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Abstract

A key virulence factor of enterohaemorrhagic Escherichia coli (EHEC) is the bacteriophage-encoded Shiga toxin (Stx). Stxs are

classified into two types, Stx1 and Stx2, and Stx2-producing strains are thought to cause more severe infections than strains

producing only Stx1. Although O26 : H11 is the second most prevalent EHEC following O157 : H7, the majority of O26 : H11

strains produce Stx1 alone. However, Stx2-producing O26 strains have increasingly been detected worldwide. Through a

large-scale genome analysis, we present a global phylogenetic overview and evolutionary timescale for E. coli O26 : H11. The

origin of O26 has been estimated to be 415 years ago. Sequence type 21C1 (ST21C1), one of the two sublineages of ST21, the

most predominant O26 : H11 lineage worldwide, emerged 213 years ago from one of the three ST29 sublineages (ST29C2).

The other ST21 lineage (ST21C2) emerged 95 years ago from ST21C1. Increases in population size occurred in the late 20th

century for all of the O26 lineages, but most remarkably for ST21C2. Analysis of the distribution of stx2-positive strains

revealed the recent and repeated acquisition of the stx2 gene in multiple lineages of O26, both in ST21 and ST29. Other

major EHEC virulence genes, such as type III secretion system effector genes and plasmid-encoded virulence genes, were

well conserved in ST21 compared to ST29. In addition, more antimicrobial-resistance genes have accumulated in the

ST21C1 lineage. Although current attention is focused on several highly virulent ST29 clones that have acquired the stx2

gene, there is also a considerable risk that the ST21 lineage could yield highly virulent clones.

DATA SUMMARY

The raw read sequences and assembled scaffold sequences
obtained in this study have been deposited in GenBank/
EMBL/DDBJ under the BioProject accession number
PRJDB5579. Six supplementary tables and four supplementary
figures are available with the online SupplementaryMaterial.

INTRODUCTION

Enterohaemorrhagic Escherichia coli (EHEC) is a major
cause of serious gastrointestinal illness, which includes

diarrhoea, haemorrhagic colitis and life-threatening haemo-
lytic-uraemic syndrome (HUS) [1]. Ruminant animals,
bovines in particular, are thought to serve as the main reser-
voirs of EHEC, with human infections likely occurring
through the consumption of contaminated foods, such as
meats and dairy products, as well as direct animal-to-
human and human-to-human transmissions [2]. Typical
EHEC strains produce Shiga toxins (Stxs) encoded by lyso-
genic bacteriophages integrated as prophages, possess a
pathogenicity island called the locus of enterocyte efface-
ment (LEE), and a large virulence plasmid encoding
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enterohaemolysin and other potential virulence factors
(VFs) [1]. Stxs are divided into two major groups, Stx1 and
Stx2, and both are further classified into several subtypes.
EHEC strains that cause human diseases typically harbour
one or more subtypes, including stx1a, stx2a, stx2c and
stx2d; stx2a-positive strains are more often associated with
severe disease [3, 4]. The LEE encodes a set of proteins con-
stituting a type III secretion system (T3SS), as well as several
effectors secreted by the T3SS. More than 30 T3SS effectors
have also been found in non-LEE genomic regions, mostly
on prophage genomes (non-LEE effectors) [5, 6].

Although O157:H7 is the most predominant serotype,
EHEC strains of many other serogroups cause outbreaks
and sporadic cases worldwide [1–3]. The four major EHEC
serogroups (O157, O26, O111 and O103) are phylogeneti-
cally divergent, but share a similar VF set [6]. These EHECs
all harbour a large number of mobile genomic elements
(MGEs), including many prophages and a virulence plas-
mid. MGEs carrying the same VF genes were found in each
EHEC, but many of them showed distinct evolutionary his-
tories, indicating that the independent acquisition of these
MGEs has driven the parallel evolution of EHEC pathogen-
esis [6–8].

Among non-O157 EHECs, O26 : H11 strains are those most
frequently associated with human diseases. They have been
increasingly detected in Japan, the USA, Australia and
many European countries [9–12]. The European Food
Safety Authority (EFSA) and the European Centre for Dis-
ease Prevention and Control (ECDC) reported that in food
samples, the detection of O26 : H11 has increased recently,
and in 2015 the proportion of O26 :H11 was almost equal
to that of O157:H7 [10]. Strains of O26 :H11 can cause
symptoms as severe as those caused by O157 : H7 [13, 14].
Although the majority of O26 : H11 strains isolated from
patients harbour stx1a only [11, 12, 15, 16], isolates of
strains containing stx2a have been increasingly reported in
many countries [12, 17–20]. It has been hypothesized that
stx2a-positive strains have a higher potential to cause HUS
compared to strains carrying stx1a only [21]. In fact, a
highly virulent stx2-positive O26 : H11 clone was recently
identified as an emerging cause of HUS in Europe (referred
to as the ‘new European clone’), and it has disseminated
around the world [18, 21–23].

Multi-locus sequence typing showed that most O26 : H11
strains were divided into two closely related sequence types
(STs), ST21 and ST29. While the most predominant ST
among O26 :H11 clinical isolates is ST21 [18, 24–26], and
most stx1a-positive strains belong to ST21, the new Euro-
pean clone belongs to ST29 [21]. The presence/absence pro-
files of four plasmid-encoded VF (pVF) genes, ehxA
(enterohaemolysin), katP (catalase peroxidase), espP (serine
protease) and etpD (effector of type II secretion system), can
be used to distinguish ST21 and ST29, and further classify
both STs into several clonal lineages [18, 21]. This profiling
system has been used in several studies [26–28]. The new
European clone exhibits the following pVF gene profile:

ehxA+/katP�/espP�/etpD+ [21]. More recently, two addi-
tional virulent ST29 clones were identified, and each clone
exhibited a distinct profile: ehxA�/katP�/espP�/etpD� or
ehxA+/katP�/espP+/etpD�. The former clone was origin-
ally identified as stx2d-positive strains that were isolated
from paediatric patients in France (named the ‘new French
clone’) [27]. Strains belonging to this clonal lineage with no
stx genes were also isolated from bovine faeces in the USA
[29, 30]. The latter clone harbours stx2a alone and has been
shown to produce a higher concentration of Stx2 toxin and
to exhibit a higher virulence in mice compared to strains
belonging to the new European clone and ST21 [18].
Importantly, however, Bielaszewska et al. reported that
stx2a-positive ST21 strains do not substantially differ in
their association with HUS from stx2a-harbouring ST29
strains, and they therefore concluded that the possession of
stx2a rather than the ST of the strain is a predictor for HUS
development in O26 infection [21].

To date, the clonal diversity of O26 : H11 has been analysed
using several different typing systems, such as multi-locus
sequence typing, multiple-locus variable number tandem
repeat analysis, multiplex single nucleotide polymorphism
(SNP) analysis, pulsed-field gel electrophoresis, clustered
regularly interspaced short palindromic repeat (CRISPR)
typing and plasmid VF gene profiling [21, 22, 27, 28, 30–
35]. However, these typing systems do not have enough res-
olution power to discriminate closely related strains and/or
do not reveal the precise phylogenetic relationships between
strains. Although whole genome (WG)-based high-resolu-
tion phylogenetic analyses of O26 : H11 strains have been
conducted in a few studies, the numbers of strains analysed
were rather limited (37 strains by Ishijima et al. [18] and 79
by Gonzalez-Escalona et al. [29]). To present a phylogenetic
overview of O26 : H11, we performed a WG-based phyloge-
netic analysis of more than 500 strains isolated in eight
countries, including bovine isolates and strains with the
enteropathogenic E. coli (EPEC) pathotype (negative for
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stx). We subsequently conducted temporal and population
structural analyses of each clonal lineage and investigated
the prevalence of genes for Stxs, known T3SS effectors,
pVFs and antimicrobial resistance (AMR) in the O26
strains.

METHODS

Bacterial strains and DNA sequencing

The 520 O26 strains used in this study are summarized in
Table 1. The strains sequenced in this study were mainly
isolated in Japan from humans (n=252) and bovines (n=32)
from 1994 to 2013. We also sequenced human and bovine
isolates from Belgium (n=30), the USA (n=19), France
(n=3), The Netherlands (n=1), Switzerland (n=1), the UK
(n=1) and Italy (n=1). From the public database, the
genome information of O26 strains isolated from humans
and bovines in the USA (n=72), the UK (n=57), Japan
(n=29), The Netherlands (n=14) and France (n=8) were
included. Details of the 340 strains sequenced in this study
and of the 180 strains with publicly available genome data
are given in Tables S1 and S2 (available in the online Sup-
plementary Material), respectively.

Genomic DNA was purified from 1ml overnight culture of
each strain using a DNeasy blood and tissue kit (Qiagen).
Genomic DNA libraries were prepared from each strain
using the Nextera XT DNA sample preparation kit (Illu-
mina), and sequenced using the Illumina HiSeq and MiSeq
platforms to generate 100 and 300 bp paired-end reads,
respectively.

Genome assembly, SNP detection and phylogenetic
analysis

Genomic assembly, scaffolding and gap-closing of the Illu-
mina sequence reads obtained in this study and from the
public database were performed using the Platanus assem-
bler [36]. For strains with public sequence data, the original
assembly was used if available for further analysis. Scaffold
sequences of each strain were aligned with the phage- and
IS-masked chromosome sequence of O26 strain 11 368
using the MUMmer [37] sequence alignment package
to identify the conserved regions (cut-off threshold

>98% sequence identity and >1000 bp alignment length) of
these strains and the SNP sites located in the conserved
regions. We then combined all the alignment results and
identified a 3 121 447 bp sequence of the strain 11 368 chro-
mosome that was conserved in all of the strains examined
(core genome) by using our in-house programs (all provid-
able upon request). The genome sequences of each test
strain were reconstructed using the SNP information and
subjected to recombination analysis by Gubbins [38]. Gub-
bins detected and removed 194 recombinogenic sites. Nine
strains in which the recombination-free core genome align-
ment was completely identical to that of at least one other
strain were removed for further analyses (these strains are
not listed in Tables S1 and S2). Finally, RAxML [39] was
used to reconstruct a maximum-likelihood (ML) phyloge-
netic tree inferred from the concatenated alignment of
16 346 recombination-free SNP sites located on the core
genome with the General Time Reversible (GTR)-GAMMA
model of nucleotide substitution and 500 bootstraps. All
ML trees were displayed and annotated using iTOL [40].
Clustering analysis was performed using the 16 346 bp
sequences and the hierBAPS (the hierarchical Bayesian
analysis of population structure) program [41]. Parameters
used were (i) two levels in the hierarchy (L) and (ii) a maxi-
mum number of cluster (maxK) of 15.

Temporal analysis

To perform temporal analysis of the ST21C1, ST21C2 and
ST29 lineages individually, we identified recombination-free
informative SNP sites on the core backbone of each lineage,
as described above. In each lineage, 7018 SNP sites in
ST21C1 (core genome size 3 899 261 bp), 8248 in ST21C2
(4 024 434 bp) and 5486 in ST29 (3 787 453 bp) were identi-
fied. Then, we investigated the temporal signals in ML trees
for each O26 lineage using TempEst [42] to assess the linear
relationship between the root-to-tip distance and the year of
isolation. We performed further temporal analysis to date
the important nodes using BEAST (version 1.8), a Bayesian
phylogenetic inference software [43]. The GTR model of
nucleotide substitution was chosen as a best fit model under
the Akaike information criterion (AIC) using MrModeltest2
(https://github.com/nylander/MrModeltest2) implemented
in PAUP* (http://paup.csit.fsu.edu/). We compared four

Table 1. O26 strains used in this study

Country Host Year of isolation No. of strains Sequence data source

Japan Human 1994–2011 252 This study

Japan Bovine* 2001–2013 32 This study

Belgium, USA, France, Switzerland, UK Human 1952–2013 29 This study

Belgium, USA, Italy, The Netherlands Bovine 1987–2012 27 This study

Japan, USA, France, The Netherlands, UK Human 1997–2016 137 Public database

USA Bovine† 1983–2011 43 Public database

Total 520

*One sheep isolate is included.

†One pig isolate is included.
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combinations of different clock types (strict clock and
uncorrelated relaxed clock) and population models (con-
stant and Bayesian skyline). The isolation date in years was
used to calibrate the timescale of the tree. Three indepen-
dent Markov chain Monte Carlo (MCMC) analyses were
run, each with a 10million burn-in and 100million chain
length, sampled every 10 000 states using BEAGLE [44] in
conjunction with BEAST. The three runs of each lineage were
combined with LogCombiner (implemented in BEAST) with
the first 10% of the stats in each chain removed as a burn-
in. The maximum clade credibility tree was summarized
using TreeAnnotator (implemented in BEAST), followed by
visualization with Figtree (http://tree.bio.ed.ac.uk/software/
figtree/). In all cases, a strict clock with a prior Bayesian sky-
line coalescent demographic proved to be the best-fit model
based on the AIC through MCMC (AICM) as estimated by
Tracer (http://tree.bio.ed.ac.uk/software/tracer/). To further
assess the existence of temporal structure in the data, we
performed a date randomization test, as described elsewhere
[45, 46]. We prepared 10 date-randomized replicates for
each lineage and analysed them by BEAST with the same
parameters described above. The Bayesian skyline plots
were calculated and visualized using Tracer to investigate
changes in the effective population sizes of the three O26
lineages. The effective sample sizes were above 200 for all of
the parameters.

ST typing, stx and eaeA subtyping, and plasmid
gene profiling

STs of each strain were determined based on the sequences
of seven housekeeping genes (adk, fumC, gyrB, icd, mdh,
purA and recA), which were obtained from each draft
genome by BLASTN search (100% identity and 100% cover-
age) using allele sequences of the seven genes obtained from
EteroBase (http://enterobase.warwick.ac.uk) as queries. The
detection and subtyping of stx1, stx2 and eaeA were also
performed by in silico analyses of the genome sequences
using BLASTN (>99% identity and >99% coverage). Refer-
ence sequences of each subtype of stx and eaeA have been
described elsewhere [47, 48]. In silico pVF gene profiling
was conducted by BLASTN (�3 base mismatches, and
<2500 bp distance between forward and reverse primers)
using previously published primer sequences for ehxA [49],
katP [50], espP [51] and etpD [52] as query sequences.

Repertoire analysis of other virulence, AMR and
plasmid genes

The conservation of other VF genes (T3SS effector genes
and pVF genes), AMR genes and plasmid genes (pO26_1
and pO26_2) were analysed using the Short Read
Sequence Typing for Bacterial Pathogens (SRST2) program
[53] in the 429 strains in which raw read sequence data
were available. A set of respective VF gene sequences from
the 11 368 reference strain was used as the VF gene data-
base. For the T3SS effector genes (nleD and ospG) and
pVF genes (etpD and espP) that are absent in strain
11368, the nucleotide sequences of ECs0850 (nleD),
pO157_003 (etpD) and pO157_079 (espP) of O157 strain
Sakai (BA000007) and ECO111_1634 (ospG) of O111
strain 11 128 (AP010960) were used as references. For
acquired AMR genes, the database file ARGannot.r1.fasta
that is distributed with SRST2 was used. Genes encoded on
pO26_1 and pO26_2 were used as a database of plasmid
genes. For pO26_1, the transposase genes were excluded.
The locus_tag numbers of the T3SS effectors and pVFs
used as references are listed in Table S3.

RESULTS AND DISCUSSION

O26 strains analysed in this study

A total of 340 O26 : H11 strains isolated from humans and
bovines in Japan, the USA and several European countries
were sequenced in this study, and 180 strains with publicly
available genome sequence data were also included
(Tables 1, S1 and S2). All of the strains, including strains
with a non-motile phenotype, contained the fliC H11 allele
as confirmed by BLASTN searches. In silico ST typing using
the draft genome sequences revealed that 437 and 76 strains
belonged to ST21 and ST29, respectively, and 7 were single
locus variants of ST21 or ST29 (Tables 2 and S4). All but
one strain (strain TC6168) harboured the eaeA gene (sub-
type b1), which is a genetic marker of the LEE. The stx gen-
otypes of most of the ST21 strains were stx1a alone or
stx1a/stx2a, and those of most of the ST29 strains were
stx2a alone or stx negative (Table 2). Six strains were found
to carry stx2d. Among the 42 USA strains that were previ-
ously sequenced and reported to be stx negative [29], a full
length stx2a gene was detected in seven strains by our
BLASTN analysis (Table S2).

Table 2. STs and stx genotypes of the 520 O26 strains

stx1a stx2a stx2d stx1a+2a stx1a+2d stx negative Total

ST21 353 20 2 44 1 17 437

SLV of ST21 5 1 0 0 0 0 6

ST29 1 27 3 0 0 45 76

SLV of ST29 0 0 0 0 0 1 1

Total 359 48 5 44 1 63 520

SLV, single locus variant.
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Phylogenetic overview of the O26 : H11 strains

To obtain a phylogenetic overview of the O26 : H11 strains,
we reconstructed a WG-based phylogeny of 520 O26 : H11
strains isolated worldwide based on a concatenated align-
ment of 16 346 recombination-free SNP sites located on the
3 121 447 bp conserved chromosomal backbone sequence of
reference strain 11368 [6]. Three ST29 clonal complexes,
ST29C1–ST29C3, which were previously proposed based on
pVF gene profiles [18, 21], were clearly recognized in this
ML tree (Fig. 1). By hierBAPS analysis [41], ST29C3 was
further divided into three BAPS groups (Fig. 1). There were
two ST29 strains, 248 542 and 680_13, that showed unique
pVF gene profiles (ehxA+/katP+/espP+/etpD� and ehxA+/
katP+/espP�/etpD�, respectively), and they grouped
together with ST29C2 and several sublineages of ST21 in
the hierBAPS analysis (Fig. 1).

ST21 strains separated into two large clusters named
ST21C1 and ST21C2 (Fig. 1). ST21C1 was further classified
into two BAPS groups, one of which was grouped together
with ST29C2 and the two minor ST29 clones, as mentioned
above. However, the ML tree indicated that ST21C1
emerged from a sublineage of ST29C2, and that ST21C2
appeared from a sublineage of ST21C1. Interestingly, the
distribution of the ST21 strains isolated in Japan was highly
biased to ST21C2 and one sublineage of ST21C1. In the Jap-
anese-strain-enriched lineage and sublineage, only a small
number of European strains (from the UK or The Nether-
lands) were included. This may imply that transfer of ST21
strains has not frequently occurred between Japan and
European countries.

Previously, O26 : H11 strains were grouped into four differ-
ent SNP clonal complexes (SNP-CC1 to SNP-CC4) by two
independent studies using the same set of 48 SNPs [22, 31].
In this scheme, SNP-CC1 includes ST29C1 and ST29C3,
and SNP-CC2, SNP-CC3 and SNP-CC4 correspond to
ST29C2, ST21C1 and ST21C2, respectively. Based on the
genetic relationships between the four SNP-CCs, Bletz et al.
proposed that O26 : H11 evolved sequentially from SNP-
CC1 to SNP-CC4 [31]. Our phylogeny supports this
hypothesis (Fig. 1).

Phylogenetic relationships of the human and
bovine isolates

In O157 : H7, strains belonging to a lineage called lineage II
were found to be more frequently associated with bovines
than other lineages (lineages I and I/II) [54, 55]. Recently,
using support vector machine analysis, Lupolova et al.
showed that only a minor subset of bovine O157:H7 isolates
were predicted to have the potential to cause human disease
[56]. In O26 : H11, the bovine isolates were distributed
across most of the major lineages (Fig. 1). While many
bovine isolates were included in ST29C1 (9 out of 17
strains) and ST29C3 (38 out of 50 strains), no bovine iso-
lates were included in ST29C2 (0 out of 10 strains), showing
a contrasting distribution. However, the number of ST29
genomes currently available may be not sufficient to address

the phylogenetic difference in the distribution of clinical
and bovine isolates in ST29. In the ST21 lineage, bovine iso-
lates were distributed rather evenly and clustered together
with the clinical isolates. We detected no enrichment of
bovine isolates in the specific sublineages, suggesting that, at
least in ST21, the sublineages that are more frequently asso-
ciated with bovines are not present.

Temporal and population structural analyses of
each O26 : H11 clade

To generate a time-stamped phylogenetic tree and to esti-
mate the time to the most recent common ancestor
(TMRCA) of each O26 : H11 clonal lineage, we performed
temporal analyses of ST29, ST21C1 and ST21C2 using
Bayesian coalescent analysis implemented in BEAST [43]
(Fig. 2a). Each tree was calibrated using the isolation dates
of strains, which ranged from 1952 to 2016 (ST29), from
1967 to 2016 (ST21C1) and from 1985 to 2015 (ST21C2)
(Tables S1 and S2). The overall topologies of each of the
generated maximum clade credibility trees were consistent
with those in the ML tree (Fig. 1). Root-to-tip regression
analyses revealed a weak but positive correlation between
genetic distance and sampling date in each lineage (Fig. S1).
In addition, date randomization tests [45, 46] supported the
presence of temporal structure in our data sets (Fig. S1). In
each lineage, the mean base substitution rates of random-
ized replicates and their 95%credible intervals (CIs) were
not within the 95% CIs deduced with the correct sampling
times.

The estimated mutation rate was 4.33�10�7mutations per
site per year [95% highest posterior density (HPD): 3.76–
4.86�10�7] for ST29, 2.80�10�7 (2.42–3.21�10�7) for
ST21C1 and 3.41�10�7 (3.01–3.86�10�7) for ST21C2,
which were all in a range similar to those observed in other
temporal analyses of E. coli strains (4.39�10�7mutations
per site per year) [57]. Based on these mutation rates, the
TMRCA of ST29 was estimated to be 415 years ago (95%
HPD 353–485 years). For O157 : H7, using a similar meth-
odology, Dallman et al. estimated that the divergence of the
contemporary b-glucuronidase-negative, sorbitol-negative
clone from a b-glucuronidase-positive ancestor occurred
approximately 400 years ago [58]. Thus, the MRCAs for the
contemporary O26 : H11 and O157:H7 clones may have
emerged in the same era. Conversely, our estimation was
considerably different from that estimated by Bletz et al.
[31]. They classified the O26 : H11 strains into four clonal
complexes (SNP-CC1 to SNP-CC4) as mentioned above
and postulated that EHEC O26 :H11 evolved sequentially
from SNP-CC1 to SNP-CC4 within the past 1650 years.
This discrepancy is probably due to the difference in meth-
odology. The estimation by Bletz et al. employed a previ-
ously proposed synonymous substitution rate (1.44�10�10

substitutions per base per generation) [59] and generation
time (300 generations per year) [60].

The estimated TMRCA of ST21C1 in the ancestral lineage
of ST21C2 was 213 years ago (95% HPD 185–244 years),
and that of ST21C2 was 95 years ago (95% HPD 80–
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159 years). Bayesian skyline plots showed that ST29,
ST21C1 and ST21C2 each experienced several rapid
increases (and a decrease) in their effective population sizes
since their emergence (Fig. 2b). The recent expansion of
ST21, particularly ST21C2, is remarkable. Although the
mechanism(s) underlying these expansions are unknown at
present, they may be related to the very successful global
dissemination of ST21, which is the most predominant ST
among O26:H11 clinical isolates [18, 24–26].

Emergence of stx2-positive strains in multiple
O26 : H11 lineages

Although the dissemination of stx2-positive ST29 strains is
a global public-health concern [14, 18, 21, 27, 28, 30, 34],
the dominant stx genotype of ST21 is stx1. However, a sig-
nificant number of ST21 strains that harbour stx2 alone or
both stx1 and stx2 have also been detected [21, 25]. Our

analysis revealed a highly scattered distribution of stx2a in
both ST21 and ST29 (Fig. 1), indicative of a frequent gain
(and probably also a loss) of Stx2a phages in multiple line-
ages of O26 : H11. Strains harbouring stx2d were found in
the new French clonal lineage, which belongs to ST29C3, as
reported elsewhere [27], and also in two different subli-
neages of ST21, suggesting that the infection of Stx2d
phages is also occurring in multiple lineages of O26 : H11.
In contrast, stx1 was harboured by most ST21 strains, but
found only in one strain in ST29. This finding suggests that
stx1 was acquired by a common ancestor of ST21 after its
separation from ST29, and that it has been stably main-
tained in the ST21 lineage even though its deletion was
observed in multiple sublineages.

In O157:H7, it was previously suggested that stx2a has rela-
tively recently been acquired compared to other stx subtypes
and that stx2a acquisition has occurred on multiple

Fig. 1. WG-based phylogenetic tree of 520 O26 strains. WG assembles of 520 O26 strains were aligned to the complete chromosome

sequence of strain 11368, and the SNPs located on the 3 121 447 bp backbone sequence that were conserved in all of the test strains

were identified. After removing the recombinogenic SNPs sites, the concatenated alignment of 16 346 informative sites was used to

generate a ML phylogeny. From the outside in, the coloured rings represent the BAPS group; ST; plasmid gene profile (PGP); country

of isolation; source of isolation; and presence of stx2d, stx2a and stx1a.
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occasions [58]. The time-stamped phylogeny of O26 strains

reconstituted in this study shows that stx2-positive strains

emerged recently (mostly during the past 60 years) in most

sublineages, particularly those in ST21C2 (Fig. 2), indicating

that the gain of the Stx2a phage has recently and repeatedly

occurred also in O26. This finding, together with the

increased population size of ST21, suggests that this lineage

could be the source of various highly virulent clones. In

O157 : H7, the Stx2a production level is highly variable

among strains, and we previously showed that the stx2a-

encoding phage subtype is one of the determinants of the

level of Stx2 production [61]. Among the O26 : H11 strains

harbouring stx2a, the Stx2 production levels are also vari-
able even if they belong to the same ST and clonal complex
[18]. Therefore, fine and systematic analyses of the Stx2
production levels of each stx2a-positive O26 strain and of
the subtypes of their Stx2a phages are necessary to monitor
the emergence of highly virulent clones.

T3SS effectors

We analysed the repertoire of T3SS effector genes using the
SRST2 program, a read mapping-based tool for gene content
analysis [53]. Of the 181 strains with publicly available
genome sequence data, raw Illumina read sequences were
available for only 89 strains (Table S2). Thus, a total of 429

(a)

(b)

Fig. 2. Temporal analyses of the O26 strains. (a) Results of the temporal analyses of ST29, ST21C1 and ST21C2 are shown. The time-

calibrated phylogenetic trees were reconstructed using BEAST based on 5657, 7135 and 8391 concatenated recombination-free SNPs

for ST29, ST21C1 and ST21C2, respectively. The stx2-carrying strains and lineages are indicated by red triangles and red lines, respec-

tively. The dashed blue lines indicate the past 60 years (1966) in each time-stamped tree. Many Stx2 acquisition events were estimated

to have occurred within the past 60 years, especially in the ST21 lineage (at least 43% of the events in ST29, at least 90% in ST21C1

and 100% in ST21C2). (B) Bayesian skyline plots of ST29, ST21C1 and ST21C2 are shown. The effective population size is indicated by

the black curve, and the 95% credible interval is indicated by cyan shading.
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strains were used for this analysis (Fig. 3). Among the effec-
tor genes identified in the O26 : H11 reference strain 11368,
which belongs to ST21C2, five [espV, nleG (ECO26_1978),
espK (ECO26_3663), espN and espX] were only occasionally
found in ST29, and two [espO and espK (ECO26_1525)]
were absent in ST29C3, suggesting that these genes were not
acquired by the common ancestors of ST29 and ST29C3,
respectively. In contrast, the effector genes identified in the
reference strain were well conserved in the ST21 strains,
although sublineage-dependent deletions of effector genes
were observed for several genes, such as tccP, espV, espO,
espK and nleG (ECO26_1636), in ST21C1. Since in vivo
functions of many of these effectors have not yet fully been
elucidated [62], the clinical significance of this variation in
T3SS effector profiles remains unclear. Numerous strain-
specific deletions of effector genes were also observed in
both ST21 and ST29. However, in many of these cases,
genes found on the same prophage in the reference strain
were coincidentally undetected (for example, P03, P08 and
P19; Fig. 3, Table S5), suggesting that such prophages (or
parts of them) have been deleted in a strain-specific
manner.

Among the strains analysed, one strain (TC6168) did not
contain the eaeA gene, an indicator of LEE. In this strain, all
of the LEE-encoded effector genes were also absent, but
most of the non-LEE effector genes were conserved, sug-
gesting the recent deletion of the LEE element in this strain.
Among the known T3SS effectors in LEE-positive E. coli
strains, two families, nleD and ospG, are absent in the refer-
ence O26 : H11 strain, but both were present in a very lim-
ited number of strains (35 and 11 strains for nleD and ospG,
respectively) (Fig. 3).

Plasmid-encoded VFs

With the same strategy as that used for the T3SS effector
genes, we analysed the conservation of four VF genes identi-
fied in the O26 virulence plasmid of the reference strain
11 368 (pO26_1) and two genes that were not encoded by
pO26_1 but by the virulence plasmid of O157 : H7 (pO157).
In all of the ST29C3 strains, these genes were completely
absent (Fig. 3). Because most of the other genes on pO26_1
were also not detected in the ST29C3 strains (Fig. S2), this
lineage most likely did not acquire any pO26_1-related plas-
mids. In the ST29C1 and ST29C2 strains, several pVF genes
were detected (Fig. 3), as was previously observed [18, 21,
27, 28, 33]. In these strains, more pO26_1 genes, including
the RepFIb replication protein encoding gene, were con-
served, and the patterns of gene conservation were lineage-
specific (Fig. S2). In ST21, all four VF genes on pO26_1
(Fig. 3), as well as other pO26_1 genes (Fig. S2), were well
conserved even though pO26_1 appeared to be deleted in
several strains. These findings suggest that a pO26_1-like
plasmid was acquired by the common ancestor of the
ST29C1, ST29C2 and ST21 lineages, and that lineage-spe-
cific diversification of the plasmid has taken place in each
lineage. This scenario is supported by the fact that the

overall topology of the core pO26_1 gene tree is consistent
with that in the WG tree (Fig. S3).

Of the two genes originally identified in pO157, the etpD
gene was detected only in the ST29C2 strains but at a low
confidence (Fig. 3), suggesting that the gene was acquired
specifically by this lineage and that its sequence has diverged
significantly from that in pO157. The espP gene was
detected in most of the ST21 strains and all of the ST29C1
strains. It is most likely that the espP gene is encoded by
pO26_1-like plasmids and has been deleted from the plas-
mids of the reference strain and some of the other ST21
strains.

Acquired AMR genes

The distribution of the acquired AMR genes in the
O26 : H11 strains was also analysed by SRST2 (Table S6).
More than one-third of the strains (180 out of 429) con-
tained at least one AMR gene, and a total of 37 AMR genes
from 10 of the 13 categories in the ARGannot.r1.fasta data-
base were detected in at least one of the tested strains
(Fig. 3). Many different combinations of AMR genes were
detected, but most were distributed in a strain or subline-
age-specific manner, implying the frequent acquisition of
different types of MGEs carrying these AMR genes.

In terms of the MGE-mediated acquisition of AMR genes,
the distribution of pO26_2-related plasmids is intriguing.
Plasmid pO26_2 was identified in the reference strain
11 368 and contained a gene encoding aminoglycoside-3¢-
phosphotransferase [APH(3¢)] [6]. The aph(3¢) gene was
detected in relatively limited strains/sublineages, and their
sequences often diverged from that of pO26_2. However,
strains carrying many pO26_2 genes were distributed in all
of the O26 :H11 lineages, including the most ancestral line-
age ST29C3 (Fig. S4). In 30% of the analysed strains (128
out of 429), more than half of the 84 genes on pO26_2 were
detected. These conserved pO26_2 genes included genes for
conjugal transfer. These findings indicate the wide distribu-
tion of pO26_2-related plasmids in O26, which may be
involved in the acquisition of AMR genes by each strain/
sublineage.

Notably, the acquired AMR genes were more enriched in

ST21C1 than in other lineages. Mean numbers of AMR

genes per strain were 1.5 in ST29, 2.6 in ST21C1 and 1.0 in

ST21C2. In addition, more than half of the ST21C1 strains

(55%) have acquired at least one AMR gene (Fig. 4).

Although strains that have acquired multiple AMR genes

were found in all of the lineages, those that had acquired 8

or more AMR genes were found only in ST21C1 (17 strains;

11% of the ST21C1 strains examined), with two strains con-

taining as many as 12 genes. The recently discovered plas-

mid-encoded colistin resistance gene (mcr-1) was also

found in two closely related ST21C1 strains (Fig. 3) that

were isolated from bovines in Japan and were hyper-multi-

drug-resistant strains carrying 11 AMR genes [63].
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(a)

(b)

(c)

Fig. 3. An ML tree of 429 O26 strains with heatmaps indicating the conservation of T3SS effector genes, plasmid-encoded VF genes

and acquired AMR genes. (a) An ML tree was reconstructed based on the recombination-free SNPs identified on the core genome

sequence of O26. Only strains in which Illumina read data were available were analysed. (b) Presence or absence of genes for T3SS

effectors and plasmid-encoded VFs identified in the O26 reference strain 11368, which was determined using SRST2 software. For the
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Conclusion

Based on a large-scale genomic analysis, we have presented
a global phylogenetic overview and evolutionary timescale
for E. coli O26 :H11. The MRCA of O26 was estimated to
be present approximately 415 years ago. ST21C1, one of the
two sublineages of ST21, which is the most prevalent
O26 : H11 lineage worldwide, emerged from one of the three
known ST29 sublineages (ST29C2) approximately 213 years
ago. The other ST21 lineage (ST21C2), which is now the
most dominant lineage in Japan, emerged from ST21C1
approximately 95 years ago. Increases in population size
occurred in the late 20th century for all of the O26 lineages,
most remarkably for ST21C2. Bovine and human isolates
were phylogenetically undistinguishable, at least in the ST21
lineage. Analysis of the distribution of stx2-positive strains
revealed the recent and repeated acquisition of the stx2 gene
in multiple lineages of O26 : H11, both in ST21 and ST29.
Other major VF genes of EHEC, T3SS effector genes and
plasmid-encoded VF genes were well conserved in ST21
compared to ST29. In addition, more AMR genes have

accumulated in the ST21C1 lineage. While more attention is
now being paid to the emergence and dissemination of sev-
eral ST29 clones that have acquired the stx2 gene and, thus,
are thought to be highly virulent, our findings indicate that
there is also a risk that highly virulent clones could result
from ST21. Therefore, longstanding routine surveillance of
stx2-positive strains is also required for this lineage.
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T3SS effector genes (nleD and ospG) and plasmid-encoded VF genes (etpD and espP) that are absent in strain 11368, the nucleotide

sequences of ECs0850 (nleD), pO157_003 (etpD) and pO157_079 (espP) of O157 strain Sakai (BA000007) and ECO111_1634 (ospG) of

O111 strain 11 128 (AP010960) were used as references. All of the locus_tag numbers of the T3SS effectors and plasmid-encoded

VFs were used as references and are listed in Table S3. The names of the prophages (P02-P19) that encode the T3SS effectors in

strain 11 368 are indicated. Genes predicted to be present, present but with low depth in some parts of the gene and absent are indi-

cated by yellow, light blue and white, respectively. The strain TC6168 from which the LEE has been deleted is indicated by an asterisk.

(c) Presence or absence of the acquired AMR genes was determined with SRST2 software using ARGannot.r1.fasta as the resistance

gene database. Genes predicted to be present, present but with low depth in some parts of the gene and absent are indicated by red,

light blue and white, respectively.

Fig. 4. Number of acquired AMR genes identified in each O26 strain.

The numbers of acquired AMR genes were counted in each strain, and

the percentages of strains that contained the respective number of

AMR genes are summarized and shown for ST29, ST21C1 and

ST21C2. The numbers of strains that contained the respective number

of AMR genes are indicated on the top of each bar.
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