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ABSTRACT 

Behavioral studies have shown for decades that humans are sensitive to risk when making decisions. 

More recently, brain activities have been shown to be correlated with risky choices. But an important 

gap needs to be filled: How does the human brain learn which decisions are risky? In cognitive 

neuroscience, reinforcement learning has never been used to estimate reward variance, a common 

measure of risk in economics and psychology. It is thus unknown which brain regions are involved in 

risk learning. To address this question, participants completed a decision-making task during fMRI. 

They chose repetitively from four decks of cards and each selection was followed by a stochastic payoff. 

Expected reward and risk differed among the decks. Participants' aim was to maximize payoffs. Risk 

and reward prediction errors were calculated after each payoff based on a novel reinforcement learning 

model. For reward prediction error, the strongest correlation was found with the BOLD response in the 

striatum. For risk prediction error, the strongest correlation was found with the BOLD responses in the 

insula and inferior frontal gyrus. We conclude that risk and reward prediction errors are processed by 

distinct neural circuits during reinforcement learning. Additional analyses revealed that the BOLD 

response in the inferior frontal gyrus was more pronounced for risk aversive participants, suggesting 

that this region also serves to inhibit risky choices. 

 

The simplest model of decision-making posits that options with higher expected rewards are preferred 

over options with lower expected rewards. But much evidence from experimental psychology and 

economics indicate that humans and animals are sensitive to risks in addition to expected rewards 

when making decisions. A usual way to measure risk in finance is to define it as a function of outcome 

variability (Rothschild and Stiglitz, 1970). For instance, in the mean-variance approach, the value of a 

portfolio is traded off against its return variance (Markowitz, 1952). Variance is also central to modern 

portfolio theory like Capital Asset Pricing Model (CAPM, Sharpe, 1964) and to the modelling of financial 

time series like Autoregressive Conditional Heteroskedasticity (ARCH, Engle, 1982). 

In behavioral science, risk measures derived from variance, as the coefficient of variation, have been 

found to explain the decision-making of humans and animals (Weber et al., 2004; McCoy and Platt, 

2005). In addition, there is ample evidence that the central nervous system reacts differentially to risk. 

Single cell recording studies in monkeys have highlighted a subsample of neurons that increases their 

activities after the presentation of conditioned stimuli only when these stimuli predict variable 

outcomes (Fiorillo et al., 2003). Functional magnetic resonance imaging (fMRI) studies in humans have 
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revealed neural correlates of risky stimuli or decisions in various brain regions including the striatum, 

the insula, the inferior frontal gyrus, the lateral orbitofrontal cortex, and the anterior cingulate cortex 

(Paulus et al., 2003; Huettel et al., 2005; Kuhnen and Knutson, 2005; Rolls et al., 2007; Tobler et al., 2007). 

Ambiguity refers to situations in which probabilities of potential outcome of a decision are incomplete 

or unknown. Under ambiguity, decision-making has been correlated to activities in the amygdala, the 

orbitofrontal cortex, the inferior frontal gyrus, and the insula (Huettel et al., 2006; Hsu et al., 2005). It 

should be noted that ambiguity carries risk because outcomes are uncertain (Rode et al., 1999) and this 

may explain the partial overlap of brain activation for decision-making under ambiguity and risk. 

There is cumulative evidence that the brain responds to stimuli that are associated with risky outcomes. 

But it remains unclear how the brain learns the association between risk and certain stimulus or action. 

Reward prediction error is central to many reinforcement algorithms (Sutton and Barto, 1998). This 

error is the difference between the predicted and the experienced reward. The predicted reward is 

updated after each trial based on the reward prediction error and a learning rate. After sufficient 

number of trials and with an appropriate learning rate, the predicted reward converges to the expected 

value of the reward. We already know that reward prediction errors are represented in the central 

nervous system. Indeed, single unit recording in monkey has revealed that activities of the midbrain 

dopaminergic neurons follow the time course of reward prediction error during classical conditioning 

(Schultz et al., 1997). Activity in the human striatum has been related to reward prediction error during 

classical and instrumental conditioning (O'Doherty et al., 2004; McClure et al., 2003). 

Recently a new reinforcement learning model has been developed to estimate the outcome variance 

(Preushoff and Bossaerts, 2007). In this algorithm a second prediction error is computed: the risk 

prediction error. With this signal, the agent is able to estimate risk. The risk prediction error is defined 

as the difference between the predicted and the realized risk. The realized risk is the squared reward 

prediction error. The predicted risk is updated after each trial based on the risk prediction error and a 

learning rate. After a sufficient number of trials and with a correct learning rate, the predicted risk 

converges to the expected value of the risk to be realized, which equals to the outcome variance. 

One fMRI study has explored the neural correlates of risk prediction error (Preuschoff et al., 2008). In this 

study, a card was drawn from a deck of 10 (numbered from 1 to 10) followed several seconds later by a 

second card (drawing without replacement). Participants bet one dollar on whether the second card 

would be lower than the first card. Before any card is drawn, the expected reward is 0 and the variance 

is 1. But after the first card has been drawn, expected value and variance need to be updated. For 

instance, if the first card is a 9, the expected value increases and the variance decreases (because it is 

likely that the second card will be below 9). So there is a positive reward prediction error and a negative 

risk prediction error. When the second card is drawn, the expected value and variance need to be 

updated again, which produces a new reward and risk prediction error. The main result showed that 

risk prediction error was related to activation in the insula. 

It should be noted that in Preuschoff et al. (2008) study, reward probability was explicit. It can be 

computed at any time step based on the cards drawn (decision-making under uncertainty). In addition, 

participants passively observed the card selected by the computer. The question arises if the brain also 

computes risk prediction error when probabilities are unknown and expected value and variance need 

to be learned through experience (decision-making under ambiguity). Secondly, we can wonder if risk 

prediction errors are observed when participants are free to select among several options and if this 
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signal serve to orient action policy. As such, the aim of this study was to localize risk learning signals in 

the human brain in an ambiguous situation offering free choices. To do so, we used a reinforcement 

learning algorithm that can estimate expected risk. Such an algorithm has never been used in brain 

imaging studies. 

Based on previous results (O'Doherty et al., 2004; McClure et al., 2003), we hypothesized that reward 

prediction error would be related to activity in the ventral striatum. Based on the study of Preuschoff et 

al. (2008), we hypothesized that activity in the insula would be related to risk prediction error. Because 

participants were free to select the option they preferred, they did not only need to evaluate risk, but 

also to adapt their action policy as a function of risk (e.g., avoid risky choices in risk aversive individuals). 

Thus we may also highlight brain regions that control the action policy toward risk. To explore these 

research questions, participants completed four versions of the Iowa Gambling Task during fMRI, in 

both active and control conditions. 

One advantage of selecting the Iowa Gambling Task is that it has been used in numerous 

neuropsychological studies and it appears to have ecological validity: participants who make 

suboptimal decisions in the Iowa Gambling Task do the same in real life situations. Studies have shown 

that performance in the Iowa Gambling Task is impaired following lesions encompassing but not 

restricted to the medial orbitofrontal cortex (Bechara et al., 1997). However, only few studies have 

examined brain activities during the Iowa Gambling task (Fukui et al., 2005; Oya et al., 2005; Ernst et al., 

2002). None has dissociated the expected value and variance of the decks and applied a reinforcement 

risk-sensitive learning algorithm. This is in striking contrast with the fact that the majority of 

neurological or psychological disorders for which a deficit in the Iowa Gambling Task has been observed 

are characterized by risk taking in real life situations (e.g., prefrontal lesions, Bechara et al., 1997 or 

antisocial behavior, van Honk et al., 2002; Anderson et al., 1999). 

Materials and methods 

SUBJECTS 

Eight students from the University of Southern California, 4 males and 4 females, all right-handed, with 

a mean age of 23.00 years (SD = 3.30 years) and normal or corrected-to-normal vision, participated in 

the study after MRI safety screening and full informed consent. The experimental procedures were 

approved by the Institutional Review Board at the University of Southern California. Informed consent 

was obtained from all subjects. 

BEHAVIOURAL TASK 

Four versions of the Iowa Gambling Task (Bechara et al., 1994) were used in this study: ABCD, KLMN, 

EFGH, and IJOP. Each version was played in two conditions: An ambiguous and a control condition. In 

the ABCD version and the ambiguous condition, the subject saw 4 decks of cards on a computer screen 

labeled A, B, C, and D (Fig. 1, left). There were 60 cards in each deck. In a deck, the back of all the cards 

were the same, but half of the cards have a red face, half a black face. Subjects used 4 buttons on an 

MRI-compatible response box to select one of the four decks. After each selection, the card was 

immediately turned face up and a gain or a gain and a loss is displayed with the following message: “Win 

X” or “Win X but loses Y”. The feedback was displayed immediately after the selection and till the 

beginning of the next trial. The sum of the gain and loss after a card selection is referred to as the payoff. 
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A green bar near the top of the screen displayed the cumulative monetary payoff. Each trial lasted 4 s. 

In the control condition, payoffs were displayed on each card so participants knew the outcome in 

advance (Fig. 1, right). Blocks of the ambiguous condition were interrupted with blocks of the control 

condition (Fig. 1, bottom). Each block was made of 20 trials and there was 5 blocks per condition in each 

fMRI run. Whereas we have tried in every possible way to make the stimuli and design identical to the 

original Iowa Gambling Task, we imposed a 4-second time limit on each trial in order to facilitate fMRI 

data collection: If the subject did not make any response 3.5 s after the card presentation, the computer 

program made a random response and proceed to give feedback and then start the next trial. Our 

subject missed only 0.2% of the trials in the ambiguous condition and 0.4% in the control condition. 

The four versions of the IGT differ in the composition of the decks. In the ABCD version, the mean payoff 

is negative for decks A and B and positive for decks C and D. The payoff variability is greater for decks A 

and B compared to C and D. Thus an important feature of this version is that the bad decks in term of 

expected value, are also risky in term of variance (Fig. 2, ABCD). The summed payoff decrease linearly 

over series of 10 cards in decks A and B, thus they become more disadvantageous over time. The 

summed payoff increases linearly in decks C and D, thus they become more advantageous over time. In 

other words, the expected value is non-stationary and need to be updated. In the ABCD version, the 

selection of a card is always followed by a gain, sometimes also by a loss. The structure of the KLMN 

version is similar to that of the ABCD version, except that the position of the good decks is different and 

that the variance of the payoffs is higher for all decks. As a consequence, the expected values of the 

decks are more difficult to estimate in the KLMN version. To favor learning, the KLMN version was played 

right after the ABCD version. 

Figure 1. Ambiguous (left) and control conditions (right) of the Iowa Gambling Task. 

 

In the EFGH version, the mean payoff is negative for decks F and H and positive for decks E and G. The 

payoff variability is greater for decks E and G compared to F and H. Thus an important feature of this 

version is that the bad decks in term of expected value, are also safe in term of variance (Fig. 2, EFGH). 

The summed payoff decreases linearly over series of 10 cards in decks F and H, thus they become more 

disadvantageous over time. The summed payoff increases linearly in decks E and G, thus they become 
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more advantageous over time. Thus here again, the expected value is non-stationary. In the EFGH 

version, the selection of a card is always followed by a loss, sometimes also by a gain. The structure of 

the IJOP version is similar to that of the EFGH version, except that the variance of payoff is higher for all 

decks. As a consequence, the expected values of the decks are more difficult to estimate in the IJOP 

version. The IJOP version was played right after the EFGH version. 

Prior to the scanning session, participants were given instructions on the Iowa Gambling Task. It was 

explained that two decks were “worse” and that they should stay away from these decks in order to win. 

It was also explained that the computer would not change the deck composition after the game started 

(for details of the instructions, see Bechara et al., 2000). Participants were informed that another kind 

of task would run in between the primary task. For this control condition, they were instructed to select 

the card with the highest payoff. Participants ran 20 trials in a practice task similar to the IGT before the 

scanning session. 

IMAGE ACQUISITION 

MRI recording was performed using a standard birdcage head coil on a Siemens 3 T MAGNETON Trio MRI 

system housed in the Dana and David Dornsife Cognitive Neuroscience Imaging Center at University of 

Southern California. Subjects lay supine on the scanner bed, and viewed the back-projected visual 

displays through a built-in mirror on the head coil. Foam pads were used to minimize head motion.  

 

Figure 2. Mean payoff and standard error (SE) by deck for the four versions of the Iowa Gambling Task. Each deck 

consisted of 60 cards. Good decks are in green and bad decks in orange. Safe decks are plain and risky decks are 

dashed. 

 

 

 

For each subject, sagittal images (256x256x192 voxels) of 1 mm3 isotropic spatial resolution were 

obtained with a T1-weighted 3D MPRAGE sequence (TI = 900 ms, TR = 2070 ms, TE = 4.13 ms, flip angle = 

7°). Blood-oxygenation-level-dependent (BOLD) responses were measured with a T2*-weighted echo-

planar imaging (EPI) sequence (TR = 2000 ms, TE = 25 ms, flip angle = 90°, FOV=192x192 mm, in-plane 

resolution = 64 x64 pixels or 33 mm). Thirty-five interlaced coronal slices with a 3.5 mm (no gap) slice 
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thickness were acquired. 

Figure 3. Regions of interest: SFG, Superior frontal gyrus; MFG, Middle frontal gyrus; IFG, Inferior frontal gyrus; LOFC, 

Lateral orbitofrontal cortex; MOFC, Medial orbitofrontal cortex. 

 

 

 

Two task orders were used and counterbalanced between subjects: ABCD, KLMN, EFGH, IJOP and EFGH, 

IJOP, ABCD, KLMN. Four hundred eight volumes were recorded for each version of the task. The 4 first 

and last volumes of each run were recorded when participants fixed a cross in the center of the display. 

The presentation of the cards in the beginning of each trial was synchronized with the TR. Two volumes 

were acquired in each trial. Each subject participated in four 13.6minute functional runs. Acquisition of 

structural images took place between the second and third functional runs (192 volumes). Each session 

lasted about 1.5 h. 

IMAGE ANALYSIS 

All MRI- and fMRI-related data analyses were performed using BrainVoyager QX 1.10.4 (Brain Innovation, 

Maastricht, The Netherlands). The anatomical data for each subject were corrected for image intensity 

inhomogeneity, and transformed into the Talairach space (Talairach and Tournoux, 1988). The gray-

white matter boundaries that resulted from gray-white matter segmentation were used to create a 3D 

surface model of the brain, which was then inflated to display both sulci and gyri on smooth surfaces of 

the two hemispheres. Twelve ROI in each hemisphere were selected in accordance with brain studies 

on decision-making under uncertainty (Knutson and Bossaerts, 2007). ROI were hand drawn by an 

expert based on anatomical features (Damasio, 2005). Regions on the cortical surface were first defined 

on the 3D inflated cortex (Figs. 3A and B) and cross validated with features on the 2D anatomical images. 

Regions not on the cortical surface, such as amygdala, striatum etc, were drawn directly on the 2D 

anatomical images (Fig. 3C). The average activation of all the voxels in each region of interest was used 

in ROI analyses. 

Functional data were first pre-processed to correct for slice timing and head movement, followed by 

high-pass temporal filtering with a cutoff frequency of 3 cycles/run. The functional images were aligned 

to the structural images in the same session and constructed into a 4D volume in the Talairach space. 

For regions above the sinus, such as orbitofrontal region, there was some signal loss in functional 

images. This happened to four regions, the left Lateral OFC, right Lateral OFC, left Medial OFC, and right 
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Medial OFC, with signal loss of about 4, 14, 31 and 30%, respectively. We adopted the two-gamma model 

in BrainVoyager for hemodynamic response function (Friston et al., 1999). 

REINFORCEMENT LEARNING ALGORITHM 

A reinforcement learning model was used to model decision-making in the ambiguous condition.1 The 

model includes prediction errors for both reward and risk, following the recent proposition of Preushoff 

and Bossaerts (2007). Predicted reward and risk were updated following a Rescorla-Wagner rule. Let the 

reward rt denote the payoff in trial t. Let the value ѵt be the predicted reward. Formally, we can write: 

 

ѵt = E(rt ), (1) 

where E is the expected value. 

Let ℎt denote the predicted risk at trial t. The predicted risk is defined as the variance of the payoff: 

ℎt = Var(rt ). (2) 

Through learning, ѵt is estimated by ̂vt and by ̂ht. Let δt denote the reward Prediction Error (PE) at trial t. 

This reward prediction error is the difference between the reward rt and the estimated predicted 

reward  ̂vt :  

 (3) 

Empirical data and theoretical considerations suggest that reward prediction error is scaled by 

predicted risk in the brain (Preushoff and Bossaerts, 2007; Tobler et al., 2005), allowing the learning rate 

to be independent of the payoff variance. Let  denote scaled reward prediction error: 

                   (4) 

The Rescorla-Wagner rule is used to update  ̂vt for the next trial: 

  (5) 

where  is the reward learning rate. 

After sufficient number of trials and with the appropriate learning rate,  ̂vt converges to the expected 

value of r: 

               (6) 

                                            
1 For modelling, we ignored the time gaps created by the control blocks, which might have caused participants to 

forget what they had learned. However, the learning curve in the ambiguous condition and the model fit presented 

below suggest that the control blocks did not prevent reinforcement learning. 
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Let  denote the risk prediction error at trial t.  is the difference between the squared reward 

prediction error and the estimated predicted risk: 

 (7) 

The Rescorla-Wagner rule is used to update for the next trial: 

 (8) 

where krisk is the risk learning rate. For the parsimony of the model, the same learning rate was used for 

reward and risk prediction error (k =  = krisk).  

After sufficient number of trials and with the appropriate learning rate, ht converges to the expected 

value of  and thus the variance of r :  

       (9) 

Let  denote the utility of an option i at trial t, defined as a function of the predicted reward and risk 

associated with each option i : 

        (10) 

Where I is the risk preference (Bell, 1995). 

Let  be the probability to select the option i in trial t.  was calculated with a softmax rule: 

                       (11) 

The reinforcement learning algorithm was implemented in C++ with the GNU Scientific Library (Galassi 

et al., 2006): 



 
Published in: NeuroImage  (2009), vol. 47, issue 4, pp. 1929-1939 

DOI: 10.1016/j.neuroimage.2009.04.096 

Status : Postprint (Author’s version)  

   

 

 

 

The reinforcement learning algorithm was fitted to the 400 decisions made in the ambiguous condition. 

The learning rate k and the risk preference l were estimated separately for each subject by maximizing 

the loglikelihood: 

 (12) 

with it, the deck chosen at trial t, t =1, …400, it ∈ {1,2,3,4}; and πt,it probability for selecting deck it in trial 

t. 

It appears that the loglikelihood is not globally concave. In this case, the use of a direct search method 

like the Nelder-Mead algorithm can lead to local maxima and is inappropriate. Therefore, a local search 

method called Threshold Accepting was used (Winker and Gilli, 2004). The principle of this heuristic is 

to start the search with a random parameter combination and to move repetitively (n steps) to another 

combination (neighbor). The neighbor is accepted as the new combination if it has 1) a higher likelihood 

or 2) a lower likelihood and the likelihood difference is smaller than a given threshold. This search is 

repeated for decreasing threshold (n thresholds). The last neighbor found for the last threshold is 
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retained as the solution. The solution is searched several times (n restarts) and the best solution is 

retained. The global maximum was search with 2000 steps, repeated for 10 thresholds, and for 30 

restarts. Parameter constraints were k ∈ [0,1] and l ∈ [−0.01,0.01]. The heuristic was implemented in 

C++. 

 

Results 

REINFORCEMENT LEARNING 

We first check if there was evidence of learning in the ambiguous condition. The probability to select 

good decks was computed for each block of 20 trials across all four versions of the task. 

Figure 4. Probability of selecting good decks in the ambiguous condition as a function of blocks, average across the 

four versions of the task. Circles are the probabilities computed from participant's choices, triangles are the 

probabilities computed from the reinforcement learning model. 

 

 

 

Table 1 - Reinforcement learning model estimation.    

Subject k l MLL Lower Upper 

1 1.00e—01 — 1.84e—03 — 504.64 — 521.28 — 482.80 

2 4.46e—03 3.32e—03 — 546.12 — 550.56 — 535.29 

3 3.59e—05 — 1.64e—03 — 553.05 — 554.52 — 548.31 

4 1.91e—03 3.57e—03 — 546.14 — 551.36 — 537.13 

5 2.65e—02 1.22e—03 — 543.19 — 549.66 — 532.50 

6 1.20e—01 — 1.52e—03 — 466.12 — 502.16 — 456.46 

7 4.31e—03 2.76e—03 — 550.88 — 552.79 — 539.39 

8 2.81e—02 7.00e—04 — 545.29 — 550.91 — 536.70 

k is the learning rate and l the risk preference parameter. MLL is the maximum likelihood estimated from subject's 

decisions. Upper and Lower define the 90% Confidence Interval of the simulated MLL (bootstrap). 
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Table 2 - Comparison with a No-Risk model. 

Subject MLL MLL No-Risk χ2 p 

1           — 504.64* — 510.89 12.49 0.00 

2 — 546.12* — 554.52 16.80 0.00 

3 — 553.05 — 554.52 2.94 0.09 

4 — 546.14* — 551.92 11.56 0.00 

5 — 543.19* — 545.49 4.60 0.03 

6 — 466.12* — 470.25 8.26 0.00 

7 — 550.88* — 554.52 7.28 0.01 

8 — 545.29 — 545.97 1.35 0.25 

 

*The model including risk is significantly better at α = 0.05. MLL No-Risk is the maximum likelihood of the model with 

no risk (l fixed to 0).

 

Results showed that the probability to select the good decks increased over time, with however a 

decline of performance in the last block (Fig. 4, circles). A generalized mixed linear model for Bernoulli 

distribution was estimated with the glmmPQL function of R (R Development Core Team, 2007). Subject 

was entered as a random factor and trial (1 to 100) as a fixed regressor. The effect of trial on the 

probability to select good decks was significant, t(3191) = 3.41, p<0.001, confirming the learning effect. 

Model parameters were estimated with Threshold Accepting for each subject and are reported in Table 

1. The mean learning rate was significantly greater than 0, suggesting that participants updated their 

estimate of the expected value and variance of the payoff over the course of each version of the task, M 

= 0.036, SD = 0.047, t(7) = 2.13, p = 0.04 (one-sided test).2 The risk preference parameter was not 

significantly different from 0, M = 0.00082, SD = 0.00228, t(7) = 1.02, p = 0.34 (two-sided test). This shows 

that subjects overall were risk neutral. However the relatively big standard deviation (compared to the 

mean) also shows that there were important individual differences in risk preference. The probability to 

select the good decks predicted by the estimated reinforcement learning model is plotted in Fig. 4. 

There are differences between the observed and the predicted probabilities, but the model reproduces 

the general learning trend. 

Parametric bootstrap was used to check the model fit: (1) fix the estimated parameters in the 

reinforcement learning algorithm, (2) generate 1000 simulations of the 400 decisions (100 decisions/ 

                                            
2 The mean learning rate appears to be relatively small. It should be noted that the learning rate cannot be directly 

compared with previous studies because we used a novel reinforcement algorithm. In particular, the reward 

prediction error was scaled by the reward SD. However, Oya et al. (2005) have applied a reinforcement learning 

algorithm (with no risk estimation) to account for the behavior of a neurosurgical patient who showed normal 

performance in the ABCD version of the Iowa Gambling Task. They found a learning rate of 0.076. This is above our 

mean learning rate but within our SD range. 
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versionx4 versions of IGT) for each subject, (3) estimate parameters of the reinforcement learning model 

from the 1000 simulations. This simulation gives the maximum loglikelihood (MLL) distribution for 

decisions that follows the theoretical model. If the subject MLL lies within the 90% Confidence Interval 

of the simulated MLL, this suggests that the theoretical model is a good approximation of human 

decision-making in the Iowa Gambling Task. Based on this criterion, the theoretical model was accepted 

for all subjects (Table 1). 

To test whether participants took risk into account in making their decisions, a simplified model was 

estimated after fixing the value of l to 0. In this simplified model, risk is ignored; decisions are made 

solely based on the expected values. The improvement of the goodness of fit from the model without 

risk to the model with risk was significant for 6 of the 8 subjects according to a χ2 test, χ2 = — 2*(MLLnested 

— MLL) (Table 2). These results indicate that not all, but a majority of subjects included risk in their 

action policy. 

RISK AND REWARD PREDICTION ERROR 

For brain activation analysis, risk prediction error was transformed to share the same unit as reward 

prediction error by taking the signed square root of the absolute value, sign   Reward and risk 

prediction error were scaled within the ambiguous condition. Both prediction errors were set to 0 in the 

control condition. Payoffs were scaled using data from the two conditions (regressors were scaled but 

not centered because the 0 is meaningful). The correlation between the payoff and the reward 

prediction error was large, r = 0.49, p < 0.001. The correlation between the reward and risk prediction 

error was negligible, r = 0.00, p = 0.70. Because none of the correlation was > 0.75, multicolinearity was 

not an issue. 

To illustrate what is going on, payoff, reward prediction error, and risk prediction error were plotted in 

two blocks of the ABCD and EFGH versions for subject 6. In the ABCD version (including big and 

infrequent losses), it appears that a big loss resulted in a negative reward prediction error and a positive 

risk prediction error (Fig. 5). In the EFGH version (including big and infrequent wins), it appears that a 

big win resulted in a positive reward prediction error and a positive risk prediction error (Fig. 6). In the 

control blocks, the reward and risk prediction errors are set to 0, but payoff values are still taken into 

account. 

For the ROI analyses, the amplitude of brain activation was estimated for each trial with a fixed effect 

GLM in Brain Voyager. A predictor was defined for each item, taking value 1 when the item occurred, and 

0 otherwise. Predictors were convolved with the Hemodynamic Response Function (HRF). The beta 

values obtained from Brain Voyager were then analysed with the statistical program R, using the lme 

function (mixed linear model). The flexibility of R allowed us to explore the data extensively, to 

introduce several random factors, to analyse data separately for the ambiguous/control conditions, and 

to enter hemisphere (side) as an interaction effect. Two nested factors were entered in the random part 

of the mixed linear model in R: Block c Subject. The first fixed regressor was the condition (0 for Control 

and 1 for Ambiguous). Exploratory analysis revealed that the first trial of each block provoked a greater 

brain activity. Therefore, it was entered as a second fixed regressor in the model (1 for first trial, 0 

otherwise). Finally, reward prediction error , risk prediction error ,  and payoff 

were entered in the model. Results revealed that the 2 random effects were significant for all regions of 
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interest. This was also the case for the first trial of each block. Complete results of the mixed linear 

model for the insula are presented in Table 3. In ROI analyses, the a level was set at 0.001. 

 

Figure 5. Payoff, reward prediction error, and risk prediction error plotted as a function of trial in the ABCD version of 

the task for subject 6. 

 

 

Figure 6. Payoff, reward prediction error, and risk prediction error plotted as a function of trial in the EFGH version of 

the task for subject 6. 

 

To test for laterality effects, interactions with the Side were entered in the model. None of the 

interaction effects appeared to be significant. Interactions with Gender were entered in separated 

analyses. Results revealed no significant interaction with gender. 

Effects of the condition, risk prediction error, reward prediction error, and payoff are reported in Table 

4 for all ROIs. Random and first trials effects are not shown. An important limit of the p-value is its 

dependence on the number of observations. One way to avoid this limitation is to assess the relative 

contributions of the predictors by comparing their associated t-values. To allow such a comparison, t- 



 
Published in: NeuroImage  (2009), vol. 47, issue 4, pp. 1929-1939 

DOI: 10.1016/j.neuroimage.2009.04.096 

Status : Postprint (Author’s version)  

   
values were plotted for each ROI (Fig. 7). 

Table 3- Mixed linear model for the insula ROI. 

Variable Estimate Lower Upper Df t p 

Random effect (SD)       

Subject 0.093* 0.035 0.244 — — - 

Block 0.178* 0.154 0.205 — — - 

Fixed effect       

Intercept 0.329* 0.210 0.447 — —  

First trial 0.162* 0.120 0.204 12476 12.64 0.000 

Payoff -0.003 -0.015 0.009 12476 - 0.84 0.401 

Reward PE 0.006 - 0.009 0.021 12476 1.39 0.164 

Risk PE 0.024* 0.011 0.038 12476 5.84 0.000 

Ambiguous condi. 0.004 -0.064 0.073 311 0.22 0.829 

*0 not included in the 99.9% Confidence Interval (p<0.001). 

The region mostly related to the ambiguous conditions was the middle frontal gyrus (t =5.62, p < 0.001) 

followed by the lateral orbitofrontal cortex (t =3.44, p<0.001). For reward prediction error, the strongest 

effect was found in the ventral striatum (t =7.46, p<0.001), then in the dorsal striatum (t =5.72, p<0.001).  

Table 4 - Mixed linear model for all ROIs. 

Variable Estimate Lower Upper t p 

Anterior cingulate      

Payoff 0.004 - 0.011 0.018 0.84 0.401 

Reward PE 0.012 - 0.005 0.030 2.35 0.019 

Risk PE 0.019* 0.003 0.035 4.00 0.000 

Ambiguous condi. -0.003 - 0.081 0.075 - 0.14 0.892 

Posterior cingulate      

Payoff 0.029* 0.008 0.051 4.55 0.000 

Reward PE 0.014 - 0.013 0.040 1.71 0.087 

Risk PE - 0.002 - 0.026 0.022 - 0.27 0.788 

Ambiguous condi. 0.038 - 0.077 0.153 1.10 0.270 

Dorso medial PC      

Payoff 0.002 - 0.012 0.015 0.42 0.678 

Reward PE 0.018* 0.002 0.035 3.61 0.000 

Risk PE 0.006 - 0.009 0.021 1.28 0.201 

Ambiguous condi. 0.061 - 0.018 0.141 2.56 0.011 

Middle frontal gyrus      
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Payoff 0.004 - 0.012 0.019 0.77 0.444 

Reward PE 0.024* 0.006 0.043 4.28 0.000 

Risk PE 0.008 - 0.009 0.025 1.56 0.118 

Ambiguous condi. 0.144* 0.059 0.229 5.62 0.000 

Inferior frontal gyrus      

Payoff -0.014 - 0.028 0.000 - 3.24 0.001 

Reward PE 0.019* 0.002 0.036 3.72 0.000 

Risk PE 0.029* 0.013 0.044 6.04 0.000 

Ambiguous condi. 0.051 - 0.032 0.134 2.03 0.043 

Insula      

Payoff - 0.003 - 0.015 0.009 - 0.84 0.401 

Reward PE 0.006 - 0.009 0.021 1.39 0.164 

Risk PE 0.024* 0.011 0.038 5.84 0.000 

Ambiguous condi. 0.004 - 0.064 0.073 0.22 0.829 

Lateral OF      

Payoff 0.005 - 0.012 0.022 1.06 0.291 

Reward PE 0.018 - 0.003 0.039 2.87 0.004 

Risk PE 0.012 - 0.007 0.031 2.14 0.032 

Ambiguous condi. 0.090* 0.003 0.177 3.44 0.001 

Medial OF      

Payoff 0.017 - 0.001 0.036 3.04 0.002 

Reward PE 0.006 - 0.017 0.029 0.91 0.364 

Risk PE - 0.006 - 0.027 0.015 - 0.96 0.337 

Ambiguous condi. 0.021 - 0.091 0.132 0.62 0.533 

Dorsal striatum      

Payoff - 0.000 - 0.014 0.014 - 0.07 0.945 

Reward PE 0.029* 0.012 0.046 5.72 0.000 

Risk PE 0.010 - 0.006 0.025 2.06 0.039 

Ambiguous condi. 0.033 - 0.041 0.107 1.50 0.135 

Ventral striatum      

Payoff 0.010 - 0.007 0.028 1.99 0.047 

Reward PE 0.047* 0.026 0.068 7.46 0.000 

Risk PE 0.023* 0.004 0.042 3.98 0.000 

Ambiguous condi. 0.007 - 0.071 0.085 0.30 0.765 

Amygdala      

Payoff 0.016 - 0.005 0.036 2.45 0.014 
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Reward PE 0.003 - 0.022 0.029 0.40 0.689 

Risk PE 0.021 - 0.002 0.045 3.01 0.003 

Ambiguous condi. -0.018 - 0.098 0.061 - 0.77 0.442 

Hippocampus      

Payoff 0.012 - 0.003 0.026 2.69 0.007 

Reward PE - 0.000 - 0.017 0.017 - 0.05 0.962 

Risk PE 0.009 - 0.006 0.025 1.96 0.050 

Ambiguous condi. - 0.033 - 0.108 0.042 - 1.44 0.151 

*0 not included in the 99.9% Confidence Interval (p<0.001). 

 

Fig. 7. Predictors t-value for each ROI. Dashed horizontal lines indicate the threshold at α=0.001, df = 311 (the df of the 

Condition was selected because it is the most conservative criterion). 

Contribution to activity in the ROI 

 

For risk prediction error, the strongest effect was found in the inferior frontal gyrus (t = 6.04, p<0.001) 

and the insula (t =5.84, p<0.001). The inferior frontal gyrus has the particularity to be negatively related 

to payoff and thus to encode losses (t = — 3.24, p = 0.001). At α = 0.001, it appeared that the dorsal 

striatum and the insula were uniquely related to reward and risk prediction errors respectively. The 

ventral striatum and the inferior frontal gyrus were related to both types of prediction errors. 

RISK PREFERENCE 

In post-hoc analyses, we tested whether the two regions mostly related to risk prediction error were 

differently activated depending on participant's risk preference. To do so, brain activity in the inferior 

frontal gyrus and the insula was regressed on the risk preference parameter estimated from the 

reinforcement learning model. The α level was set to 0.01 because there were only 8 different 

observations (subjects) for risk preference. Results showed that risk aversion was associated with a 

higher activity in the inferior frontal gyrus in the ambiguous condition (t = — 4.07, p = 0.007) but not in 
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the control condition (t = — 2.36, p = 0.06) (Table 5 and 6). This suggests that the inferior frontal gyrus is 

more active in risk aversive participants and preferentially in decision under ambiguity. The insula was 

neither related to risk preference in the ambiguous condition (t = —1.95, p = 0.10), nor in the control 

condition (t = —1.24, p = 0.26) (Table 7 and 8). 

Table 5 - Inferior frontal gyrus ROI regressed on risk preference in the ambiguous condition. 

Variable Estimate Lower Upper Df t p 

Random effect (SD)  

Subject 0.059* 0.017 0.203 — — - 

Block 0.209* 0.178 0.244 — — - 

Fixed effect  

Intercept 0.466* 0.396 0.535 — — - 

First trial 0.092* 0.042 0.142 6239 4.77 0.000 

Risk preference — 0.110* — 0.210 — 0.010 6 — 4.07 0.007 

*0 not included in the 99% Confidence Interval (p<0.001).    

 

Discussion 

The greatest effect found for making decision under ambiguity was observed in the middle frontal 

cortex, followed by the lateral orbitofrontal cortex. Impairment at the Iowa Gambling Task has been 

mostly observed in patients with lesion in the ventromedial prefrontal cortex, including varying sectors 

of the lateral orbitofrontal cortex (Bechara, 2004). This is compatible with the activation of the lateral 

orbitofrontal gyrus observed in the ambiguous condition. Interestingly, there exists also evidence of 

marked impairment at the Iowa Gambling Task following lesion of the dorsolateral prefrontal cortex 

(Manes et al., 2002; Clark et al., 2003), which fits with the activation of the middle frontal gyrus observed 

in the ambiguous condition. The orbitofrontal cortex is specialized in the rapid association between 

visual stimuli and reinforcers (Rolls et al., 1996). This associative mechanism is required in the Iowa 

Gambling Task because the deck values are unknown. As a consequence, it is necessary to associate the 

payoff with the deck selected just before. This is not necessary in the control condition since payoffs are 

written on decks, meaning that values are known in advance. The lateral prefrontal cortex has been 

implicated in the maintenance of information in working memory (Cohen et al., 1997). In the Iowa 

Gambling Task, the position of the advantageous decks needs to be maintained in working memory to 

allow the appropriate action. This is not useful in the control condition because the advantageous decks 

position changes on every trial. The inferior frontal gyrus and the insula should also be critical for 

success in the Iowa Gambling Task as they appear to encode risk prediction error. Interestingly, patients 

with frontal lesions, including patients with lesions in the insula, have been found to make optimal 

investment decision in a situation where risk was associated with high expected return (Shiv et al., 

2005). In this particular situation, impaired risk prediction constitutes an advantage. 
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Table 6 - Inferior frontal gyrus ROI regressed on risk preference in the control condition. 

Variable Estimate Lower Upper Df t p 

Random effect (SD)  

Subject 0.103* 0.041 0.262 - - - 

Block 0.220* 0.188 0.258 - - - 

Fixed effect  

Intercept 0.396* 0.291 0.501 - - - 

First trial 0.266* 0.209 0.322 6239 12.10 0.000 

Risk preference — 0.096 — 0.248 0.055 6 — 2.36 0.056 

*0 not included in the 99% Confidence Interval (p<0.001).    

 

Concerning payoff, results showed that the main effect of gains was located in the posterior cingulate 

cortex, followed by the medial orbitofrontal cortex. Losses were principally related to activity in the 

inferior frontal gyrus. McCoy et al. (2003) have shown by single neuron recording in monkeys that 

activity in the posterior cingulate gyrus was correlated to expected value associated with saccade and 

reward delivery. A common characteristic of the task used by McCoy et al. (2003) and the Iowa Gambling 

Task is that the location of the payoff is crucial in order to assess options utility. This may explain why 

both studies observed activity related to the posterior cingulate cortex. In human, reward delivery has 

been associated with activity in the medial orbitofrontal cortex (O'Doherty et al., 2003; O'Doherty et al., 

2001; Knutson et al., 2001) as we did here with the Iowa Gambling Task. In addition, O'Doherty et al. 

(2003) found a positive correlation between loss and activity in the lateral orbitofrontal cortex. In the 

present study, this activation was also found in lateral regions, but in the inferior frontal gyrus. The 

representation of loss in the inferior frontal gyrus may serve to avoid bad choices because this region is 

implicated in inhibition (see below). One asset of our design and analyses, is that we were able to 

simultaneously take into account payoff and prediction errors. This was not done in previous studies, 

so that the payoff effect observed in the brain may in fact reflect reward or risk prediction errors. 

Reward prediction error was mainly related to activity in the striatum, supporting numerous brain 

researches conducted in humans and monkeys. A study by Oya et al. (2005) has linked reward prediction 

error to neural activity in the paracingulate cortex during the Iowa Gambling Task. Neural activity was 

measured through deep implemented electrodes in a neurosurgical patient with behavioural 

performance in the normal range. However, due to the limited number of electrodes (3), the location of 

the peak activation associated with reward prediction error was unknown. Using fMRI, we extended 

these previous results by showing that the strongest effect of reward prediction error was located in the 

ventral striatum. 

Based on results found under uncertainty and forced choice (Preuschoff et al., 2008), we formulated the 

hypothesis that risk prediction errors would be related to activity in the insula under ambiguity and free 

choice. To estimate risk under ambiguity, we used a risk-sensitive reinforcement learning algorithm. 

Risk prediction error derived from this algorithm was related to activity in insula, corroborating the 
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hypothesis. In addition, a relationship between risk prediction error and activity in the inferior frontal 

gyrus emerged. These relationships held after controlling for payoff magnitude and reward prediction 

error. Interestingly, activities in the same three ROIs have already been reported in a reinforcement 

learning study (Li et al., 2006). The authors found a significant correlation between reward prediction 

error and ventral striatum activity. They also found increased activities in the inferior frontal gyrus and 

the insula when reward structure changed unexpectedly, which increased variance in reward prediction 

error. The introduction of new reward structure was not captured by their reinforcement algorithm. Risk 

prediction error as modeled in the present study precisely tracks changes of the variance of reward 

prediction error.  

Table 7 - Insula ROI regressed on risk preference in the ambiguous condition. 

Variable Estimate Lower Upper Df t p 

Random effect (SD)  

Subject 0.061* 0.021 0.178 — — - 

Block 0.174* 0.149 0.204 — — - 

Fixed effect  

Intercept 0.338* 0.271 0.405 — — - 

First trial 0.096* 0.053 0.140 6239 5.70 0.000 

Risk preference - 0.050 - 0.146 0.045 6 - 1.95 0.099 

*0 not included in the 99% Confidence Interval (p<0.001).    

 

Table 8 - Insula ROI regressed on risk preference in the control condition. 

Variable Estimate Lower Upper Df t p 

Random effect (SD)  

Subject 0.098* 0.041 0.238 - - - 

Block 0.183* 0.156 0.215 - - - 

Fixed effect  

Intercept 0.324* 0.226 0.421 - - - 

First trial 0.228* 0.179 0.278 6239 11.86 0.000 

Risk preference - 0.047 -0.187 0.093 6 - 1.24 0.260 

*0 not included in the 99% Confidence Interval (p< 0.001).    

 

The use of a reinforcement model for risk allows us to put forward a new explanation: the inferior frontal 

gyrus and the insula encode changes in reward variance during reinforcement learning. 

The functional difference between the inferior frontal gyrus and the insula remains to be understood. 

Previous studies have shown that the inferior frontal gyrus plays a crucial role in behavior inhibition 

(Aron et al., 2004). In the present study, the BOLD response of the inferior frontal gyrus was found to be 
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more pronounced for risk aversive participants in the ambiguous situation. It is thus possible that the 

function of the inferior frontal gyrus is to inhibit risky choices. In line with our results, disruption of 

activity in the dorsolateral prefrontal cortex with repetitive transcranial magnetic stimulation induces 

risk taking behavior in risky (Knoch et al., 2006; Fecteau et al., 2007a) and ambiguous situation (Fecteau 

et al., 2007b). However, these results are at odds with the positive correlation found by Huettel et al. 

(2006) between posterior parietal activity and preference for risky over sure lotteries. It remains that the 

involvement of the inferior frontal gyrus in the implementation of an action policy to handle risk is 

supported by the fact that Preuschoff et al. (2008) found an activation related to risk prediction error in 

the insula but not in the inferior frontal gyrus. In the present study, participants were free to make 

choices whereas in Preuschoff et al. (2008) study, options selection was out of the participants' control. 

Future research is necessary to more directly test this hypothesis by manipulating experimentally the 

absence or presence of free choice and see if the inferior frontal gyrus encodes risk prediction error 

specifically when subjects make free choices. 

If a risk alerting signal serves to inhibit risky choices in the inferior frontal gyrus, the signal in the insula 

may be more involved in the affective experience associated with risk. Anatomically, the insula conveys 

information from the body and it might serve as a gateway to the central nervous system for somatic 

reactions (Bechara and Damasio, 2005). Interestingly, skin conductance responses have been observed 

before the selection of risky decks in the Iowa Gambling Task, independent of the expected value of the 

decks (Tomb et al., 2002). These results combined with ours suggest that the insula may relay somatic 

response in reaction to increased risk. The involvement of the insula in risk learning is also compatible 

with the view that anxiety activates the insula. Indeed, authors have observed that insula activation 

after risky decision-making was more pronounced among participants with an anxious personality trait. 

Anxiety is also marked by a tendency to focus attention on bodily reactions and to overestimate the risk 

of failure (Butler and Mathews, 1983). Formulated within the somatic maker theory (Damasio, 1994), the 

function of the insula may be marking risky events with emotions so that they can benefit from a higher 

degree of relevance in future decisions. In line with this reasoning, it has been shown that emotional 

events are better encoded and retrieved in memory (D'Argembeau et al., 2006) and these processes are 

supported by limbic structures including the insula (LaBar and Cabeza, 2006). 

When modeling valuation under uncertainty, economists generally favor the expected utility theory. 

Finance academics and professionals, however, prefer to value risky prospects with the mean-variance 

model. Risk sensitivity is explained differently by the two approaches. Expected utility theory predicts 

that the preference for risk is related to the curvature of the utility function. The faster marginal utility 

decreases as a function of payoff, the higher the risk aversion. This strategy has been translated in 

reinforcement learning by applying a nonlinear transformation to individual rewards (Howard and 

Matheson, 1972) or to the reward prediction error (Mihatsch and Neuneier, 2002). As a result, the 

reinforcement learning algorithm becomes sensitive to risk, but without any measure of risk. In 

contrast, the mean-variance preference theory posits that risk aversion is the result of the penalty 

imposed on variance. This can be seen in our reinforcement learning algorithm where the utility of each 

deck is a linear combination of estimated expected value and variance. This implies that a measure of 

variance is computed separately from the expected value. To date it is unclear whether the human brain 

computes values in accordance with the expected utility theory or with the mean-variance analysis. If 

the first model is true, neuroscientists should only observe brain activities related to the expected utility 

of an option. If the second model is correct, they should see two signals in the brain: One for the 
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expected value and the other for a risk measure like variance. 

A central assumption of expected utility is also that the value of a prospect is computed by multiplying 

probabilities of each possible “state of nature” with the payoff utility in that state, and summing the 

results. Thus in ambiguous situations, state probabilities need to be learned, e.g. using Bayesian 

updating. For the mean-variance theory, uncertainty relies on payoff and learning focuses on moments 

(mean and variance). Based on this fundamental difference, recent behavioral results indicate that 

humans mix the two approaches when making decision under uncertainty, but rely more on mean-

variance analysis when the number of state probabilities is high (d'Acremont and Bossaerts, 2008). In 

such a situation, estimating probabilities with Bayesian updating becomes unreliable (Diaconis and 

Freedman, 1986). Reinforcement learning is more suitable because state probabilities are not necessary 

to compute the expected value and variance. The Iowa Gambling Task represents a typical situation 

where probabilities cannot be tracked due to the high number of states. For instance, in Decks A, B, C, 

and D there are 31, 16, 22, and 18 different payoffs, respectively. So it is impossible to accurately 

estimate the probability of the occurrence of each payoff given the limited sampling at disposition (100 

for 4 decks). In other words, if participants rely on expected utility in order to take risk into account, 

there is no reason to observe a neural signature of risk prediction errors (because variance does not 

need to be estimated). On the contrary, the use of reinforcement learning to estimate mean and 

variance predicts the neural signature of risk prediction error we observed. 

In the Iowa Gambling Task, the selection of a stimulus is immediately followed by a reward as illustrated 

in Fig. 8 (left). In such a situation, the Rescorla-Wagner rule can be used to estimate the expected value 

and variance of the payoff that will be delivered in the next time step (Preushoff and Bossaerts, 2007) 

and this is the strategy followed in the present study. In a more natural setting, multiple stimuli 

generally overlap with multiple rewards as depicted in Fig. 8 (right). In this complex situation, Temporal 

Difference (TD) learning is able to estimate the expected value of the total reward (Sutton and Barto, 

1998), but not its variance (total risk). It is only capable of predicting variance in the next time step (one-

step ahead risk). Mathematical developments and simulations indicate that TD learning can be 

modified to evaluate the variance of the total reward (d'Acremont et al., 2009). An important avenue for 

future research is to test whether one-step ahead and total risk are related to distinct neural signatures. 

 

Figure 8. Trial organization of single stimulus-reward (Left) and multiple-stimuli, multiple-rewards (Right) 

environment. 

 

 

To conclude, results derived from a novel reinforcement algorithm revealed that reward and risk 

prediction errors are processed by distinct regions in the human brain. More specifically, changing risk 

correlates with activity in the insula and the inferior frontal gyrus. The latter region is also more 

activated in risk aversive individuals during decision-making under uncertainty. Reward prediction 
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error is related to activity in sub-cortical regions and risk prediction error to activity in cortical regions. 

From an evolutionary perspective, this may indicate that the development of risk learning emerged later 

in the phylogeny compared to reward learning. Neural activity in response to risk choice has been 

observed in two male rhesus macaques (McCoy and Platt, 2005), but the presence of risk prediction error 

remains unexplored in animals. It would be interesting in the future to explore whether risk prediction 

error is also part of reinforcement learning across species. 
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