An antioxidant function for dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) within three phytoplankton groups

Nathalie Gypens¹, Stéphane Roberty², Alberto V. Borges³, Pierre Cardol⁴ & Royer Colin^{1,3}

¹Ecology of Aquatic Systems (ESA) Laboratory, Université Libre de Bruxelles (ULB), Belgium ²Ecophysiology and animal physiology, InBioS Research Unit, Université de Liège (ULiège), Belgium ³Chemical Oceanography Unit, FOCUS Research Unit, Université de Liège (ULiège), Belgium ⁴Genetic and Physiology of Microalgae, InBioS Research Unit, Université de Liège (ULiège), Belgium

Context

DMS	Is the most volatile sulfur compound
	Is the precursors of sulphate aerosols and cloud condensation nuclei
	Impacting directly or indirectly the Earth's radiation balance
DMS(P,O)	Are the precursors of DMS
	Are playing several hypothetical roles on phytoplankton cells: cryoprotectant, osmoregulator or antioxidant
ROS	Reactive oxygen species derived from molecular $\mathrm{O_2}$ due to an excess of energy
DLA	DMSP-lyase activity converting enzymatically DMSP into DMS and acrylate

Goal

Understand

the antioxidant function of DMSP and DMSO within three phytoplanktonic groups : diatoms, Prymnesiophyceae and Dinophyceae

Methodology

Oxidative stress produced by

High Light intensities (HL) - For a natural oxidative stress Menadone Bisulfite (MSB) - Producing 102" inside the cell DCMU

- Blocking the photosynthesis

Chemical Oceanography

On laboratory monoculture of three phytoplankton groups

(1) Diatom and low-DMSP producer: Skeletonema costatum (2) Prymnesiophyceae and high-DMSP producer: Phaeocystis globosa

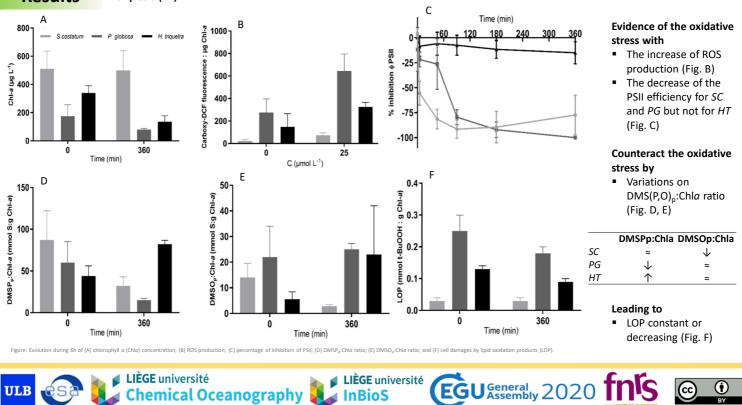
(3) Dinophyceae and high-DMSP producer Heterocapsa triquetra

Results

→ Example of MSB oxidative stress on the diatom S. costatum (SC) – the Prymnesiophyceae P. globosa (PG) – and the Dinophyceae H. triquetra (HT)

G

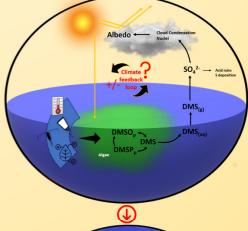
DMSP and DMSO cell quotas

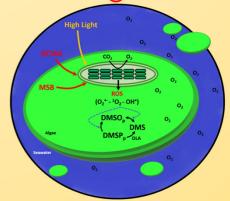

Analysis

ROS production

Photosynthetic pigments

□ In vivo Fluorescence (PSII)


Cell damages (LOP)



InBioS

TAKE HOME MESSAGE

- DMSP and DMSO act as antioxidant
- Different responses between diatoms, Prymnesiophyceae and Dinophyceae
- Importance of the initial DMS(P,O) concentration and DLA to counteract the oxidative stress

(cc