging
In regards to neuroimaging specifically, the current literature
suffers from the fact that all studies are using different acquisition,
data pre-processing and statistical analysis techniques, as well as a
different set-up for their experiments. Furthermore, several
different analysis techniques such as for example BOLD con-
nectivity measures using hypothesis-driven seed-voxel analyses or
data-driven independent component analyses; amplitude of low-
frequency fluctuation or ReHo measures have been used, adding
to the difficulty to compare different studies with each other.
However, since these are analysis happening at the post-
processing level, they allow for re-analysis and comparison with
more widely used connectivity approaches.
In addition, and this holds true for the majority of neuroimaging

techniques: all of the above are indirect measures of synaptic
neural activity.48 For example, changes in brain volume found with
volumetric analyses tools do not allow the possibility to make a
conclusion on changes at the cytoarchitectonial level. Moreover,
changes in GM (and WM to some extent) could be the result of
changes in neuropil, changes in neuronal size, dendritic and
axonal adaptations, as well as be related to folding or the
development of thicker GM.99 In addition to the complexity of the
precise origin of GM changes, various factors are known to have
an impact on brain morphology and may therefore cause brain
volume changes. Also, the difference between short-term and
long-term exposure to (simulated) microgravity is of course very
relevant, but this intrinsically hampers the comparability among
studies. Data sharing and weighted meta-analyses could be
proposed for future analyses.
Cognitive changes due to spaceflight might be associated with

metabolic changes, even before the occurrence of “clinical”
symptoms and this relation should be further examined by means
of state-of-the-art techniques such as PET scans32 or MRI
spectroscopy. These techniques could probe changes in neuro-
transmitter systems e.g. dopamine receptor activity. Based on
findings from earlier animal studies related to spaceflight, it is
hypothesized to find changes in humans as well.30,100 Earth-based
studies have shown that changes in neurotransmitters have major
implications for attention,101 (long-term) memory,102 arousal103

and motor activity.104 Determining neurotransmitter and hormo-
nal imbalance in space travelers is therefore important to get
fundamental insight into how the central neural system adapt to
microgravity and in addition, to get insight into the relation
between these alterations and behavioral processes.
In relation to spaceflight, it is needed to determine the temporal

profile and longevity of neuroplastic changes and correlate these
with the temporal profile of the (re-)adaptation process and
possible detrimental changes. Therefore, in vivo neuroimaging
techniques such as MRI and EEG are crucial as they allow mapping
structural, functional and metabolic events in the human brain in
relation to microgravity and spaceflight. Gaining insight into the
dynamic properties of the human brain over time could also help
in the development and application of countermeasures as well as
help to determine when or how long they should be applied.105

In preparing for (very) long-duration interplanetary missions, it
is important to determine the impact of changes in brain structure
and function on sensori-motor, higher cognitive and psychological
capacities of space travelers, since brain alterations might interfere
with the decline in brain volume and functional reorganization
and connectivity as seen in a normal ageing population.106–108 If
this is the case, this might potentially lead to accelerated cerebral

aging effects and concurrent accelerated decline, e.g. sensory
impairment, motor slowing, memory problems, deficits in atten-
tion and processing speed and anxio-depressive disorders (e.g.,
112,113).
In general, simultaneous and independent multimodal neuroi-

maging is pivotal to acquire a still lacking understanding of
functional and structural brain processes in relation to human
spaceflight. The combination of different complementary electro-
physiological and neuroimaging techniques should be used to
acquire non-redundant information, e.g. structural, functional and
metabolic MRI pre and post spaceflight combined with high-
density EEG, TMS and/or NIRS. Not only would this give a more
complete insight into spaceflight-induced neuroplasticity, but also
would the simultaneous use of different techniques overcome
limitations inherent to one single technique. An example of this is
combining EEG and MRI for a more efficient assessment of the
temporal dynamics and spatial information of the underlying
neural processes taking place, i.e. to improve and optimize spatio-
temporal resolution.109

Another feasible approach would be to validate several motor-
related and cognitive tasks on Earth by means of fMRI, which
would then allow making predictions on brain alterations when
performing these tasks inflight in the ISS for example. Illustrations
are tests for sensorimotor skills, attention, working memory,
spatial orientation, etc. These can be easily done on board of the
ISS since they are portable, non-expensive and non-time
consuming. A good example hereof is the “Cognition” test battery
that is currently being implemented by NASA.110

CONCLUSION AND FUTURE PERSPECTIVES
In conclusion, despite the discussed limitations of the current
literature regarding heterogeneous experimental set-ups and the
lack of comparability of findings among studies, some trends have
been witnessed. The cerebellum, cortical motor areas and
vestibular-related pathways seem to be critically involved across
different studies, indicating that these brain regions are indeed
affected by real and simulated spaceflight. These changes reflect
most likely an underlying neural component of the common
detrimental changes observed in space travelers such as problems
with sensorimotor control and motor coordination, space motion
sickness and a hampered otolith and vestibulo-autonomic
functioning.
Currently, there is paucity in the knowledge of the effect of

microgravity on the human brain and more extensive research is
therefore highly needed to increase and add more insight into this
matter. The relationship between spaceflight-related physiological
and neuro-psychological problems and alterations in brain
structure or function should be investigated. Elaborating on the
understanding of how the brain reacts to and behaves in
spaceflight is a crucial step in the development of more adequate
countermeasures against the detrimental changes often seen in
space travelers. Assessing space travelers by means of validated
and standardized multimodal neuroimaging protocols will help
establish a more precise picture of functional, structural and
biochemical brain alterations associated with spaceflight. Hereto,
it could be of interest to develop a protocol comprising of the
minimum of tests that should be performed to optimize merging
among studies as much as possible. Within the framework of the
space agencies, an international multi-disciplinary task-force or
topical team should be established to set-up such a list.
Extending this knowledge is pivotal to guarantee the safety and

efficiency of future space missions, such as interplanetary missions
to Mars and the development of permanent space habitats.
Furthermore, the development, safety and success of commercial
space tourism are dependent on how a less-trained human being
reacts to this short-term exposure to microgravity, including
possible alterations at the level of the brain. Lastly, the acquired
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insights in this unique population of space travelers have direct
and indirect clinical impacts and could be transferred to multiple
neurological and psychiatric diseases and pathologies on Earth
such as patients suffering from neurodegenerative disorders,
vestibular problems and motor immobilization.
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