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Abstract

In the early fifties, Hodgkin and Huxley developed a model of the electrical activity of the neuron.
Based on a simple RC circuit with non-linear conductances, they reproduced very well the electrical
behavior of a squid neuron. Over the last fifty years, thanks to the increase of experimental data and
knowledge in neuroscience, scientists have extended the Hodgkin and Huxley’s model to more complex
neurons. But they have often increased the complexity which makes their models less robust.

This thesis focuses on thalamic neurons. The thalamus is the relay-station for the sensory inputs
travelling to the cortex. Depending on the state, the thalamic neurons exhibit two different firing
patterns. During sleep, the neurons are bursting, which stops the information processing. During
wakefulness, the neurons are spiking and the thalamus processes the inputs. In order to study diseases
such as absence seizures in children, or to describe more precisely the thalamic behavior, a robust
model of neuron activity switch is necessary. This robustness has to be maintained when the study is
performed at the network level.

Recent evidences have highlighted the critical role of the slow dynamics of neuronal calcium currents
in the switch from spiking to bursting. Inspired by this line of work, this thesis gathers conductance-
based models of thalamic neuron in the literature. The major difference between them is the presence
of the slow kinetics of the calcium current. The first contribution is their robustness comparison at the
cellular level. Models which lack this slow dynamic are fragile when they are subjected to perturbation.

The second contribution is to show that this slow dynamic is necessary to reproduce the correct
rhythmicity of the thalamus at the network level.

The conductance-based models are powerful tools to simulate a neuron with a great biophysi-
cal realism. However, they consist in high-dimensional non-linear differential equations that lead to
time-consuming simulations. Therefore, the second part of this thesis investigates simple, qualitative
modeling of neuron and network activity. This type of model, called hybrid model, is more mathe-
matical; it captures the subthreshold dynamics of the neuron through differential equations and adds
a reset rule to mimic the all-or-none nature of the spike. A hybrid model of a thalamic neuron has to
be able to switch from spiking to bursting. Its robustness at the cellular level relies on its ability to
mimic the slow dynamics of the calcium current without mathematical manipulation.

The third contribution of the thesis is to confirm this discussion with a network level analysis.
It shows that previously available simple models of thalamocortical neurons such as the well-known
Izhikevich models lack the slow dynamics, hence they generate pathological behaviors while connected
within a circuit.

The key message is the comparison between two classes of thalamic neuron models. The first class
integrates the slow dynamics of the calcium current while the second class assumes that this dynamics
is fast. This work shows that the first class provides better results in terms of robustness. This demon-
stration is led at the cellular and network levels, for conductance-based models or reduced models.
Therefore, the models belonging to this class are suitable for studies concerning the neuromodulation
or the synaptic plasticity.
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Résumé

Au début des années cinquante, Hodgkin et Huxley ont développé un modèle de l’activité électrique neu-
ronale. Basé sur un simple circuit RC caractérisé par des conductances non-linéaires, ils ont réussi à re-
produire de manière précise le comportement électrique d’un neurone de calamar. Durant ces dernières
années, l’augmentation du nombre de données expérimentales disponibles, ainsi qu’une amélioration
des connaissances dans le domaine de la neuroscience, ont permis aux scientifiques d’étendre le mod-
èle de Hodgkin et Huxley au cas de neurones plus complexes. Cependant, ces modèles augmentent
également en complexité mathématique, ce qui les rend moins robustes.

Cette thèse se concentre uniquement sur les neurones du thalamus. Cette partie du cerveau est
le centre-relais des informations sensorielles voyageant vers le cortex. En fonction de leur état, les
neurones du thalamus sont caractérisés par deux motifs de décharge. Durant le sommeil, les neu-
rones "burstent", ce qui bloque le traitement de l’information. Durant la phase d’éveil, les neurones
présentent un enchaînement régulier de pics qui permettent au thalamus de traiter l’information et
de l’envoyer au cortex. Un model robuste décrivant ce changement d’activité est primordial afin de
mieux comprendre certaines maladies telles que l’absence d’épilepsie ou de décrire plus précisément le
comportement du thalamus.

De récentes études ont mis en évidence le rôle critique de la dynamique lente des courants cal-
ciques présents dans les neurones dans la transition entre les deux modes de décharge. Inspirée par
ces recherches, cette thèse rassemble des modèles à conductances des neurones du thalamus présents
dans la littérature. La différence majeure entre ces modèles réside dans l’intégration ou non de la
cinétique lente des courants calciques. La première contribution de ce travail est la comparaison de
leur robustesse à l’échelle cellulaire. Les modèles qui omettent cette dynamique lente sont fragiles
lorsqu’ils sont soumis à des perturbations. La deuxième contribution consiste à montrer que cette
caractéristique des courants calciques est nécessaire pour reproduire le rythme d’une population de
neurones du thalamus.

Les modèles à conductances sont des outils puissants pour simuler un neurone avec une bonne
interprétation biophysique. Cependant, ils sont formés d’un grand nombre d’équations différentielles
non-linéaires menant à des simulations couteuses en temps. Par conséquent, la deuxième partie de cette
thèse s’oriente vers une modélisation plus simple et plus qualitative des neurones et de leur activité en
réseau. Ce type de modèle, appelé modèle hybride, est plus mathématique ; il capture la dynamique
du signal neuronal au travers une équation différentielle. Ensuite, une équation de remise à zéro,
appelée la règle du « reset », tient compte de la nature « tout ou rien » des pics présents dans le signal
électrique. Un modèle hybride d’un neurone du thalamus doit être capable de reproduire la transition
entre les deux modes de décharges. Sa robustesse à l’échelle cellulaire repose sur son aptitude à imiter
la dynamique lente des courants calciques sans manipulation mathématique.

La troisième contribution de cette thèse est de confirmer cette hypothèse avec une analyse à l’échelle
d’un réseau de neurones. Cette étude prouve que les modèles plus simples des neurones du thalamus
présents dans la littérature, tels que les modèles d’Izhikevich, n’intègrent pas cette cinétique lente. Par
conséquent, ils ne sont pas capables de reproduire l’activité rythmique du thalamus.

Pour résumer, cette thèse a pour but de comparer deux classes de modèles de neurones du thalamus.
Une classe intègre la dynamique lente des courants calciques en opposition à l’autre classe qui assume
que cette dynamique est rapide. Ce travail montre que la classe faisant l’hypothèse d’une dynamique
lente donne des résultats favorables en terme de robustesse. Cette démonstration est menée au niveau
cellulaire et à l’échelle d’un réseau de neurones, tant pour des modèles à conductances que des modèles
réduits.
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Chapter 1

Introduction

1.1 Motivations

The brain is a very complex organ which contains approximately 25 billions of neurons. This particular
type of cells communicates to each other by generating a electrical signal called an action potential. The
manner the information is encoded in the pulses train is called the firing pattern. Then, the information
is transmitted to another part of the brain or to a specific body area . Each neuron is connected to
the others by synapses, called synaptic connections [70]. The presence of neuromodulators, which are
chemical components, can regulate the state of a neuron or a population of neurons. The electrical
nature of the neuron activity originates the exchange of ions through the membrane which leads to the
notion of ionic current.

Inside the brain, the thalamus is the relay-station for the sensory inputs travelling to the cortex. It
presents a state-dependent behavior. During wakefulness, the thalamic neurons fire in tonic mode which
corresponds to a regular train of electrical pulses. While during the sleep, they are bursting i.e. each
neuron undergoes short bursts of high frequency spike generation followed by silence [18, 50, 57, 71].
At the network level, the transition to the sleep state is characterised by a noticeable synchronous
slow waves on EEG (electroencephalogram) recordings. This network activity shift is correlated with
changes in the thalamus responsiveness. During the EEG-synchronized sleep, the thalamus stops the
information processing [50, 59, 63].

An abnormal situation occurs when synchronised sleep oscillations are developed into absence
epilepsy during wakefulness, which corresponds to a brain disconnection from the external world [29,
62]. Moreover, brain rhythmicity changes play a role in learning, a property called sleep-dependent
memory consolidation. [49].

Therefore, the development of a robust mode of thalamic neuron firing is necessary to deepen our
knowledge of the thalamic behavior compatible with regulatory mechanisms through neuromodulation
or synaptic plasticity.

In the early fifties, Hodgkin and Huxley developed a model of the neuron electrical activity . Based
on a simple RC circuit with non-linear conductances, they reproduced very well the behavior of a
squid neuron. It is called the conductance-based modeling of a neuron. Over the last fifty years, the
increase of experimental data and the better knowledge in neuroscience leads to extended versions
of the Hodgkin and Huxley’s model to reproduce more elaborated neurons. For thalamic neurons, a
particular ionic current, called T-type calcium current, plays a major role in the firing patterns. It
were included in the modeling.

The increase of complexity leads to time-consuming simulations and so it hinders the computational
experiments of larger neurons populations. This is why a common strategy reduction is to consider
the T-type calcium current as a fast current. However, recent evidences have highlighted the critical
role of the slow dynamics of calcium currents in the switch from spiking to bursting [29, 31, 35].
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Accordingly, this thesis gathers the most used conductance-based models of thalamic neuron in the
literature with or without the presence of the slow dynamics of the calcium current. It investigates
the robustness of these models at the cellular level by verifying if the model is still able to reproduce
the switch from tonic mode to bursting mode when it is subjected to perturbations. Then, the robust-
ness and the modulation of these models are studied at the network level by reproducing the thalamic
circuitry. The computational experiments aim to mimic the regulatory mechanisms present in the
thalamus.

Then, the thesis studies the mathematical modeling of thalamic neurons. Indeed, the advantage
of the conductance-based model is the great physiological interpretability, but they lead to high-
dimensional non-linear equations and so time-consuming simulations. Reduced models are thus neces-
sary. They capture the subthreshold dynamics of the neuron through differential equations and add a
reset rule to mimic the all-or-none nature of the spike. This kind of reduced models are called hybrid
models.

The last major contribution is the hybrid models comparison which integrate or not the slow
dynamics of the calcium current. The same computational experiments as the ones performed on the
conductance-based models are reproduced.

1.2 Structure

This thesis is divided into four main parts.

Part I introduces the biological framework from the neuron description to the thalamus function-
ing. Indeed, the thesis starts with the neuron electrical activity and the explanation of its modeling.
Hodgkin and Huxley were the first scientists to describe the behavior of the neuron thanks to an
electrical analogy. Understanding their work is necessary to deal with the modeling of more complex
neurons such as thalamic neurons (see Section 2.2).

Then, the thalamus is described from its composition, its role, its state-dependent behavior to its
neuron network. The T-type calcium current is the key player in this state-dependent behavior. The
impact of this current is detailed at the neuronal level. Afterwards, the connection of thalamic neurons
is also discussed in order to shed light on the role of the calcium at the network level. Finally, the
population rhythm and the associated information processing are discussed (see Section 2.3).

Part II is dedicated to conductance-based modeling.
Chapter 3 focuses on the cellular level with the introduction of the existing thalamic neuron models

in the literature and the software used to simulate them. Then, the strategy reduction applied on the
dynamics of the calcium current is discussed.

The first contribution of this thesis is the robustness analysis of the five conductance-based mod-
els found in the literature (see Section 3.4). In addition, a model which lacks the slow dynamics of
the calcium current is transformed. The new version is exactly the same as the previous one with the
integration of the slow time-scale feature. They will highlight the impact of the presence of this current.

Chapter 4 studies the robustness of conductance-based models at the network level. The study
is decomposed in three analyses; the robustness analysis of a 2-cells circuit, the analysis of the tun-
ability and the analysis of the population rhythm. This investigation at the network level for these
conductance-based models corresponds to the second main contribution of the thesis.

Part III of the dissertation focuses on reduced modeling.
First, reduced modeling of a conductance-based model to a hybrid model is described with or without
the integration of the calcium current (see Chapter 5).

2



Then, two hybrid models of thalamic neurons are studied at the network level (see Chapter 6).
Again, one of the two hybrid models lacks the slow dynamics of the calcium current. The same three
analyses are performed; robustness, tunability and population rhythm. This corresponds to the third
main contribution of the thesis; highlighting the impact of the calcium currents in hybrid models at
the network level.

Part IV draws the conclusions about the importance of a current with slow dynamics current for
a robust thalamic neuron and presents some applications of this research.

3



Part II Part III

STRUCTURE & MOTIVATION

Sensory inputs

Cortex

THALAMUS

Processed information

. . .

. . .

Key player: T-type calcium current

Which kinetics ensures the model robustness:
Slow or instantaneous ?

State Wakefulness Sleep

Cellular level                      

membrane potential
tonic mode bursting mode    

Network level Asynchronous firing pattern Cells synchronization
population rhythm

Role Process the input information
Relay them to the cortex

Block the information

Vm

gion

out

in

Conductance-based modeling

Mathematical equations 
to draw the shape of the signal
+ reset rule

– Lack of interpretability
+ Simpler model

+ Biological interpretability
– High dimensional

Conductance-based modeling Hybrid modeling

Vm

In two types of neuron modeling

Computational experiments at cellular and network levels 

Subjected to:
- neuromodulation
- synaptic plasticity

PART IV - PERSPECTIVES
- Absence epilepsy
- Sleep-dependent memory consolidation

Part I
background
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Chapter 2

Elements of neurophysiology and neuronal
modeling

2.1 The cell

The cell is the basic unit of life. There exists a large variety of types, but they share a common
structure. An cell can be divided into several main components:

- the nucleus: the envelope that contains the genetic heritage,
- the cytoplasm: the intracellular medium,
- the plasma membrane: the barrier that isolates the intracellular medium from the extracellular
medium,

- the organelles: the subunits of the cells having their specific functions (such as the mitochondrion)

cytoplasm

nucleus cytoskeleton

mitochondrion

plasma membrane

Figure 2.1 – Common cell structure - Besides different morphologies and functions, the cells exhibit this
structure. They are composed of a nucleus (genetic heritage), cytoplasm (intracellular medium), a plasma
membrane (envelope between the intracellular and extracellular medium), organelles (such as the cytoskeleton
for the cell morphology and the mitochondrion for the cell respiration). [28]

Each cell has specific roles. For example, cells forming a tissue permit the body maintenance. This
thesis focuses on a particular type of cells that is involved in signal processing, called neurons. A
neuron receives, integrates and carries the information to another neuron or to the environment. The
different types of neurons have their own role but they share a common structure as illustrated in
Figure 2.2. The main components are the soma, the dendrites, the axon and the synapses.

Neurons communicate with each other by generating an electrical signal. The information is col-
lected at the dendrites and then processed by the soma. If the input stimulation is large enough, an
electrical signal (called action potential or spike) is generated. This impulse is propagated through
the axon towards the other neurons. The axon is terminated by synapses where the electrical signal
is transmitted thanks to electrical connections between the target neurons (i.e. electrical synapses) or
by realising chemical components called neurotransmitters (i.e. chemical synapses). Each neuron is
characterised by one or several neurotransmitter types. The dynamics of neurotransmitters releasing
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is dictated by the way the synapses receive the action potential and then affects the target neuron
responsiveness. Therefore, the key principle underlying the neurons communication is the manner the
information is encoded in the action potential called firing pattern [28].

Neuron information processing relies on a cellular property called excitability. It allows to respond
to a simulation by rapid changes in membrane potential. This electrical origin comes from the ion
fluxes across the plasma membrane [1].

dendrite

soma

axon

synapse

neurotransmitter

Figure 2.2 – General neuron structure - The main components are the dendrites, the soma, the axon, the
synapses. The dendrites are connected to other neurons and collect the information. The input is integrated in
the soma and then propagated in the axon to be transmitted to other neurons thanks to synaptic connections.
A neurotransmitter corresponds to the chemical component released to the other neurons. [28]

2.2 The plasma membrane

2.2.1 Biological structure

The plasma membrane consists of a phospholipid bilayer that is permeable to small molecules and
water but almost impermeable to ions or large molecules. The small molecules diffuse by following
their concentration gradient and the water displacement is mostly dictated by osmosis. Ion and large
molecules, which cannot diffuse, can cross it through proteins embedded in the membrane. These
proteins are selectively permeable to one or a few substances. There are two groups of proteins which
are relevant in this work: ion channels and active transporters [28].

Ion Channels
Ion channels are membrane proteins that act like modulated holes where selective ions such as sodium,
potassium or calcium can flow through the membrane following their electro-chemical gradient. These
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ion channels are proteins whose structure is able to move. This structure modification allows the
channels to be open or closed.

Ion channels have a key role in signalling because they contribute to the charge repartition across
the membrane. The channels density for a particular ion and their opening state define the permeability
of the membrane to a specific ion. It is a dynamic variable [28, 37].

Active Transporters
The movement of a substance through the membrane against its electro-chemical gradient is feasible
thanks to the active transporters using chemical energy for example under the form of ATP. Their
presence is critical to sustain an unbalanced substances concentration, in particular for ions that
determine the membrane potential.

2.2.2 Membrane Potential

The electrical behavior of neurons is based on the ion transfer across the membrane and the ions stor-
age in the intra or extracellular spaces, mainly Na+, K+, Ca2+ and Cl−. Their relative concentrations
and their corresponding membrane permeability generate an electrical gradient across the membrane
called the membrane potential (Vm = Vin − Vout).

For a theoretical example of a membrane only permeable to sodium, Figure 2.3 describes the ionic
movement,

1. Na+ moves following the concentration gradient i.e from the highest concentration medium to
the lowest concentration medium; in this case, sodium enters the cell.

2. The intracellular medium becomes more positive.
3. The extracellular medium becomes more negative; the concentration of negative charges (such

as Cl-) becomes dominant.
4. The resulting electrical gradient resulting from the asymmetric distribution of charge molecules

tends to oppose the entry of sodium ions into the cell.
5. The ions continue to move until the chemical force is perfectly counterbalanced by the electrical

force.

This equilibrium corresponds to a specific value of the membrane potential called the Nernst po-
tential (Vm = VNa). This potential is defined by the Nernst law:

VNernst =
RT

zF
ln

[ion]out
[ion]in

(2.1)

where R is the gas constant, T is the temperature in kelvin, F is the Faraday’s constant, z is the valence
of the considered ion and [ion]out (resp. [ion]in) is the extracellular (resp. intracellular) concentration.

Considering now the different major types of ions present across the membrane (sodium, potassium,
calcium and chloride), Figure 2.4 shows their different ionic concentrations at both membrane sides
and Table 2.1 sums up the typical nernst potentials for each ion (also called the reversal potentials).

Ion [ion]in [mM] [ion]out [mM] Reversal potential [mV]
Na+ 18 145 VNa = 56
K+ 135 3 VK = −102
Ca2+ 10−4 1.2 VCa = 125
Cl− 7 120 VCl = −76

Table 2.1 – Ionic concentrations on both membrane sides and the corresponding reversal potential [28]
and [37] Figure 5.2.
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extracellular

intracellular

Cl-

Na+

+
+
+

+

+

Cl-

Cl-Cl-

Vm=Vin-Vout

1.
2.

3.

4.

5.

Figure 2.3 – Movement of sodium ions across a membrane only permeable only to these ions. 1-
Movement of the sodium ions following the concentration gradient. 2- Intracellular medium is more
positive. 3- The extracellular medium is more negative due to the presence of negative charges. 4-
Presence of a resulting electrical gradient. 5- No more movement when the diffusion is counterbalanced
by the electric force and the membrane potential Vm is equal to the reversal potential of the sodium
VNa (Figure 5.3 in [37])

extracellular

intracellular

Na+ K+ Ca2+ Cl-

145mM

18mM

3mM

135mM

1.2mM

10-4mM

120mM

7mM

Figure 2.4 – Ionic concentrations on both membrane sides -This difference of concentration causes a voltage
gradient giving the membrane potential Vm ([28] and Figure 5.2 in [37])

Finally, the resting membrane potential (Vm) comes from the repartition of these different ions
whose distributions depend on th ion channels permeability. It follows the Goldman- Hodgkin-Katz
equation (generalization of the Nernst equilibrium) :

Vm =
RT

F
ln

(
PNa+ [Na+]out + PK+ [K+]out + PCl− [Cl−]in
PNa+ [Na+]in + PK+ [K+]in + PCl− [Cl−]out

)
(2.2)

where Pion is the ion relative permeability of the membrane (see [33]).

In summary, the neuron is an excitable cell that can respond to stimuli by generating an electrical
signal. The origin of this electrical signal is studied at the membrane level whose structure lets ions
cross it only through ion channels. These channels have a dynamic permeability. The variation of
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Vout

Vin

Cm

Vm

gion

Vion

extracellular

intracellular

Iapp Figure 2.5 – Modeling of the membrane
as an RC circuit. - The phospholipid bilayer
is modelled as a capacitor Cm, an ion channel
is assimilated as a variable conductance gion,
the reverse potential isVion and the applied
current Iapp (Figure 7.1 in [37]).

this permeability regulates the ions flow and therefore the permeability changes are at the basis of the
action potential.

2.2.3 Electrical Model

In the fifties, Huxley and Hodgkin were the first to record the membrane potential of a giant squid
axon. They highlighted the role of sodium and potassium ions in the action potential generation and
the presence of voltage gated ion channels. Besides, they provided a mathematical modeling of action
potential generation by fitting their mathematical parameters to their recorded data [38].

Their model is based on an electrical analogy of the membrane. The phospholipid bilayer is con-
sidered perfectly impermeable to ions and allowing the charges accumulation in the intracellular and
extracellular sides; its activity is modelled as a capacitor. The membrane and the cell morphology
fix the capacitance Cm. The corresponding capacitive current IC is defined by the variation of charge
distribution across the capacitance :

IC = Cm
dVm
dt

(2.3)

Concerning the proteins, each ion channel is assumed to be permeable to one specific ion which flows
through the membrane following their gradient concentration. Each channel is assimilated as a resis-
tor. Since the quantity of channels in open states for one specific ion is dynamically regulated, the
corresponding conductance gion is a dynamic variable. The ion flow corresponds to the ionic current
Iion and according to the Ohm’s law it is defined by:

Iion = gion(Vm − Vion) (2.4)

where Vion is the ion reversal potential.
Therefore, the membrane seen as an electrical component is a simple RC circuit (see Figure 2.5).

The variation of the membrane potential for n different ion channels is determined by applying the
Kirchhoff’s law on the electrical circuit with a negative sign for an inward current of positive ions by
convention:

CmV̇m = −
n∑

i=1

gion,i(Vm − Vion,i) + Iapp (2.5)

where V̇m is the membrane potential variation per unit of time and Iapp represents the applied current.
This equation emphasizes the key role of the dynamic permeability through the dynamic conduc-

tance in the variation of the membrane potential. Now, the modeling consists in defining this dynamic
conductance gion.
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Derivation of the conductance dynamics
According to Hodgkin and Huxley, the ion channel is voltage and time dependent and it can be seen
as a regulated hole with two moving gates (see Figure 2.6). Therefore, the permeability is equal to 0
when either gate is closed and it varies to the maximum conductance of the ion ḡion when both gates
are open. This maximum value depends only on the channel density in the membrane.

extracellular

intracellular

m

h

extracellular

intracellular

m

h

Figure 2.6 – Ion channel modelled with their activation and inactivation gates. - (left) The ion channel is
closed because the activation gate is in closed state. (right) The ion channel is now open thanks to the opening
of the activation gate and the inactivation gate has remained open. The ions can cross the membrane.

The dynamic variation of permeability follows the law of mass action. Schematizing the gate
behavior

C
α(Vm)



β(Vm)
O

where C (resp. O) corresponds to the closed (resp. open) state and α(Vm), β(Vm) are the voltage-
dependent rate constants. Defining n(Vm, t) as the fraction of open channels, the dynamic conductance
is written as

gion = ḡionn(Vm, t) (2.6)

and the fraction variation of open channels over time is

ṅ = α(Vm)(1− n)− β(Vm)n

= (α(Vm) + β(Vm))

(
α(Vm)

α(Vm) + β(Vm)
− n(Vm, t)

)
(2.7)

where n ∈ [0; 1]. Defining

n∞(Vm) =
α(Vm)

α(Vm) + β(Vm)
(2.8)

τ(Vm) =
1

α(Vm) + β(Vm)
(2.9)

where n∞(Vm) is the fraction of open channels at steady-state and τ(Vm) is the channel time constant.
Finally, the fraction variation of open channels is

ṅ(Vm) =
n∞(Vm)− n
τn(Vm)

(2.10)

The equations (2.8), (2.9) and (2.10) are characteristic for each type of ion channels and are determined
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by experimental recordings [37].

As previously said, the channel is a regulated hole with moving gates. There are two types of gates:
the activation gate which opens with a depolarisation (i.e. increasing membrane potential) of the cell
and the inactivation gate which closes with a depolarisation of the cell. They are respectively expressed
by an activation gate variable m and inactivation gate variable h. The fraction of open channels n can
be replaced by the two gates and the conductance is written as

gion(Vm) = ḡionm
a
ionh

b
ion (2.11)

where a and b are coefficients to be tuned to fit with the experimental recordings.
The kinetics of the gate variables is the same as equation (2.10)

ṁion =
mion,∞(Vm)−mion

τmion(Vm)
and ḣion =

hion,∞(Vm)− hion
τhion(Vm)

(2.12)

The steady-state variables are sigmoid functions of the membrane potential and the time constants
follow a unimodal function of the membrane potential (see respectively Figure A.1 and Figure A.2 in
Appendix A.1).

Action potential generation
The electrical model of the membrane is entirely described, and the movement of the gates permits to
understand the generation of the action potential.

Hodgkin and Huxley recorded that the action potential is composed of a fast depolarisation (i.e.
increase of the membrane potential) followed by a slower hyperpolarisation (i.e. decrease of the mem-
brane potential). A neuron contains sodium and potassium channels and the generation of the action
potential relies on the different dynamics of the channels gates. The sodium channel has two gates:
a fast activation gate and a slower inactivation gate. The potassium channel has only an activation
gate that has the same time scale as the inactivation sodium gate [37].

The mechanism of the action potential generation can be decomposed into four steps [28] (see
Figure 2.7):

A. Resting state: the membrane potential is at its resting value. The only open gate is the inacti-
vation sodium gate. The two others are closed. Almost no ion can cross the membrane.

B. Depolarisation: an external excitatory current is applied. Two situations are possible: the stimu-
lus is not large enough, the cell recovers its resting state or the stimulus is large enough to activate
the sodium channels while the other gates do not move. Sodium rapidly enters the neuron which
results in a depolarisation. This increase in membrane potential opens more sodium channels
and so on (phase B’). It corresponds to a positive feedback where Vm is tending to the sodium
reverse potential (VNa), that it can never exceed.

C. Hyperpolarisation: the activation gate of the potassium channel has a slower dynamics, it opens
with a delay. Meanwhile, the inactivation sodium gate starts to close due to the depolarisation.
Then in C’, Potassium moves out of the cell resulting in a hyperpolarisation. The membrane
potential is tending towards the potassium reversal potential (VK).

D. Repolarization: this last step corresponds to the return to the resting state. The sodium activa-
tion gate is closed then the potassium activation gate is closing and the sodium inactivation gate
is opening. The membrane potential recovers its steady-state value.
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Figure 2.7 – Decomposition of the action potential. (left) time evolution of the membrane potential) for
an external stimulation and (right) corresponding gating movements - A. At the resting, the membrane
potential is around -70[mV]. Only the inactivation sodium gate is open. B. An external stimulation is applied,
the membrane is depolarised and the activation sodium gate opens which increases again the membrane potential
generating the fast upstroke (B’) to reach almost the sodium reversal potential. C. The potassium activation
gate is opening and the sodium inactivation is closing. The potassium goes out of the cell and (C’) the membrane
potential converges towards the potassium reversal potassium. D. The potassium activation gate is closing and
the sodium inactivation gate is opening. The membrane potential recovers its stead-state value [28].

Hodgkin and Huxley’s Model = HH model
HH model includes three types of currents: a sodium current, a potassium current and a leak current
[38]. This leak current accounts for the passive ionic exchange. Following the formalism of the equation
(2.12), the model is defined by

CmV̇m = −ḡNam3
NahNa(Vm − VNa)− ḡKm4

K(Vm − VK)− gL(Vm − VL) + Iapp

ṁNa =
mNa,∞(Vm)−mNa

τmNa
(Vm)

ḣNa =
hNa,∞(Vm)−hNa

τhNa(Vm)

ṁK =
mK,∞(Vm)−mK

τmK
(Vm)

(2.13)

wheremNa (resp. hNa) is the activation (resp. inactivation) variable of sodium channels andmK is the
activation variable of the potassium channels. The kinetics of the entire model is given in Appendix A.1.

Figure 2.8 shows the response of the HH model to a step current. The membrane starts to oscillate
due to the mechanism of the action potential generation described above. The evolution of the gate
variables highlights the fast opening of the sodium channels when the membrane is depolarised (blue
curve in Figure 2.8 (bottom)). Then, the inactivation gate of the sodium channel closes with the
depolarisation but at the slower time scale (orange curve). Similarly, for the opening of the potassium
channel (yellow).
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Figure 2.8 – Time evolution of the membrane potential (middle) for a step depolarising current (top)
and the time evolution of the associated gating variables (bottom) [28, 37].

2.2.4 Neuron model seen by the control theory

The membrane has been modeled as an electrical circuit. The voltage-dependent conductances are
non-linear elements present in this circuit. However, based on [27], this model can be studied from a
control theory point of view. It is drawn as a closed loop system where the input is the applied current
and the output is the membrane potential.

The evolution of the membrane is dictated by the difference of the applied current and the internal
current (Iion). This internal current is itself the sum of all the ionic currents present in the model.
They respond to the Ohm’s law, as previously explained, and they are driven by the output Vm.
Representing the model as a closed feedback loop is a nice tool to highlight the voltage-dependency
of the conductances as well as the role of the neuromodulation. The maximum conductances are
subjected to neuromodulation which is seen as an external actor who can change the behavior of the
closed loop.

Hodgkin and Huxley model is nicely represented by the block diagram (see Figure 2.9). Further-
more, this closed loop system can be easily extended to higher-dimensional models which include other
ionic currents. Each new ionic current is simply added in parallel in the closed loop [27].
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Figure 2.9 – Block diagram of the closed loop system corresponding to the electrical RC circuit of the
membrane - The input (resp. the output) is the applied current Iapp (resp. the membrane potential Vm).
The ionic current Iion is the sum of the parallel block associated to each ionic current present in the model.
Neuromodulation can be seen as an external actor (in yellow) who changes the maximum conductance values.
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2.3 Thalamus

The thesis focuses on thalamic neurons. Therefore, this section aims to introduce the thalamus, its
role and its associated neurons network.

2.3.1 Where is the thalamus? What does it consist in? What is its major role?

The thalamus is situated in the middle of the brain below the cortex, above the hypothalamus and
the brain stem as shown in Figure 2.10. It is the relay station for the information that is travelling
to the cortex. Almost all the sensory information is proceeded through it. The olfaction is the only
sensory input that does not pass through it. Then, the cortex receives the filtered information and can
continue the processing (see Figure 2.11).

Frontal lobeCerebral cortex

Corpus 
callosum

Thalamus

Midbrain

Pons
Medulla

Spinal cord

Cerrebelum

Hypothalamus

Figure 2.10 – Vertical cut of a human brain
- The thalamus corresponds to the orange area
shaped as an rugby ball connected to the cerebral
cortex [4].

THALAMUS Cortex

Processed 
information

Sensory
inputs

Figure 2.11 – Schematic of the thalamus input-
output connections - The sensory information is
firstly processed by the thalamus and then trans-
mitted to the cortex.

Shaped like an rugby ball, the thalamus is composed of many different nuclei. Some of them
consist of thalamic relay neurons (see Figure 2.12) . These relay neurons are excitatory neurons that
transfer the information arriving from different brain areas to the cortex. Each nucleus has its own
specialisation. For example, the medial geniculate nucleus and the lateral geniculate nucleus are used
as relays for auditory and visual information respectively [14, 58].

There also exist nuclei that contain inhibitory neurons. For example, the perigeniculate nucleus
which plays a role in the human visual system. The thalamic reticular nucleus contrasts from the
other nuclei. It looks like a thin sheet surrounding the other nuclei. It is linked to them with inhibitory
connections. As a reminder, the difference between excitatory and inhibitory neurons comes from
the generation of excitatory or inhibitory neurotransmitters. An excitatory (resp. inhibitory) neuron
produces a neurotransmitter which depolarises (resp. hyperpolarises) the membrane of the following
neuron by opening sodium channels for example the AMPA glutamate receptor (resp. open chloride
channels for example the GABA type A receptor).

The inputs of thalamic neurons are drivers or modulators. On the one hand, drivers correspond
to the input representing the information being transmitted to the cortex. And on the other hand,
modulators are inputs from other brain areas and are used to modify the drivers communication. They
come from inhibitory neurons in the thalamus, in the thalamic reticular nucleus or from feedback from
the cortex.
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Figure 2.12 – A few nuclei of the thalamus [14]

This thesis will focus on a small network describing the interaction between the thalamic relay cells
and the thalamic reticular nucleus as illustrated in Figure 2.13.

1. The relay cells in thalamic nuclei are excited by external inputs (such as the sensory information).
2. These cells transmit the information to the cortex and on the way, they send excitatory inputs

to the inhibitory neurons of the thalamic reticular nucleus.
3. In response, the thalamic reticular nucleus sends back inhibitory connections to the thalamic

relay cells.

Inhibitory connection

Reticular nucleus

Cortex

Relay nucleus

Excitatory connection

Modulatory input
Input

(sensory information)

Figure 2.13 – Schematic of the interconnection between a thalamus relay nucleus and the reticular
nucleus - The input (black arrow) excites a relay neuron (in blue) which transmits the information to the
cortex and the thalamic reticular nucleus through a excitatory connection. A reticular neuron (in red) sends
back the signal to the relay nucleus thanks to a inhibitory connection. A modulatory input (yellow arrow) can
interact with this excitatory-inhibitory network [3].

2.3.2 State-Dependent Behavior

The thesis inquires on the thalamic mechanisms because it has a state-dependent behavior. Indeed,
the shift from an aroused state to a sleeping state corresponds to a shift in the brain responsiveness.
The thalamus, being the first station for the incoming information, blocks the path to the cortex
during sleep [63]. Calton, in 1887, is the first inverstigator who recorded the activity in the cortex of
a mammal and noticed the dependence between the firing pattern and the state of the animal [12].

The Electroencephalographic recording (EEG) reveals different types of rhythms depending on the
state; a low amplitude and a high frequency rhythm for the aroused state which shifts to a larger
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amplitude and a lower frequency for sleeping state (see Figure 2.14A). These activities are generated
in the thalamus and the cortex.

To understand the origin of these two rhythms, intracellular and extracellular recordings of thalamic
neurons are necessary. They exhibit different firing patterns depending on the state. When the brain
is awake, the low amplitude and high frequency rhythm revealed on the EEG corresponds to a tonic
firing mode at the cellular level i.e. a train of action potential. By contrast, during the sleep, the large
amplitude and low frequency EEG waveform correspond to the synchronisation of burst firing present
at the cellular level i.e. each neuron undergoes short bursts of high frequency spike generation followed
by silence [18, 57, 71].

Figure 2.14 shows the EEG (on the top) and cellular recordings (on the bottom) of McCormick in
1997 [50].

Figure 2.14 – Extracellular and intracellular recordings of lateral geniculate relay neurons during sleep
and wakefulness [50]. (A) During periods of slow-wave sleep, the EEG displays synchronous slow
waves and the extracellular recording exhibits burst of action potentials. During waking or REM (i.e
Rapid-Eye-Movement) sleep, the EEG displays a smaller amplitude. The extracellular recording shows
the tonic mode. (B) The intracellular recording in vivo highlights a bursting activity during the sleep
followed by a depolarisation of the membrane by 10-20 [mV] and the generation of single spikes.

2.3.3 T-Type Calcium Current

Thalamic neurons are able to fire in bursting mode thanks to an additional ionic current. In vitro
recordings and voltage clamp analysis revealed the presence of a calcium current, known as the low-
threshold or transient Ca2+ current (often written IT or ICaT in the literature) [43, 44]. The corre-
sponding calcium channel has both an activation gate and an inactivation gate. The activation gate is
rapidly open (resp. closed) by depolarisation (resp. hyperpolarisation) whereas the inactivation acts
in the opposite way. It opens (resp. closes) by hyperpolarisation (resp. by depolarisation). But its dy-
namics is much slower; it takes about 100[ms]. The gating mechanism is similar as the sodium channel
gating mechanism except that the time scale is larger for the calcium and the membrane operating
range is smaller than -65[mV] (see Figure 2.15) [63].

Therefore, the following scenario is helpful to see the impact of this channel. If the cell undergoes
an inhibition and the membrane potential is hyperpolarised during 100 [ms]; the calcium inactivation
gate opens. If the neuron is then suddenly depolarised; the calcium activation gate will rapidly open.
Since the dynamics of the inactivation gate is much slower, the gates are simultaneously open during a
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Figure 2.15 – Diagram of the activation and inactivation of the ionic currents present in the thalamo-
cortical cell with their associated time constant. The activation (resp. inactivation) starts on the left
side of the arc and is completed on the right side. The current Ih is an exception and activates with a
hyperpolarisation [63].

certain amount of time. Calcium can enter the cell and depolarises it. It triggers a sequence of action
potentials (sodium-potassium spikes generation) until the inactivation gate is entirely closed. Then
the membrane potential decreases. This sequence describes a bursting activity.

The other scenario is associated to a membrane potential initially depolarised, the calcium cur-
rent is inactivated and so there is no more calcium spike. If the membrane is depolarised around -55
[mV], the classical mechanism of action potential generation (sodium-potassium spikes generation) is
triggered and it results in a tonic mode. Figure 2.16 A illustrated the different firing patterns in both
scenarios [3, 50].

Thalamic Cell Behavior
McCormick described the behavior of a thalamic neuron at the membrane level i.e. by describing
the interactions between the different ionic currents such as the low-threshold calcium current IT ,
a hyperpolarization-activated cation current Ih and the classical combination between sodium and
potassium currents (see Figure 2.16). These ionic currents have their own activation and inactivation
voltage dependency and specific time scale (Figure 2.15).

The burst in a thalamocortical neuron is decomposed into four steps:

i. When the membrane potential is around -65[mV], the T-type calcium current is activated. Cal-
cium enters the cell and the cell is depolarised.

ii. Around - 55[mV], the mechanism of action potential generation described in Section 2.2.3 occurs.
iii. The IT inactivation is much slower than its activation. After 100-200 [ms], the channel becomes

closed and no more calcium enters the cell. This implies a decrease of the membrane potential
and so no more Na-K spike can be generated.

iv. This hyperpolarisation activates Ih. It results in a slow depolarisation and therefore another
calcium spike can be generated (see step i.).

The rate of this sequence depends on the interaction between the ionic currents and the kinetics of the
calcium current.

2.3.4 Synaptic connections between neurons

The thalamic relay neurons can switch from one mode to another thanks to the interaction with other
components of the thalamocortical system; either by the inhibitory input of the thalamic reticular
nucleus or by modulatory input. For example, in Figure 2.16, McCormick mimics the switch by
injecting a depolarising current which closes the inactivation calcium gate. He also describes the
synaptic connections between neurons as following [50]:
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Figure 2.16 – Thalamocortical neurons recordings in bursting mode and in tonic mode and the ionic
currents interaction. (A) The cat LGNd neuron generates a bursting activity at a rate equal to 2[Hz].
A external depolarising current injection switches the activity into the tonic mode. Finally, when the
depolarising current is removed, the bursting mode is recovered. (B) Zoom on the oscillatory trace
and the ionic current involved in the burst. Around -65[mV], IT is being activated and depolarises
the membrane potential to reach the membrane threshold for sodium-potassium action potential. Ih
becomes deactivated and IT inactivated provokes the repolarisation of the membrane followed by a
hyperpolarising overshoot which activates Ih and de-inactivates IT . (C) Zoom on the tonic mode which
exhibits the classical sodium-potassium action potentials [50].

Inhibitory neuron to excitatory neuron (reticular cell to relay cell)
Activation of the thalamic reticular nucleus or the perigeniculate nucleus results in the activation of
GABA receptors which give rise to inhibitory post synaptic potentials (IPSPs) in the relay neurons
(see Figure 2.17).

There are two ways to activate the inhibitory neuron (for example the perigeniculate neuron (PGN))
[50]. The first one is the injection of a current pulse in the PGN neuron which generates a train of
action potential. This induces a small IPSPs in the relay neuron (see Figure 2.17 B). Or the second
way is performed at a lower potential, the injection of a current pulse in the PGN generates a burst
firing mode which results in a larger IPSPs. This decreases more the membrane potential of the relay
neuron and therefore opens the inactivation calcium gate of the relay neuron leading to a rebound
Ca2+ spike (see Figure 2.17 C).

There are two types of GABA receptors; GABAA and GABAB. On the one hand, a GABAA
receptor causes the opening of chloride channels, which leads to the hyperpolarisation of the cell. On
the other, a GABAB receptor is coupled with a protein. When this receptor is activated, it indirectly
opens potassium channels. The flow out of potassium ions also leads to a hyperpolarisation of the cell
[13]. The hyperpolarisation due to the GABAB receptors occurs at lower potential value than the first
one and it is slower.
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Excitatory neuron to inhibitory neuron (relay cell to reticular cell)
In a similar way, a single spike in the relay neuron induces excitatory post synaptic potentials (EPSPs)
while a burst firing mode results in a larger amount of EPSPs leading to an increase value of the
membrane potential in the reticular neuron (respectively illustrated in Figure 2.17 E and F).

This depolarisation originates from the presence of AMPA receptors which allows sodium to flow
in [50].

The reciprocal connections between a relay neuron and a reticular neuron
This loop connection can be decomposed into several steps of interactions (see Figure 2.17 H):

i. A current pulse in the PGN neuron (which is an inhibitory neuron) produces a burst firing
activity.

ii. This burst activity induces a rebound burst firing in the relay neuron.
iii. The relay neuron in burst induces feedback EPSPs in the PGN.

The delay between the burst and the return of EPSPs in the PGN neuron is due to two reasons: the
duration of the GABAA- IPSPs in the relay neuron and the necessary delay for the generation of a
calcium spike.

The loop can be studied from the relay neuron in a similar way such as a bursting activity in the
relay neuron results in a feedback of IPSPs through a generation of a burst of action potential in the
PGN neuron (see Figure 2.17 I) [50].

2.3.5 Switch Between Two Firing Modes

Thalamic relay cells can fire in two different modes, as explained earlier. Each mode has been associ-
ated with a specific state: tonic firing occurs during wakefulness and burst firing is limited during the
sleep. In 2001, Sherman enlarged the state-dependent behavior of thalamic neurons. He brought to
light that burst firing can also appear during wakefulness and plays a role in the information trans-
mission [59].

What is the difference for the information relay between tonic and bursting mode ?
The responsiveness to sinusoidal visual stimuli applied on the geniculate nucleus is different depending
on the state. The response is more sinusoidal in tonic mode than in bursting mode. The tonic mode
offers a better reconstruction of the visual stimulation while the bursting mode focuses on the signal
detection. In other words, the tonic firing is used as a linear mode and the burst firing is used for
the detectability. This has led to the "wake-up call theory" of thalamic function . A representative
example of this duality between the two firing modes occurs when an object suddenly appears in the
visual field. This stimulus triggers bursting in thalamic neurons. The object is detected and roughly
analysed. Then, the cells switch in tonic mode and the object is carefully examined. The switch from
tonic to burst firing in the awake state originates in non-retinal inputs and controls the inactivation of
ICaT [57, 59, 69].

2.3.6 Sleep and Population Rhythm

The interest in thalamic neurons partly comes from that state-dependent behavior of the thalamus.
The switch from the wakefulness to the sleep is characterised by a switch between tonic and bursting
mode at the cellular level. Then, McCormick has described the interconnection between a relay neuron
and a reticular neuron. This explanation for a 2-cell network helps to understand the oscillations
recorded at a larger scale. Indeed, during the second stage of the sleep, the typical oscillations are
called the spindle waves (recordings shown in Figure 2.18).

This corresponds to a train of oscillations which wax and wane in amplitude and last 0.5-3 [s] [63, 53].
This activity is attributed to the interconnection between the thalamic relay cells and the reticular
cells as described in Figure 2.17 (G-I). Therefore, the sleep is characterised by a synchronisation of
the population which leads to a population rhythm [21, 48]. The frequency of the waxing-and-waning
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Figure 2.17 – Synaptic interconnection between a relay neuron and a perigeniculate (PGN) neuron.
The first column is the connection schematic between the two cells. The second and the third columns
correspond to the evolution of the membrane potential in both cells. - (A) Schematic of the inhibition
induced by the PGN neuron to the relay neuron. (B) The injection of a current in the PGN cell causes action
potential in the cell. This results in inhibitory post synaptic potentials (IPSPs). (C) At a lower membrane
potential of the PGN, the injected current induces a burst firing which results in a larger IPSPs and a rebound
calcium spike in the relay neuron. (D) Schematic of the excitation induced by the relay cell to the PGN neuron.
(E) Excitatory post synaptic potentials (EPSPs) in the PGN neuron is the consequence of a single spike in
the relay cell. (F) Larger amount of EPSPs in the PGN neuron is the consequence of a burst firing in the
relay neuron. (G) Schematic of the excitatory-inhibitory connection between the relay cell and the PGN. (H)
A current pulse in the PGN neuron drives the cell in bursting mode. This induces a rebound burst firing in the
relay cell. In return, the relay cell generates EPSPs. (I) The injection of a hyperpolarised current in the relay
cell leads to a rebound calcium spike. This bursting activity induces a burst mode in the PGN neuron and so
a return of IPSPs in the relay cell [50]

field potentials is around 7-16 [Hz]. This is associated to the time required for one loop realisation of
the excitatory-inhibitory neurons interconnection. Figure 2.19 highlights the sleep waves at different
scales. The EEG is the largest scale characterised by the presence of the spindle. Then, the filtered
EEG shows the wax-and-wane oscillation inside the spindle. Zooming on the spindle wave reveals the
presence of the burst mode at the cellular level in the relay cell ad the thalamic reticular cell.
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Figure 2.18 – Field potential recording in a cat thalamus (top) and its filtered signal (bottom). The
wax-and-wane oscillation of the spindle wave is strongly revealed in the filtered signal. - [50] Figure 5A.

Figure 2.19 – Spindle waves: from the EEG recordings to the network mechanism underlying their
generation - (a) During the sleep, typical oscillations characterised by a waxing and waning of 7-16 [Hz]
rhythm. (b) Spindle waves result in the interaction of relay cells and reticular cells with this associated circuit
architecture. - page 136 [51]

2.3.7 Summary

Table 2.2 gathers the main characteristics of the thalamus sorted as a function of the firing mode.
The interest for the brain rhythmicity increases with the desire of understanding how the sleep could

affect different properties of our behavior such as for example the neuronal development, the memory
consolidation or the maintenance of the sleep [49, 53]. In order to deepen the understanding of such
mechanisms, a robust conductance-based model combined with a modeling of the synaptic connections
is necessary. The main advantage of the conductance-based model is the presence of parameters which
are physiologically relevant.
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2s 2s

100ms 100ms

Firing mode 

Characteristics
TONIC FIRING BURST FIRING

EEG
Small amplitude
High frequency

Large amplitude
Small frequency

Intracellular 
recordings

T-type calcium channel is 
inactivated

T-type Ca channel is open

State
Role

During the wakefulness: 
information is transmitted to the 
cortex (linear analysis)

During the wakefulness:
Detectability

During the sleep:
Information is blocked

Table 2.2 – Main characteristics of the thalamus sorted as a function of the firing mode; recordings of
thalamic neurons [50] (EEG and intracellular waves) and distinction of the state-dependent.
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Part II

Conductance-based modeling
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Chapter 3

Conductance-based models of thalamic
neuron at the cellular level

Thalamus has been proved to have an important role in the generation of the brainwave rhythmic-
ity. The connection between relay and reticular cells can generate spindle waves. These oscillations
originate from the T-type calcium current. Therefore, researchers developed computational models in
order to understand the behavior of this current and, at a larger scale, to mimic the population rhythm.

In the nineties, experimental data have been collected to characterise the current [11, 16]. Carbone
(1987) and Coulter (1989) started to describe the kinetics of the ICaT current. Then, scientists used
this kinetics analysis to model the electrophysiological properties of thalamic neurons. Almost all
researchers followed the procedure described by Hodgkin and Huxley and created a conductance-based
model fitting with the recordings.

Computational models provide a lot of valuable tools such an easy access to different ionic currents
or the study of varying parameters in the time-course membrane voltage, for example. However, it is
only a computational form of a conceptual model derived from scientists [52]. Indeed, they choose the
different variables and their values according to the data but they decide how many different channels
they model and the precise values of each parameters.

The aim of this part is to study conductance-based models of thalamic neuron and their robustness.
The first step consists in gathering the most used models in the literature. With the selected models,
we reproduce the relevant firing patterns at the cellular level. Then, we enter the core of the project
by analysing their robustness at the cellular level and in the next chapter at the network level.

3.1 Models From the Literature

This section gathers five conductance-based models that are often used through the literature. Most
of them were developed between 1990 and 2000. These models have the same architecture as Hodgkin
and Huxley model with additional currents. Therefore, in order to highlight the main characteristics
they are described in a similar manner (from Table 3.2 to Table 3.6);

- Name of the scientists and the related paper,
- Year of the paper describing the model,
- Origin and motivation to create the model,
- Equation of the evolution of the membrane potential written in the general form:
CmV̇m = −∑ Iion + Iapp where Iapp is the excitatory current,

- Number of conductances and number of leak currents,
- Simulations of the model provided in the paper,
- Generation of three firing patterns: tonic firing, PIR i.e. post-inhibitory rebound, HIB i.e.
hyperpolarisation-induced bursting.

Note that to obtain different firing patterns, the excitatory current Iapp is adapted according to
Figure 3.1. This excitation is decomposed as a constant applied current Icst and a step current Istep
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such as Iapp=Icst + Istep. The detailed equations, parameter values and stimulation for each model are
given in A.

(a) tonic (b) PIR HIB

Figure 3.1 – Excitation current Iapp pattern in order to generate the different firing patterns

The T-type calcium current has been proven to play a crucial role in the switch from tonic mode
to burst mode. Therefore, we are particularly interested in the modeling of this current. Among the
five listed models, we can classify them in two categories based on the kinetics of the activation gate
(mCaT ) of this T-type calcium current (which respect the HH formalism); either the activation is slow
or instantaneous (see Table 3.1).

Slow activation Instantaneous activation
Huguenard and McCormick (1992) Rush and Rinzel (1994)
Destexhe (1998) Wang (1994)
Drion (2017)
ICaT = gCaTm

a
CaTh

b
CaT (Vm − VCa) ICaT = gCaTm

a
CaT,∞h

b
CaT (Vm − VCa)

ṁCaT =
mCaT,∞ −mCaT

τmCaT

Table 3.1 – Classification of the conductance-based models according to the kinetics of the activation
gate of the T-type calcium current; slow activation (blue column) or instantaneous (gray column).

Each model is implemented in Julia. The equations of the neuron and their associated parameters
values are retrieved from the paper. Then, they are solved numerically with Euler’s method and some
parameters values are adapted to obtain the different firing patterns.

3.2 Thalamic neuron models in Julia

The five conductance-based models are translated in a Julia code. For Drion’s model, the files are
available in [29]. For the other models, the different equations are extracted from the paper and trans-
lated in Julia language.

The architecture of the code is the same for each conductance-based model. Only the kinetics and
the parameters need to be adapted separately from each model.

The simulation of a conductance-based model is divided into two files; TC.jl and Simu_TC.jl.

TC.jl
This file contains all the kinetics of each gate, the equation corresponding to the derivative of the
membrane potential, the differential equations of each gate and the resolution of the various differential
equations following the Euler Method. The pseudo-code is given in Appendix B.

Simu_TC.jl
This file contains all the parameters constants and simulation values. It calls TC.jl to obtain to time
evolution of the membrane potential. The pseudo-code is given in Appendix B.
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Choice of the Language
At the network level, the resolution of all the differential equations is time-consuming. Compared to
Matlab, this language is much faster.

Furthermore, it was an opportunity to learn a new programming language.

Table 3.2 to Table 3.6 summarise the main characteristics of the five conductance-based models found
in the literature.

Name HUGUENARD AND MCCORMICK [19]
Year 1992
Motivation An detailed model in order to analyse each ionic contribution separately.
Equation Cm

dVm
dt = −INa − INap − IL − ICaT − IC − IA − IK2 Nbr of conductances 9

−IKleak − INaleak + Iapp Nbr of leak currents 2
INap: depolarisation-activated sodium current
IL: high-threshold calcium current
IA: transient and depolarisation-activated potassium
IK2: slowly inactivating and depolarisation-activated potassium
IC : calcium-activated potassium current

Paper
simulations Tonic firing PIR

Firing patterns TONIC PIR HIB

Table 3.2 – Description of the Huguenard and McCormick model - in the further sections; this model
is called HM
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Name DESTEXHE [22]
Year 1998
Motivation - The kinetics of the Na+ and K+ currents are retrieved from the Traub’s model. [65]

- The kinetics of the T-type calcium current ICaT is inspired from Huguenard
and McCormick [19] but slightly modified to take into account new recording data.

Equation CmV̇m = −INa − IK − ICaT − Ileak + Iapp Nbr of conductances 3
Nbr of leak currents 1

Paper
simulations Generation of a low threshold current spike in a relay cell (Fig. 11B4 in [22])

Firing patterns TONIC PIR HIB

Table 3.3 – Description of the Destexhe model

Name DRAIN [29]
Year 2017
Motivation Model based on phase plane analysis and the current time-scale studies
Equation CmV̇m = −INa − IK − ICaT − IK,Ca − IH − Ileak + Iapp Nbr of conductances 5

IK,Ca: calcium-activated potassium current Nbr of leak currents 1
IH : hyperpolarisation-activation cation current

Paper
simulations PIR RB HIB

Firing patterns TONIC PIR HIB

Table 3.4 – Description of the Drion model
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Name RUSH AND RINZEL [56]
Year 1994
Motivation - T-type calcium current realised by Wang in 1991 [68]

- The activation of the T-type calcium is set at its steady-state value (mCaT,∞).
Equation Nbr of conductances 3

CmV̇m = −INa − IK − ICaT − INaleak − IKleak + Iapp Nbr of leak currents 2
Paper
simulations Tonic firing for Iapp = 14 PIR for Iapp switching from -3 to 0

Firing patterns TONIC PIR HIB

Table 3.5 – Description of the Rush model - in the further sections; this model is called Rush
Name WANG [67]
Year 1994
Motivation - T-type calcium current realised by Wang in 1991 [68]

- The activation of the T-type calcium is set at its steady-state value (mCaT,∞).
Equation CmV̇m = −INa − IK − ICaT − Ih − INap − Ileak + Iapp Nbr of conductances 5

Ih: hyperpolarisation-activated cation current Nbr of leak currents 1
INap: non-inactivating sodium current

Paper
simulations Tonic firing for Iapp = 3 Burst firing for Iapp = 0.8 (4 spikes/period)

Firing patterns TONIC PIR HIB

Table 3.6 – Description of the Wang model
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3.3 Activation of the T-type calcium channel: fast or slow?

3.3.1 Introduction

The modeling of thalamic neurons follows the Hodgkin and Huxley’s procedure and integrates calcium
in order to reproduce the tonic mode, the bursting mode and the switch from one mode to the other
one. As it is shown in the previous section, the five models can fire in both modes and switch by
fixing the parameters to a specific set of values. Thus, they mimic well the neuronal behavior at the
single cell level. Therefore, they are integrated in numerous scientific research. Just to name a few,
which use HM or Destexhe, there are the explanation of the thalamic neuron modeling in NEURON
software (1995, [52]), the analysis of the population frequency (1996, [47]), the comparison between
some compartmental models (2005, [55]) or the discussion about slow-wave sleeps (2012, [8]).

In this way, the major applications of a thalamic model are either to understand the thalamus
activity at a higher level in order to study the brain rhythmicity or to deepen the knowledge in this
field by applying complex mathematical tools.

However, working at a network level implies time-consuming computations which leads to a com-
promise; the model has to mimic the intrinsic properties of the neuron but it has to be fast and
efficient. Accordingly, a common reduction strategy is to fix the activation of the calcium channels to
its steady-state value. In other words, it means the activation is considered to happen very fast such
as it reaches instantaneously its steady-state value.

This assumption originates to the comparison between the activation of Ca channels which is faster
than the inactivation of Ca channels.

The major reasons to apply this assumption are:

- the decrease of the model complexity,
- the interest in a more quantitative description of the model rather in a qualitative one,
- the phase plane analysis requires reduced models.

Through the five selected models, Rush-Rinzel and Wang have made the assumption of the instan-
taneous activation of the calcium channels. After exploring the literature, Destexhe himself also wanted
a minimal conductance-based model able to reproduce the different behaviors of the thalamic neuron.
This minimal model follows the common reduction strategy by using the steady-state activation of
the calcium current. Then, he integrated it with other minimal neuron models [54]. The motivation
behind this combination of neurons is to model the entire brain which is a hot topic called the Human
Brain Project [2].

Another example to highlight the tendency for quantitative models is Amarillo who studied the
different physiological currents involved in the thalamus in 2014. For this biological analysis, he used
an adapted version of HM and Destexhe models [7]. One year after, he wanted to perform quantitative
studies and phase plane analysis [6]. He reduced his model by using the common reduction strategy.
Then, he displayed similar results as Izhikevich’s model which is a purely mathematical model of a
neuron [42]. Likewise, Elijah illustrated the interest of applying complex mathematical tools to study
thalamic neurons. He used the Wang’s model in 2015 to compute the mutual information encoded in
the neuron by applying Shannon’s formula [32].

Browsing the different models and studies performed on the thalamic neuron through the literature
shows the interest in simpler models which require assumptions. Nowadays scientists are working on
these models, they are performing new analysis and tend to be more quantitative. However, we should
take a step back and ensure that assumptions made on the models are valid.

3.3.2 Is the fast activation of the calcium channels valid?

This thesis only focuses on the assumption about the activation of the T-type calcium channels and it
aims to answer the question; can we use the steady-state value of this activation or is its slow kinetics
necessary in the thalamic neuron modeling?
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In other words, do we have "good" thalamic neuron models? Are they able to mimic the right
behavior of a thalamic neuron? Are they able to perform this particular biological feature i.e. to
switch from tonic mode to burst mode? Do these models have a robust switch?

This leads to the next question: what is a robust model ? According to [35], robustness means a
small variation of the parameters does not disrupt the bursting pattern and the switch is not affected.
In contrary, a model is fragile when small deviations from the nominal set of parameters leads to large
modifications in the bursting pattern.

Franci, Drion and Sepulchre have investigated the impact of a fast or a slow kinetics of the calcium
channels in a STG 1 model at the single-cell level [35]. The robustness property is explained with the
decomposition in negative and positive conductances at different time scales thanks to a voltage-clamp
2 computational experiment.

The voltage is maintained at a constant value, then a small voltage step perturbation is applied ∆Vm
at t = 0. The local conductance appears in the current step response ∆Im(t) such as ∆Im(t)/∆Vm. It
corresponds to the conductance at a given time and at a given voltage.

The STG model has a slow kinetics for the activation of the calcium channel. In the parameter space
of two of the seven conductances of the model, the set of parameters corresponding to the situation
(a)(resp. (b)) generates a tonic mode (resp. bursting mode) as shown in Figure 3.2 (top). When the
time constant decreases (moving from the left to the right) to reach an instantaneous activation, the
model is no longer able to generate a burst [35].

Figure 3.2 – Top: Evolution of the parameter chart as a function of the parameters ḡA and ḡCa for
a decreasing calcium current activation time constant. Bottom: Associated voltage-clamp experiment
with the voltage step and the corresponding current response. - The region corresponding to the burst
mode decreases when the time constant is reduced. For a instantaneous activation, there is only the tonic mode.
The current response shows that the slow negative conductance merges with the fast negative conductance. [35]

On the current response (see Figure 3.2 (bottom)), the difference between the two modes is the
presence of this slow negative conductance. In the tonic mode, the current step response shows a fast
negative conductance followed by a slow positive conductance. It respectively corresponds to the fast
activation of an inward current (sodium current) followed by the slow inactivation of sodium channels
and the slow activation of an outward current (potassium current). In the bursting mode, a slow
negative conductance is present resulting from the slow activation of the calcium channels. This slow
negative conductance becomes faster and the slow inverse response is no more distinct from the fast

1stomatogastric ganglion. The conductance based model contains the transient sodium current, INa, a fast depolar-
izing current, and the delayed-rectifier potassium current, iK , a slower hyperpolarizing current, plus a leak current, IL,
the low-threshold T-type calcium current, ICaT , the hyperpolarisation-activated cation current, IH , and the calcium-
activated potassium current,IKCa.

2This technique permits to measure the ion channel kinetics. The membrane potential is fixed to a constant value
and so the ionic currents can be recorded. By setting V̇m to; Iapp =

∑
Iion,i.
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one as shown in Figure 3.2 (bottom). Similarly, Figure 3.3 highlights the contribution of each current
with their activation and inactivation and the corresponding time-scales. When the activation of the
calcium channel is fast, it merges with activation of the sodium channel [35].

Figure 3.3 – Voltage step and its associated current response of the
voltage-clamp experiment performed on the Drion’s model when
the activation of the calcium current is slow (left) or instantaneous
(right) . When the activation of the calcium current is considered as
instantaneous, The distinction between the slow negative conductance
and the fast negative conductance associated to the fast activation of the
sodium channel disappears [29]

Figure 3.4 – Time evolution of the membrane
potential in a burst mode for the STG model
(on the left) and for the Wang model (on the
right). The maximal conductances are scaled
i.e. the capacitance value is changed to -20%
and +20% - The STG model is robust to this per-
turbation; his firing pattern is maintained. The
Wang’s model which lacks of a slow negative con-
ductance cannot handle this perturbation. His
bursting pattern is destroyed [35]

This slow negative conductance is necessary to have a robust bursting model i.e. when some
parameter perturbations are added to the model, it still generates the same bursting patterns. To
illustrate this property, the STG and Wang’s models, which generate burst for the nominal parameter
set, undergo a simple computational experiment. A uniform scaling of all maximal conductances is
added. Mathematically it is equivalent to scale the capacitance C. Figure 3.4 displays the evolution of
the bursting pattern subjected to parameter perturbations for the STG and the Wang’s models (TC).
This thalamic model lacks the slow negative conductance (as described in Section 3.1) and it is no
more able to reproduce its initial bursting pattern by contrast to the STG model [35].

36



3.4 Thalamic Neuron Models: Robustness Analysis at the Single Cell
Level

This thesis is dedicated to thalamic neuron models. Therefore, we reproduce the same computational
experiment which has been carried out on the STG model and Wang model on Destexhe, Drion, HM
and Rush-Rinzel models . The goal is to discover the robustness or the fragility of each model at the
single cell level when it is subjected to a uniform scaling of all maximal conductances.

3.4.1 Procedure

Each model is simulated with the capacitance equal to +20% and - 20% from its initial value, all the
other parameters being conserved. For example, if Cm = 1, the model is simulated with Cm = 0.8 and
Cm = 1.2.

3.4.2 Results

According to Figure 3.5, Destexhe, Drion and HM are still able to fire in tonic mode and then to switch
in burst mode. They are robust to the perturbation. Unlike Rush and Rinzel model, there is no more
firing pattern when the capacitance Cm is increased of 20%. Wang’s model also loses its ability to
burst when the capacitance is decreased of 20% (see Figure 3.4). So, these models cannot handle a
small perturbation.

In order to highlight the responsibility of the fast negative conductance in the fragility of Rush-
Rinzel’s model, we create a modified version of this model called RushCa (see Table 3.7). The assump-
tion of an instantaneous activation of the calcium channel (mCaT,∞) is removed and the activation
recovers a slow activation. It means that two new equations are added; one for the dynamics of the
activation gate ṁCaT and another for its associated time constant τmCaT . As explained in Section 3.1,
Rush-Rinzel used the T-type calcium current of the Wang’s model (1991, [68]) and changed the slow
activation to a fast one. The modified model conserves the primarily version without the common
strategy.

Name RushCa
Year 2018
Motivation - Rush and Rinzel’s model with the initial slow activation of the T-type calcium

from Wang’s model in 1991 [68]
Equation CmV̇m = −INa − IK − ICaT − Ih − INap − Ileak + Iapp Nbr of conductances 5

Nbr of leak currents 1
Firing patterns TONIC PIR HIB

Table 3.7 – Description of the RushCa’s model

This small alteration is sufficient to make the model robust to a small perturbation. Indeed,
the new version of the Rush-Rinzel model still switches and the firing pattern is not affected by the
perturbation, contrarily to the initial model.
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Destexhe Drion HM

Cm

1.2Cm

0.8Cm

Rush RushCa

Cm

1.2Cm

0.8Cm

Figure 3.5 – Time evolution of the membrane potential in HIB when all maximal conductances are
uniformly scaled i.e. when the capacitance is modified. Top: C - Center: 1.2C - Bottom: 0.8C. A blue
cell corresponds to a model which integrates the slow activation of the calcium channel while the gray
cell indicates the model which lacks the slow kinetics.
Rush model which lacks the slow negative conductance is the only fragile model. RushCa model has turned the
instantaneous activation of the calcium current into a slow activation, and it is robust to the perturbation.

3.4.3 Discussion

The slow activation of the T-type calcium current is mandatory in thalamic neuron model in order to
have a robust model at the single cell level.

Through the literature, it has been shown that the calcium current is considered as a slow current.
In 1987, Carbone recorded the calcium current in rat cells and fitted an activation time constant from
his experiments [11]. Similarly, in 1989, Coulter claimed that this T-type calcium current is modelled
in an analog manner as the sodium current but with a slower kinetics [16]. Indeed, as shown in Figure
3.6, the activation fitted by Carbone is around 10-50 [ms] for low voltage value.

Nowadays, this slow activation is often disregarded. Indeed, it is widespread that the activation of
calcium channels is considered in the same time scale as the activation of sodium channels, for example
in Izhikevich’s book [42]. It is a common strategy to reduce the number of variables and so decrease
the computation time and the complexity of the model.
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However, this computational experiment highlights the robustness of HM, Drion and Destexhe
models and the fragility of Rush-Rinzel and Wang models. This experiment is based on the scaling of
the maximum conductances. It can be seen as a neuromodulation study. In reality, neuromodulators
modulate the firing pattern by varying the density of ion channels [66]. Therefore, a "good" model has
to handle the impact of neuromodulators. The most remarkable result is the robustness improvement
for Rush-Rinzel’s model when the slow activation is recovered.

Figure 3.6 – Recordings of the activation of the T-calcium current as a function of the voltage in two
different animal cells [11]
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3.5 Summary

Model Destexhe Drion HM Rush Wang

year 1998 2017 1992 1994 1994

Nbr. conductances 3 5 9 3 5

Nbr. Leak currents 1 1 2 2 1

mCaT slow slow slow steady-state steady-state

Firing patterns Each conductance-based model is able to reproduce a tonic mode, PIR and  HIB.

Activation of the T-type calcium current: slow or fast ?

Slow activation brings cellular robustness

STATE OF ART

CONTRIBUTIONS

Cellular robustness analysis: Alteration of the capacitance

Cm

1.2Cm

0.8Cm

HIB not affected

Destexhe, Drion, HM Rush, Wang

No more able to switch

Creation of a modified version of Rush: 
The steady-state activation mCaT,∞ is changed by a slow activation

RushCa

HIB not affected
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Chapter 4

Thalamic neuron models at the network
level

4.1 Introduction

As described in Section 2.3.2, the thalamus is state-dependent, exhibiting population waves with a
small amplitude and a high frequency during wakefulness in contrast with the high amplitude and
small frequency signal during sleep. The difference from one state to another originates from the tonic
to burst switch at the cellular level which is manifested by the hyperpolarise-induced bursting. This
biological feature leans on the switching "on" of the slow negative conductance in the model which
corresponds to the slow deinactivation of the T-type calcium channels (as discussed in Section 2.3.3)
[29].

The behavior of the neurons population relies on their connections. These connections correspond
to an excitatory inhibitory (E-I) network as displayed between the relay cells and the reticular nucleus
cells for example (see Section 2.3.4). The cellular switch induces a rhythmic synchronisation in this
larger population. The neuronal excitability switches from greatly reactive to synaptic inputs ("awake
state") to favorable to synchronisation ("asleep state") [29].

The previous section has focused on the single cell level. The slow activation of the calcium channels
has been recognised necessary to generate a robust switch [35]. This section is dedicated to study
the impact of this kinetics at the network level and so to investigate the robustness of the thalamic
neurons models. Moving to a larger scale, the robustness signification has to be enlarged. Indeed,
in network, the neurons are submitted to perturbations such as neuromodulation and the synaptic
plasticity. Therefore, studying the robustness of a model at the network level requires computational
experiments which reproduce this variability present in real networks.

4.2 Impact of the instantaneous activation of the calcium channels
on the synchronisation of two cells

Drion continues the analysis concerning the kinetics of the activation of the calcium channels at the
network level in [29]. The rhythmicity of the network is studied in his model with or without this slow
kinetics. To do so, a 2-cells network is created with two different cells from his model i.e. both cells
follow his model dynamics but have a different maximum conductance of the T-type calcium current.
When the cells are not connected, they are both able to generate a hyperpolarisation-induced bursting
as illustrated in Figure 4.1. However, the two cells generate different rhythms and fire at different
instants [29].

Then, the two neurons are connected in an E-I circuit thanks to two synaptic connections (AMPA
and GABAA). The network displays a strong synchronisation in the bursting mode; the burst firing
occurs at the same instant in both cells (see Figure 4.2 on the left). In order to highlight the role of
the slow activation of the calcium channel, this activation is set at its steady-state (the other kinetics
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Figure 4.1 – HIB response of two cells for different parameters values [29].

and parameters being the same). The outcome is strongly affected; the burst synchronisation does not
exist any more (see Figure 4.2 on the right) [29].

Figure 4.2 – 2 cells connected with two synaptic connections (AMPA and GABAa) to obtain a E-I
network are excited by a hyperpolarised current. - The model which lacks the slow activation of the calcium
current (right simulations) does not switch from tonic to burst) [29]

The second experiment is to connect the two same cells in a E-I network with three synaptic con-
nections (AMPA, GABAA and GABAB) and to only stimulate the inhibitory cell with a hyperpolarised
current. This hyperpolarisation leads to a switch in the network activity and a synchronisation (see
Figure 4.3 on the left), while when the activation of the calcium channel is instantaneous, there is no
more synchronisation (see Figure 4.3 on the right) [29].

Figure 4.3 – 2 cells are connected with three synaptic connections (AMPA, GABAa and GABAb) to
obtain a E-I network. A hyperpolarised current is applied to the inhibitory cell. - The model which
lacks the slow activation of the calcium current (right simulations) does not switch from tonic to burst[29].

These two figures highlight the crucial role of the slow kinetics of the activation of the calcium
channels in this model. It guarantees a network switch and a synchronous bursting. In other words,
it ensures a rhythmic network activity. Therefore, this thesis aims to extend this analysis to the other
conductance-based models found in the literature.
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4.3 ANALYSIS OF ROBUSTNESS

4.3.1 State-of-art

At the cellular level, the robustness of a thalamic neuron model is studied through its ability to generate
the switch while it is subjected to perturbations. The bursting pattern must not be affected by the
uniform scaling of the maximal conductances (see Section 3.4).

At the network level, the neurons are exposed to regulatory mechanisms such as neuromodulation
or synaptic plasticity. On the one hand, neuromodulators vary the membrane properties. And on the
other hand, the synaptic plasticity affects the synaptic strength between the cells. However, the switch
and the synchronisation of the cells coexist with these phenomena [29].

From a modeling point of view, a robust model integrated in network must be able to handle
theses regulatory mechanisms and continue to switch and synchronously burst. The robustness to
neuromodulation will be studied by adding some perturbations on the maximal conductances and the
capacitance i.e. on the intrinsic parameters. Similarly, the robustness to synaptic plasticity will be
studied by adding some perturbations on the synaptic connections i.e. on the extrinsic parameters.

Drion performs this computational experiment in order to study the robustness of his model. He
keeps the same 2-cells E-I circuit for 1000 networks and he adds variability on the maximal conductances
of the ionic currents and on the synaptic conductances [29].

From a simulation point of view, the intrinsic perturbation means that each cell is not computed
from the nominal maximal conductance value but with new maximal conductance value chosen ran-
domly with a uniform distribution in the range given in [29]. Then, the extrinsic perturbation corre-
sponds to the variability applied on the synaptic conductances. The synaptic current representing the
connection is described by the following equation:

Isyn = gsynmsyn(Vm − Vsyn) (4.1)

where gsyn is the synaptic weight, msyn corresponds to the kinetics of AMPA, GABAA and GABAB
connections and Vsyn is the receptor reversal potential. The synaptic weights are taken randomly
following a uniform distribution around a central value: ḡsyn = ḡsyn,central± ḡsyn,central/8. The receptor
reversal potentials are respectively Vsyn,AMPA = 0[mV], Vsyn,GABAA

= −70[mV] (equal to the chloride
reversal potential) and Vsyn,GABAB

= −85[mV] (equal to the potassium reversal potential) (see Section
2.3.4 as a reminder).

Figure 4.4 – Number of rhythmic network activities for 1000 networks subjected to variability on the
conductances and on the synaptic connections. For five different values of the excitatory current, the
firing pattern of the 2 cells is determined; cells are either silent (white), spiking slowly (black), bursting
asynchronously (grey) or involved in a synchronous bursting rhythm (orange). - Comparison between
the firing patterns of the same model with and without the slow activation of the T-type calcium channel. The
model which has an instantaneous activation never display a network which switches in synchronous bursting
mode. [29]

The result between the Drion’s model with or without the slow kinetics of the activation of the
calcium channels is once again more marked. Figure 4.4 shows that when the injected current is equal
to 1 [µA/cm2], the inhibitory cell is depolarised and so in tonic mode while the excitatory cell is
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silent (the same behavior as in Figure 4.3). Then, the injected current is reduced which leads to the
hyperpolarisation of the inhibitory cell. In the case where the physiological activation of the calcium
channels is taken into account (see Figure 4.4 (left)), both neurons start to synchronise. For example,
for Iapp = −2.6 [µ A/cm2], more than 90% of networks have switched and are synchronous bursting.
Therefore, the circuit rhythm in this model is well independent on the intrinsic and extrinsic parame-
ters since it is almost blind to the variability. On the contrary, in Figure 4.4 (right), the model which
has set the activation to its steady-state value is fragile and the robustness is lost. There is no network
rhythmic activity found for the explored range of parameters [29].

Drion has shown the robustness of his model by emphasizing the critical role of the physiological
activation kinetics of the T-type calcium current. He has also shown the fragility of his modified model
when the activation is instantaneous.

4.3.2 Computational Procedure

Based on [29], the major contribution of this thesis is to reproduce a similar computational experiment
for the conductance-based models selected in the literature. Therefore, the models of Destexhe, Drion,
HM, Rush, RushCa and Wang will be subjected to intrinsic and extrinsic perturbations. The expected
result is to highlight the robustness of Destexhe, HM and RushCa’s models like Drion’s model in con-
trast with the fragility of Rush and Wang like the modified version of Drion’s model.

For each model, two cells are connected in an E-I network and are subjected to extrinsic and
intrinsic perturbations. Then, among 100 networks, the number of networks which have switched and
have been synchronously bursting are computed i.e. the rhythmic network activity is analysed.

Each model can be summarised with its main equation:

CmV̇m = −Iion + Iapp + Isyn

where the intrinsic perturbations act on Cm and on the maximum value of the n conductances
ḡion,i in Iion =

∑n
i=1 ḡion,im

a
ion,ih

b
ion,i(Vm − Vion,i) and the extrinsic perturbations act on gsyn in

Isyn = gsynmsyn(Vm − Vsyn)

Following the Julia code used in [29], the conductance-based model of Drion is replaced by the
tested model. Then, the synaptic connections as well as the extrinsic perturbations are exactly the
same as in the paper. In this experiment, the synaptic perturbation is always present.

The intrinsic perturbations chosen in [29] must be adapted. Indeed, these perturbations come from
the random choice of the maximal conductances in ranges subjected to different relative variability
(see Table 4.1). Drion has chosen these ranges to have a wide exploration of the parameters. Since the

Conductance gion,i gNa gK gCaT gKCa gH gleak
Nominal value [mS/cm2] 170 40 0.55 4 0.01 0.3025
Range [135, 205] [20, 60] [0.375, 0.725] [3, 5] [0.0095, 0.0105] [0.0475, 0.5575]

Relative variability [%] 20.6 50 31.8 25 5 84.3

Table 4.1 – Nominal values of the conductances used in [29], their associated ranges of variation and
the relative variability.

models differ in terms of number of ionic currents, kinetics and parameter values, keeping the ranges
chosen by Drion is impossible. For example, HM has more conductances than Drion and so the question
would be; which value of the relative variability should be used for these new ionic currents. Therefore,
in order to reproduce the same general procedure in all the models, the maximal conductance values
ḡion,i and the capacitance Cm are picked randomly following a uniform distribution in ranges subjected
to same relative intrinsic variability, noted γ and expressed in %. This change in parameters values
corresponds to the intrinsic variability.

44



The robustness comparison through all the models is achieved by deriving the evolution of the
percentage of networks that have switched from tonic to bursting and generated a synchronous bursting
(noted y in %) for a increasing relative intrinsic variability (noted γ in %). This variability is applied on
all the maximal conductances and the capacitance while the extrinsic variability always exerted on the
synaptic connections. In other words, the robustness of each model is brought to light by computing
the evolution of the number of rhythmic network activities (y) as a function of the intrinsic relative
variability (γ).

The procedure to obtain the percentage of rhythmic network activities (y) is the following:

• : capacitance of the cell E
• : symbol of the n maximum 

conductances of the cell E
• resp. for the cell I

Cell parameters settings for HIB
Param. to tune:

I

E

Iapp

Synchronisation without intrinsic variability
Param. to tune

I

E

Iapp

gAMPA gGABAa gGABAb

Application of the intrinsic variability
on each maximum conductance 
and the capacitance

Create 100 networks where each cell is simulated with the random set of parameters 
confined in the range defined in step 3 

Count the number of networks 
among the 100 networks which 
have switched and burst synchronously

y as a function of 

4. Generation

3. Network perturbation

5. Result

2. Connection

1. Initialisation

Cm,I , ḡI , Iapp
<latexit sha1_base64="5IxoI7n3IWc1/FvC7A4HMB8rif8="></latexit><latexit sha1_base64="5IxoI7n3IWc1/FvC7A4HMB8rif8="></latexit>

Cm,E , ḡE
<latexit sha1_base64="THO7iQt1YDWPaXvMQpdAtLn1ZaY="></latexit><latexit sha1_base64="THO7iQt1YDWPaXvMQpdAtLn1ZaY="></latexit>

Cm,E , ḡE
<latexit sha1_base64="THO7iQt1YDWPaXvMQpdAtLn1ZaY="></latexit><latexit sha1_base64="THO7iQt1YDWPaXvMQpdAtLn1ZaY="></latexit>

Cm,E , ḡE
<latexit sha1_base64="THO7iQt1YDWPaXvMQpdAtLn1ZaY="></latexit><latexit sha1_base64="THO7iQt1YDWPaXvMQpdAtLn1ZaY="></latexit>

Cm,E , ḡE
<latexit sha1_base64="THO7iQt1YDWPaXvMQpdAtLn1ZaY="></latexit><latexit sha1_base64="THO7iQt1YDWPaXvMQpdAtLn1ZaY="></latexit>

ḡion,i
<latexit sha1_base64="gENhOahxipkiCZQiq1eAAF+j6mE="></latexit><latexit sha1_base64="gENhOahxipkiCZQiq1eAAF+j6mE="></latexit>

ḡion,i
<latexit sha1_base64="gENhOahxipkiCZQiq1eAAF+j6mE="></latexit><latexit sha1_base64="gENhOahxipkiCZQiq1eAAF+j6mE="></latexit>

�gion,i = �ḡion,i
<latexit sha1_base64="eu5nNbCnzRCtxOIJJGAMyki2fsg="></latexit><latexit sha1_base64="eu5nNbCnzRCtxOIJJGAMyki2fsg="></latexit>

example: if   =10%�gion,i = �ḡion,i
<latexit sha1_base64="eu5nNbCnzRCtxOIJJGAMyki2fsg="></latexit><latexit sha1_base64="eu5nNbCnzRCtxOIJJGAMyki2fsg="></latexit>

Figure 4.5 – Procedure to obtain the percentage of rhythmic network activities decomposed into 5
steps.
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This procedure can be seen as an exploration in the set of parameters. For a hypothetical model
with three maximum conductances (ḡ1, ḡ2, ḡ3) , the exploration of parameters due to the applied
relative variability on the nominal values can be drawn as a sphere 1 (see Figure 4.6). The orange area
corresponds to the set of parameters which lead to a rhythmic network activity (i.e. a network able
to switch and burst synchronously).
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Figure 4.6 – Exploration of the parameters in a theoretical conductance based model with 3 conduc-
tances. The nominal value of each conductances is (g1, g2, g3). The exploration of the parameters is seen
as an exploration inside the blue sphere. The chosen set for the network i (resp. j) is (g̃
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(j)
3 ))). The orange area is the set of parameters which permits the network to switch

and have a synchronised bursting mode. (On the right), the sphere growths due to the increasing
intrinsic relative variability (γ).

Due to the randomness, the set can be located in the orange area. It corresponds for example
to the network i computed for the set of maximal conductances (g̃

(i)
1 , g̃

(i)
2 , g̃

(i)
3 )). This network i will

switch and it will synchronously burst. In a bad case, the set is located in a wrong zone (as the
network j associated to the set (g̃(j)1 , g̃

(j)
2 , g̃

(j)
3 )). This network j will not switch or it will not generate

a synchronously bursting mode.
When the relative variability increases, the sphere becomes larger. This allows a wider exploration

of parameters sets. Therefore, a robust model corresponds to a model with a large orange area. Even for
a large parameter exploration, the probability of picking a set in the orange area is high. In opposition,
the orange area is small for a fragile model. When the variability increases, the network is more likely
driven by a set of parameters which does not lead to a switch or synchronous bursting.

The conductance-based models studied are a higher dimensional order. Destexhe has 4 conduc-
tances, Rush and RushCa have 5, Drion and Wang have 6 and HM has 11, in addition to the capaci-
tance. Therefore, the sphere in 3D becomes a higher dimensional solid.

The evolution of the percentage of networks that have made the switch to synchronous bursting
as a function of the relative intrinsic variability is given in Figure 4.8. This result is analysed in the
following section.

1the sphere volume is used to ease the graphical representation. The possible 3D volume domain is a parallelepiped
with the size of the edges equals to ḡ1, ḡ2, ḡ3.
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A question arises from this procedure: what is the influence of the nominal values of the maximal
conductances and the capacitance ?

Using the 3D sphere illustration, Figure 4.7 shows the initial nominal values (ḡ1, ḡ2, ḡ3) and the
same set but shifted (g1∗, g2∗, g3∗). The initial set is located too close to the boundary of the orange
volume. Therefore with the added variability, a network has more chance to pick a wrong set and
will not be able to switch or to produce a synchronous bursting. In the opposite, for (g1∗, g2∗, g3∗)
centered in the orange volume, the intrinsic variability will not disrupt the switch and the synchronous
bursting. By consequent, in order to evaluate the impact of the nominal values; the steps 3 to 5 of
the procedure are reproduced for off-centered nominal values. These new nominal values are randomly
picked with a uniform distribution in a range of 5% from its initial values (denoted g∗ion,i).

The maximal ionic conductances are now chosen in this interval: g̃ion,i ∈ [g∗ion,i −∆g∗ion,i; g
∗
ion,i +

∆g∗ion,i] with ∆g∗ion,i = γg∗ion,i.
However, one constraint is fixed: the set of the off-centered nominal values must provide 100% of

switching networks when there is no intrinsic variability i.e. γ = 0%. Thus, hundred 2-cells networks
are tested only with extrinsic variability and if the set gives at least one non-switching network, the
set is rejected. In the sphere analogy, this ensures that (g1∗, g2∗, g3∗) is in the orange area to start the
analysis.
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Figure 4.7 – The center of the blue sphere is the nominal set of conductances (ḡ1, ḡ2, ḡ3). By off-
centering this set, the green sphere might be better located in the orange area with the off-centered
set of parameters (g1∗, g2∗, g3∗) as the new center.

This off-centering operation is repeated three times 2 for each model and compared to the result
obtained previously with the initial nominal values (see Figure 4.9).

Finally, the mean of the off-centering operation is computed in order to have one final curve per
model. Figure 4.10 concludes the analysis of the rhythmic network activities when the intrinsic relative
variability increases.

4.3.3 Results

Rhythmic network activity computed with the nominal values
This computational experiment shows as expected that the number of rhythmic network activities
decreases with an increasing intrinsic variability (see Figure 4.8). However, depending on the model,

2Only three times because the experiment is time-consuming. It has to be reproduced in the six models. Obviously, to
obtain more accurate results, more off-centering tests should be performed. However, three curves allow for a preliminary
representation.
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the diminution is greatly different. The rating according to the robustness between the different models
for a low variability (γ < 15%):

Drion > Destexhe > Wang > RushCa > Rush > HM

and for a high variability (γ ∈ [15%; 30%]):

Drion > Destexhe > RushCa > HM > Rush > Wang

The Drion’s model is remarkably robust. Indeed, for a relative intrinsic variability equals to 30%, the
percentage of rhythmic networks is above 90%. In contrast, for HM, Rush and Wang, less than one in
five networks is still able to switch and burst synchronously.

An interesting feature happens when no intrinsic variability is added in the model, which corre-
sponds to the point γ = 0%. The six models have 100% of rhythmic networks even if they are subjected
to synaptic variability. By consequent, the extrinsic perturbation does not really change the robustness
of the model.

Figure 4.8 – Evolution of the percentage of rhythmic networks as a function of the relative intrinsic
variability for the different conductance-based models computed with the nominal values of the intrinsic
parameters.

Rhythmic network activity computed with the off-centered nominal values
The models are simulated three times with off-centered nominal values. The evolution of the percentage
of rhythmic networks for an increasing intrinsic variability is illustrated in Figure 4.9 for all the models.
The blue curve is the same as the one drawn in Figure 4.8. The three other curves are computed for
different off-centered nominal values (the off-centered values for each model are given in Appendix A).

The major observation is that the off-centering does not really impact the profile. The percentage
of rhythmic networks for one value of the relative variability is obviously different for each curve. This
could be easily understood from the sphere analogy; the three sets (g∗1, g

∗
2, g
∗
3) are randomly picked

around the initial nominal. So maybe one set is closer than the boundary (resp. centered in the orange
area) and provides worse (resp. better) results. But, globally, the tendency is maintained.
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(a) DESTEXHE (b) DRION

(c) RUSH (d) RUSHCA

(e) WANG (f) HM

Figure 4.9 – Evolution of the percentage of rhythmic networks as a function of the relative intrinsic
variability for each model computed with the nominal values of the intrinsic parameters (called set 0)
and three off-centering set of parameters (called set 1, set 2, set 3). The values of the parameters for
each set are given in Appendix A 49



Averaged Rhythmic Network Activity
Figure 4.10 is the most important contribution for the network analysis of the conductances-based
models. It corresponds to the mean of the four curves shown in Figure 4.9. The rating is almost the
same as the one given for the initial nominal values;
for low intrinsic variability (γ < 15%):

Drion > Destexhe > Wang > RushCa > HM ≥ Rush

for high variability (γ ∈ [15%; 30%]):

Drion > Destexhe > RushCa > HM ≥ Rush > Wang

Figure 4.10 – Mean of the percentage of rhythmic networks for each set of parameters shown in Figure
4.9 as a function of the relative intrinsic variability for each conductance-based model.

The robustness of Drion’s model must be again emphasized; almost all networks switch and burst
synchronously. The gap with the other models is noticeable. Then, the second more robust model is
Destexhe. One network over two is able to switch and bursts synchronously when the intrinsic relative
variability is around 30%. Then, Rush and Wang lag behind. At low variability, Wang seems to be
robust; but shrinks faster than Destexhe when the perturbations grow.

The last remarkable feature is the improvement of the Rush’s curve when the activation is not more
instantaneous; about 10% of augmentation.
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4.4 ANALYSIS OF TUNABILITY

4.4.1 State-of-art

After studying the rhythmic network activity , the behavior of the cell in the network and the charac-
teristics of its firing pattern are investigated . As shown in Figure 4.11, these characteristics are

- tonic frequency defined as the inverse of the time duration between two Na-K action potentials
in tonic mode,

- intraburst frequency defined as the inverse of the time duration between two Na-K action poten-
tials in a burst,

- interburst frequency defined as the inverse of the time duration between two burst onsets, also
called network frequency [25] ,

- duty cycle defined ad the ratio between the burst duration and the period, averaged over two
neurons [25] , Ttonic Tinterburst

Tintraburst∆

Figure 4.11 – Characteristics of a firing pattern (tonic period, interburst period, duty cycle (∆) and
intraburst period).

Physiological property
In addition to the robustness, it is interesting to verify if a model exhibits the physiological property of
the hyperpolarisation-induced bursting [9, 50]:

ftonic < fintraburst (4.2)

In [29], the tonic and intraburst frequencies of each network that has switched and bursts synchronously
are exhibited and are linked by a line in Figure 4.12. For each network, the physiological property is
verified; the intraburst frequency is higher, than the tonic frequency. It is confirmed by the positive
slope of the line.

Tunability
A "good" model is not only robust but also tunable i.e. the characteristics of the firing pattern are
modulated over a wide range of values, in opposition to a rigid model where the characteristics of the
pattern are restricted to particular values.

Computing these features for each rhythmic network is a good indicator to assess the tunability of
a model. Figure 4.12 shows that the Drion’s model allows a large modulation for the explored range of
parameters. The frequency of the rhythm and the duty cycle are modulated over a broad range [29].

4.4.2 Procedure

Physiological property
Similarly done [29], the physiological property of the HIB is studied. Therefore, for each model, we
referred to Figure 4.9 and choose the simulation with the highest number of rhythmic networks. For
example, for Destexhe’s model, the set of conductances 2 gives the best result. Similarly, for Rush’s
model, the set of conductances 3. Among the 100 networks, the tonic frequency and the intraburst
frequency are computed for each rhythmic network at each γ.

The evolution of these frequencies as a function of an increasing intrinsic variability γ is illustrated
in Figure 4.13.
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Figure 4.12 – (left) Relationship between the tonic frequency and the intraburst frequency in each
rhythmic network. The covered range is large. (middle) Distribution of the interburst frequency and
the duty cycle (right) in each rhythmic network. [29]

Tunability
Then,we are interested in the cellular behavior of the rhythmic networks for each model, the tonic, the
intraburst, the interburst frequencies and the duty cycle of the firing patterns. These characteristics
are computed when the model is subjected to the maximum value of the relative intrinsic variability
γ which gives at least 40% of rhythmic network activities. In other words, we choose the maximum
value γ∗ such as y ≥ 40% 3 in the best curve in Figure 4.9 (choosing the favorable situation). Table
4.2 gathers the value of γ∗ for each model associated to the best curve (defined by the number of the
associated set of conductances).

Model Destexhe Drion HM Rush RushCa Wang
set 2 0 2 3 3 2
γ∗ 30% 30% 15% 5% 20% 10%

Table 4.2 – Value of the relative intrinsic variability which gives at least 40% of rhythmic network
activities for a given set of parameters.

4.4.3 Results

Physiological property
Figure 4.13 shows the evolution of the tonic frequency and the intraburst frequency of the rhythmic
networks when the intrinsic relative variability (γ) increases.

General observations through all the models can be extracted: when γ increases, the percentage of
rhythmic networks obviously declines according to the observation given in Figure 4.10. The second
general characteristic occurs at γ = 0%; the synaptic variability provides a small modulation. Only a
small range of frequencies are covered. When the intrinsic variability enters into account, the frequen-
cies both in tonic or in bursting modes are modulated over a larger range. However, the width of the
range is different depending on the model.

Only three models respect the physiological property; Destexhe, Drion and Wang for all values of
γ. Rush loses this property when the relative intrinsic variability is higher than 10%. By contrast,
HM and RushCa do not exhibit the property when there is only synaptic variability. When γ increases
some networks verify it.

Therefore, for HM, Rush and RushCa, the cellular behavior of the cell is not biologically correct
when he subjected to modulation either synaptic and neuromodulation.

Tunability
Figure 4.14 shows the mean and the standard deviation of the four features of the HIB i.e. the duty
cycle, the interburst, the tonic and the intraburst frequencies of each model subjected to a maximum

3y equals at least 40% allows to analyse more than 40 circuits characteristics with a value of γ 6= 0. For y ≥ 80%, for
example, only Destexhe and Drion have a γ 6= 0%.
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Figure 4.13 – Evolution of the relationship between the tonic frequency (T) and the bursting frequency
(B) for each rhythmic network for an increasing relative intrinsic variability in each model.
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intrinsic variability γ∗ which leads to at least 40% of rhythmic networks. The characteristics of the
inhibitory cells and the excitatory cells are almost the same (see Appendix C.1). Only the character-
istics of the cells I are displayed.

- For the duty cycle, RushCa has a very high mean compared to the other models and its modu-
lation is also more important than the others. On the contrary, HM presents a small mean and a
small standard deviation. The four other models are approximately in the same range and size of
modulation.
- For the interburst frequency, Wang covers the largest range compared to the others. HM is again
restricted to the narrowest range.
- For the tonic frequency, Rush and RushCa have both a high mean and the largest range. It is so
more interesting to zoom on the four other models. They display a similar modulation (see Figure
4.15).
- For the intraburst frequency, Destexhe, Rush, RushCa and Wang models have a high mean which is
greater than 400 Hz. RushCa and Wang cover a larger range compared to the others. The standard
deviation of HM and Drion are quite small.

In general, RushCa cover larger ranges, followed by Wang (excepted for the tonic frequency).
Regarding HM, this model has always the smallest modulation. This analysis of tunability sheds light
on the mechanism of the hyperpolarised induced bursting in a network of 2-cells. The same mechanism
exists in very different rhythmic states [29]. However, it is important to stay close to the physiology
and the different states must exist in reality.
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Figure 4.14 – Mean and standard deviation of the distribution of the four firing characteristics for the
rhythmic networks in each model for the inhibitory cells computed for γ∗

Figure 4.15 – Mean and standard deviation of the distribution of the four firing characteristics for the
rhythmic networks in Destexhe Drion and HM for the inhibitory cells computed for γ∗
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4.5 ANALYSIS OF HETEROGENEITY

4.5.1 State-of-art

The previous computational experiments are performed on 2-cells E-I network. In this section, we want
to investigate the activity of a larger population and study the robustness to intrinsic and extrinsic
variability.

In a real experiment, the activity of a larger population is recorded with micro-electrodes inserted in
brain tissue and the recorded electric potential is called the Local Field Potential (LFP). It corresponds
to the mean field measure of the average behavior of large numbers of interacting neurons [24]. It differs
from the EEG which is recorded at the surface of the scalp [20].

To reproduce the experiment, the activity of the population corresponds to the synaptic activity
of the neuronal population and so the LFP is computed by the normalised sum of the post-synaptic
currents [23, 29]. In order to reflect this global activity in a time-frequency plot, the spectrogram of
the LFP is computed.

The robustness of the switch in a 200-cells E-I network of the Drion’s model is illustrated in Figure
4.16 A. The first and last parts are associated to the tonic firing at the cellular level while the central
part (when the applied current is decreased) is associated to the bursting. The spectrogram brings
to light the switch between the asynchronous behavior in tonic mode to the synchronous behavior in
bursting mode (also described in [24]). Indeed, a high spectral power in a confined frequency band is
revealed during the hyperpolarising current.

The key concept to remind of this computational experiment is the existence of a population even
if at the cellular level, cells are heterogeneous and exhibit a heterogenous behavior. Indeed, Figure
4.16 B displays cellular recordings of 4 excitatory and 4 inhibitory neurons. The heterogeneity means
here that some neurons do not fire at the same period. They are not synchronised exactly at the same
moment or they even do not present the same number of spikes per burst. However, considering the
mean field, a rhythm emerges [29].

Figure 4.16 – E-I network of 200 cells excited by a hyperpolarised current. A. The spectrogram of
the LFP in the excitatory cells and in the inhibitory cells. The hyperpolarisation leads a population rhythm
represented by the high spectral power in a confined frequency band. B. Time-evolution of cellular activity of
4 excitatory cells and 4 inhibitory cells. The population displays heterogeneous a single cell activity but these
cells are synchronised [29].

4.5.2 Procedure

The same computational experiment as done in [29] is performed for the six conductance-based models.
The Julia code to obtain the LFP is kept.
The post-synaptic current from neuron i to neuron j is

Isyn,ij = −gk,i(Vm − Vk)
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k is the receptor type (AMPA, GABAa and GABAb). Then, the entire post synaptic current of the
neuron j is the sum of the post-synaptic current of all the neighboring neurons. The sum over the N
neuron is computed:

Isyn,j =
1

N

N∑

i=1

Isyn,ij

N is the number of pre-synaptic neurons of the neuron j. Finally, to compute the local field potential,
the sum of all the post-synaptic current of all the neurons are given by:

LFP =
1

M

M∑

j=1

Isyn,j

where M is the number of post-synaptic currents in the population.
The population rhythm of the inhibitory cells are compared in two situations; either when only the

synaptic connections are subjected to perturbations or both synaptic connections, the conductances
and the capacitance are perturbed. In the second case, the LFP is computed for γ equals to 10%.

The spectrogram of the LFP is the time-frequency representation of the signal. The frequency
content is estimated in time sections of the signal. There is a fundamental trade-off between the
frequency resolution and the time resolution. To have a nice frequency resolution, the sections must
be long. However, long sections fail to track frequency changes. In the case of the switch in the
population, an accurate time evolution along all the simulation is not primordial, since a switch is
expected when the hyperpolarised current is injected followed by a constant population rhythm.

4.5.3 Results

Figure 4.18 shows the spectrograms of the LFP recorded in a 200-cells E-I network where only the
inhibitory cells are represented, similarly done in [29]. The spectrograms associated to the excitatory
cells are displayed in Appendix C.2 and they approximately present the same rhythm.

At 20 [s], when the hyperpolarised current is injected in the inhibitory cells, a switch in the popu-
lation is expected. Figure 4.17 reveals 6 cells of the network from the Drion’s model with and without
intrinsic variability. Without any intrinsic variability, only the synaptic connections are perturbed,
the population switches from an asynchronous behavior to a synchronous spiking mode at the cellular
level. With intrinsic variability, the firing pattern among the different cells is more heterogeneous. For
example, the first excitatory cell has a twice higher interburst frequency compared to the two other
excitatory cells. Among the inhibitory cells, the number of spikes per burst is very different. However,
considering the whole network, a synchronisation phenomenon appears and leads to the population
rhythm.

There are some differences in the population rhythm frequency and the power of the spectral band
between the different models. Figure 4.20 displays the population rhythm frequency and the associated
intensity of the spectral power band for each model.

When only the synaptic connections are perturbed, Drion and Rush have the highest spectral power
in a confined frequency band followed by Wang. HM and Destexhe present a smaller intensity. Then,
RushCa does not reveal a strong population rhythm.

The frequency of the population rhythm is different among the models. HM has a synchronous
population around 1 [Hz], Destexhe, Rush and RushCa around 2 [Hz] followed by Drion at 4 [Hz] and
Wang at 8.5 [Hz]. Besides, some supplementary bands appear in Destexhe, HM, Rush and RushCa.
These bands seem to be the harmonics, but they could also represent a rhythm of a subpopulation
present in the network.

Then, each cell is integrated in the network with perturbed values of the conductances and the
capacitance in addition to the synaptic variability. Each value is randomly chosen in a uniform distri-
bution in the range of 10% around the nominal value. Only Destexhe, Drion and Wang models still
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Figure 4.17 – Examples of time evolution of the membrane potential in 6 cells of the network with
and without intrinsic variability. - Without variability, the cells exhibit a similar firing pattern and are
synchronised. With variability, the cells have a heterogeneous behavior. The synchronous rhythm appears by
taking into account all the cells in the network.

exhibit a population rhythm. Their respective frequency rhythm is not so much perturbed. Indeed, the
parameter variability impact the unicellular rhythm but not the network interactions (as highlighted
in Figure 4.17 for Drion’s model). On the contrary, HM, Rush and RushCa do not have a synchronous
population.

Then, to deepen the analysis, γ is set at 20%, the corresponding spectrograms of Destexhe, Drion
and Wang models are shown in Figure 4.19. Wang does no show any more a population in opposition to
Destexhe and Drion. According to Figure 4.20, the intensity of the power spectral band in Destexhe’s
model is slightly reduced.
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Model WITHOUT INTRINSIC VARIABILITY WITH INTRINSIC VARIABILITY
γ = 0% γ = 10%

Destexhe

Drion

HM

Rush

RushCa

Wang

Figure 4.18 – Spectrogram of the LFP of the I-cells populations in a 200 network without intrinsic
variability (on the left) and with a relative intrinsic variability of 10% (on the right) for each model.
- The hyperpolarising current is expected to generate a switch in the population and revealed a population
rhythm. Without intrinsic variability, all the models display a population rhythm except HM. With an intrinsic
variability, only Destexhe, Drion and Wang maintain their rhythm.
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Model WITHOUT INTRINSIC VARIABILITY WITH INTRINSIC VARIABILITY
γ = 0% γ = 20%

Destexhe

Drion

Wang

Figure 4.19 – Spectrogram of the LFP of the I-cells populations in a 200 network without intrinsic
variability (on the left) and with a relative intrinsic variability of 20% (on the right) for each model. The
intensity of the power spectral content is expressed in Power/Frequency, denoted P/f.- Only Destexhe
and Drion maintain their population rhythm when perturbation is applied in the network.

Figure 4.20 – Intensity of the spectral band power for each model and the associated population
rhythm frequency for different values of the relative intrinsic variability.The intensity of the power
spectral content is expressed in Power/Frequency, denoted P/f. - Destexhe and Drion maintain their
rhythm followed by Wang for a lower variability.
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4.6 Discussion

Slow negative conductance brings robustness at the network level in a thalamic neuron
model
The role of the slow kinetics of the calcium channel activation has been proven crucial to obtain a
robust switch for a single cell. Moving at the network level, the different computational experiments
confirm that only the models integrating this slow time-scale feature have a robust rhythmic network
activity, tunable properties and allow a population rhythm when they are subjected to intrinsic and
extrinsic variability.

The switch from an asynchronous population rhythm to a synchronised rhythm is associated to two
different information transmissions. When the population is not synchronised in tonic mode, the spikes
carry the information to the cortex while in synchronised bursting, the information is blocked [59]. This
switch is robust to synaptic plasticity and neuromodulation. Therefore, by mimicking variability in
the extrinsic and intrinsic parameters, a model placed in network should continue to switch.

Drion model is robust as shown in [29]. The difference with the analysis performed in that paper
comes from the broader ranges chosen for all the maximal conductances and the capacitance. The
results are similar and confirm its robustness. In opposition, models that lack the slow activation of
the calcium current cannot bear high variability. Their percentage of rhythmic networks rapidly drops.
By consequent, as proposed in [25, 29], this slow positive feedback brought by the slow activation of the
calcium current is necessary to have a robust model and makes the switching mechanism independent
on the network topology. In contrast, existing thalamic network analysis focuses on the oscillation state
rather than on the oscillation switch. So, they tune the synaptic connection in order to see a population
rhythm but this is not compatible with the synaptic plasticity present in real networks [46, 50].

In addition to the robustness, the tunability of a model is important. According to the results
exhibited in Figure 4.14, Destexhe model has a relatively good modulation, as well as Drion model.
Their range of modulation corresponds to physiological values. Rush model is also modulated but the
tonic frequency (≈ 350 [Hz]) and the intraburst frequency (≈ 450 [Hz]) are very high. Similarly, Wang
exhibits a high intraburst frequency(≈ 500 [Hz]) with a large modulation while the tonic frequency is
very small (≈ 10 [Hz]) with a small modulation.

Indeed, Rush model covers a broad range of tonic frequencies. But these frequencies are not physio-
logical. The tonic frequency is around 50 [Hz] according to McCormick’s recordings [50] and around 10
[Hz] in Contreras’s recordings [15]. These ranges are much lower than the tonic frequencies exhibited
by Rush model. Similarly, Wang model shows a very tiny modulation of the tonic frequency around
10 [Hz]. It is a rigid tonic spiking model while the bursting mode covers a large range around 500 [Hz]
and even reaches 700 [Hz]. This huge difference between the two firing frequencies is not realistic.
Therefore, Rush and Wang models are able to switch from tonic to bursting mode but the character-
istics of their rhythms are far from those of thalamic neurons.

Then, the switch must be robust across the scales. If the size of the network increases, the model
must be able to switch and displays a population rhythm. Figures 4.18 and 4.20 show that for a small
intrinsic variability, Destexhe, Drion and Wang models sustain a population rhythm. Then, if the
intrinsic variability reaches 20%, only Destexhe and Drion models reveal a rhythm.

Gathering all the computational experiments performed, at first at the cellular level and then at
the network level, considering the robustness, the tunability and the population rhythm; Drion model
displays the best results followed by Destexhe model. Wang model only maintains a rhythmic network
activity for low variability. Regarding Rush model, its robustness at the cellular and network levels is
poor and it presents a lack of physiological characteristics.

Therefore, these computational experiments that aim to discuss the assumption made on the ac-
tivation of the T-type calcium channel confirm that models which lacks the slow activation are less
robust through the different scales.
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Complex conductance-based models
RushCa and HM models deserve a different discussion. The RushCa model exhibits bad firing proper-
ties (see Figure 4.14). However, as a reminder, the purpose of this modified model is to point out that
the robustness is better when the activation of the calcium channel is no more instantaneous. This
goal is achieved as shown either by the robustness at the cellular level in Figure 3.5 and by the increase
of rhythmic networks in Figure 4.10. However, the model is created only by changing the calcium
current activation. Deeper researches on the model could be performed to improve its tunability such
as verifying the time scales of the different currents for example.

The HM model must be analysed apart from the others because its number of conductances is
about twice as the others. This particularity interferes in the computational experiments. Indeed,
performing a uniform distribution on a high number of parameters leads to unfair tests because the
random values picked in the ranges are more likely situated on the extremes bounds of the range [5].
So, HM models more likely simulated with sets of maximal conductances that are far from his initial
nominal values. This leads to worse results.

Three ideas could solve this disadvantage between this high-dimensional model and the other
models:

- Change of the distribution: all the conductance-based models would undergo the same compu-
tational experiments but instead of applying a uniform distribution to choose the set of maximal
conductances and the capacitance, a Gaussian distribution could be used. The issue of the bad
repartition of the uniform distribution would not exist any more for HM model.

- High number of varying conductances in HM model:by comparing the ionic currents between
the models, HM added some "extra"-currents such as IA and IK2 (see Table A.1). Therefore,
only the ionic currents that are similar to the other models undergo intrinsic variability 4. The
comparison between the HM model with 11 and with 7 varying conductances is illustrated in
Figure 4.21. The result of this reduction is not noticeable: the two curves are really close to each
other.

- Transform each conductance-based model on a model with same comparable features and then
apply the perturbations on these features. This solution is discussed with the other issues con-
cerning the feasibility of the computational experiments.

Figure 4.21 – Evolution of the percentage of rhythmic networks as a function of the relative intrinsic
variability for the HM model in two stituations. First, when all the conductances are perturbed (blue
curve, HM) and then, when only similar conductances present in the other conductance-based model
are perturbed (orange curve, HM2).

4The conductances: gNap, gA, gA2, gK2a, gK2b, gL are not subjected to variability.
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Drion model robustness
Through all the experiments, Drion model has revealed a very high robustness and modulation. The
origin of these good results comes from the establishment of the model compared to the others. The
typical way to create a model is based on experimental recordings, fitting curves and tuning parameters.
By contrast, Drion model is rooted in a deep understanding of the dynamics of the different currents
present in the thalamus. Studies in the phase plane are performed as well as the analysis of the
weighted contribution of each current in the firing patterns [36].

Feasibility/Reliability of the Computational Experiments
These computational experiments have contributed to confirm that the slow activation of the calcium
current is necessary to bring robustness and tunability in a model. Additional works could be done to
contribute to these experiments and improve their reliability.

- Firstly, the same analysis could be performed with a larger number of networks. It increases
the repartition in the uniform distribution. For the population analysis, more cells could be
integrated. However, the time of simulations is very huge which is a very contraining and limiting
factor in all these computational experiments.

- Secondly, the models extracted from the literature differ in terms of number of ionic currents
and on their associated kinetics (as described in Section 3.1). To improve the quality of the
experiments, each conductance-based model could be reduced to common features called dynamic
input conductances following the protocol given in [30]. These quantities mimic the role of the
ion channels impacting a firing pattern at one specific time scale [30]. Consequently, for the
conductance-based models studied in this thesis, the reduction of their different ionic currents
would be performed by analysing at which time scale each current has a role. All the models
would be reduced according to their own kinetics but the comparison between these "reduced"
models would be fairer. Indeed, the perturbations would be added on these comparable features
i.e. their dynamic input conductances and so the test would be more general. For example, the
discussion about the high numbers of conductances present in HM model would not exist.

Physiological Interpretability and Physiological Utility
Both cellular and synaptic properties, respectively modelled by intrinsic and extrinsic parameters, in-
fluence the rhythm of a network. However, the rhythmic network activity must survive in presence
of heterogeneity which is translated by a high spectral power in a confined frequency band in the
spectrogram [23, 29].

These experiments are representative of the switch between two modes that is independent from the
regulatory mechanisms such as synaptic plasticity and neuromodulation. Indeed, synaptic connections
are modified during learning. The modulation of these connections must not affect the switch and the
synchronisation properties. In addition, the membrane characteristics evolve with neuromodulators
but again, this alteration must not affect the rhythmic network activities.

These computational experiments unfold which models are robust to this variability and hetero-
geneity and so independent of the network topology. Therefore, such models are suited for deeper
studies for example about the brain rhythmicity or the learning process during sleep.
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4.7 Summary
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Cm,I , ḡI , Iapp
<latexit sha1_base64="5IxoI7n3IWc1/FvC7A4HMB8rif8="></latexit><latexit sha1_base64="5IxoI7n3IWc1/FvC7A4HMB8rif8="></latexit>

Cm,E , ḡE
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Chapter 5

From conductance-based models to hybrid
models

5.1 Introduction

Conductance-based modeling is a powerful tool to simulate the electrical activity of a neuron. The
procedure developed by Hodgkin and Huxley (HH) to reproduce the continuous-time flow of ionic
currents is realistic and allows for a deep understanding of neuronal behavior. Conductance-based
models have a real physiological interpretability. However, they are computed with high-dimensional
non-linear equations, which leadd to time-consuming simulations and so a limited use in population
studies [31, 66].

In large networks, simpler models are necessary. In the early sixties, FitzHugh-Nagumo reduced
the Hodgkin and Huxley model in a two-dimensional model and introduced useful tools specific to
dynamical systems such as the phase portrait and the bifurcation analyses [34].

Meanwhile, the T-type calcium current has been proven essential to obtain new firing patterns.
Taking into account this current changes the phase portrait of FitzHugh-Nagumo and considerably
affects the reduced modeling [31].

This chapter explores the impact of the calcium on the reduced modeling. It starts with the state-
of-the-art consisting in the reduction of the Hodgkin and Huxley model and the inclusion of the calcium
current. Then, the impact of the calcium current in the phase portrait is described. The second part
details two hybrid models based on the phase portrait analysis of the HH model with and without the
integration of the calcium current.

5.2 Reduced models

5.2.1 HH model

The HH model reproduces accurately the behavior of a neuron where the sodium and potassium are the
key players. As described in Section 2.2.3, it is a four-dimensional model. FitzHugh-Nagumo reduced
this model by noticing that the sodium activation variable mNa is faster than the other variables and
the sodium inactivation variable hNa varies on the same timescale as the potassium activation variable
mK [34]. Therefore, his reduced model respects two assumptions:

- instantaneous sodium activation: mNa = mNa,∞(Vm)
- approximate linear relation hNa and mK : hNa = 0.89− 1.1mK

The reduced HH model is described with the following equations:

CmV̇m = −ḡNam3
Na,∞(0.89− 1.1mK)(Vm − VNa)− ḡKm4

K(Vm − VK)− gL(Vm − VL) + Iapp (5.1)

ṁK =
mK,∞(Vm)−mK

τmK (Vm)
(5.2)
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It is a second-order dynamic system whose two variables are Vm(t) and mK(V m, t). The evolution of
the membrane potential for a square-shaped excitatory current is illustrated in Figure 5.1 (a).

5.2.2 HH+Ca model

The HH model can only generate tonic firing. Therefore, a modified version of the HH model is nec-
essary to obtain a burst firing and so it must take into account the calcium current with its slow
activation property. Based on [31], the integration of this physiological feature is achieved by adding
a non-inactivating voltage-gated calcium current ICa (only one activation gating variable and no inac-
tivation gating variable) and a DC-current Ipump that accounts for hyperpolarising currents.

CmV̇m = −ḡNam3
NahNa(Vm − VNa)− ḡKm4

K(Vm − VK)− ICa − gL(Vm − VL) + Ipump + Iapp (5.3)

The previous parameters remain the same as in the HH model [38]. The additional calcium current
follows the Ohm’s law such as

ICa = ḡCamCa(Vm − VCa) (5.4)

where ḡCa is the maximum conductance, VCa is the calcium Nernst potential and mCa is the calcium
activation gating variable. This gating variable is defined in the same way as the previous gating
variable:

ṁCa =
mCa,∞(Vm)−mCa

τmCa(Vm)
(5.5)

where the equations of mCa,∞ and τmCa are given in [31]. The inactivation of calcium channels (hCa)
is very slow compared to the HH dynamics. Modeling this behavior by a slower adaptation of the
calcium conductance does not affect the single spike generation [31].

This bursting mode is now feasible with the modified HH model, called HHCa model. The three
electrophysiological characteristics of this mode are [31]:

- spike latency : the spike train starts after a certain amount of time after the injection of the
applied current,

- plateau oscillation: the spike train occurs at a higher amplitude than the resting potential,
- after-depolarisation potential (ADP): at the end of the bursting activity, a small depolarised
potential is present. The potential does not directly reach the resting value.

The HHCa model is a five-dimensional system (with Vm,mNa, hNa,mK andmCa as variables). The
same reduction procedure of the HH model is followed. The excitability is governed by the membrane
potential Vm and the gating variable mK . The reduced model is based on the same assumptions as
the HH model but a new one is necessary to take into account the calcium current. Its kinetics can be
deduced from the potassium gating variable kinetics such as: mCa = m3

K

The reduced HH+Ca model is described with the following equations:

CV̇m = −ḡNam3
Ca,∞(0.89− 1.1mK)(Vm − VNa)− ḡKm4

K(Vm − VK)

−ḡCam3
K(Vm − VCa)− gL(Vm − VL) + Ipump + Iapp

ṁK =
mK,∞(Vm)−mK

τmK (Vm)

(5.6)

This reduced model is a second-order dynamic system whose variables are Vm(t) and mK(Vm, t). The
evolution of the membrane potential for a square-shaped excitatory current is illustrated in Figure
5.1(b).

5.2.3 Phase portrait

The major added value of the reduction is to display the two variables in the phase plane. By definition,
each axis corresponds to one state variable.
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(a) Reduced HH model: (b) Reduced HHCa model:
the response is the tonic mode the response is the bursting mode

Figure 5.1 – Voltage-trace for square signal excitation of the reduced HH model with and without the
integration of the calcium current (inspired from [31])

For a theoretical non-linear system with two variables x1 and x2, it is interesting to draw the
nullclines which are defined as the locus of points where one of the derivative is null:

{
ẋ1 = f1(x1, x2) → 0 = f1(x1, x2)
ẋ2 = f2(x1, x2) 0 = f2(x1, x2)

(5.7)

The intersections between the two nullclines where ẋ1 = 0 and ẋ2 = 0 defines the fixed points. The
sign of the velocities and the nature of the fixed points helps to understand the trajectory in the phase
portrait.

In the reduced HH model, the equations of the nullclines are:
{

0 = −ḡNam3
Na,∞(0.89− 1.1mK)(Vm − VNa)− ḡKm4

K(Vm − VK)− gL(Vm − VL) + Iapp
mK = mK,∞(Vm)

(5.8)
The first one is called the Vm-nullcline and represents all the (Vm,mK) where V̇m = 0. Similarly, the
second equation defines the mK-nullcline and represents all the (Vm,mK) where the ṁK = 0. This
curve has a sigmoid shape. The nature of the fixed point is performed in Appendix D.1.1.

For the HHCa model, the nullclines become:




0 = −ḡNam3
Na,∞(0.89− 1.1mK)(Vm − VNa)− ḡKm4

K(Vm − VK)

−ḡCam3
K(Vm − VCa)− gL(Vm − VL) + Ipump + Iapp

mK = mK,∞(Vm)

(5.9)

The mK-nullcline remains the same as in the HH model but the Vm-nullcline is considerably affected
by the presence of the calcium current. The nature of the fixed point is described in Appendix D.2.1.

After the derivation of the nullclines, the analysis of the phase portrait of each reduced model can
be performed.

Reduced HH model
The phase portrait associated to the reduced HH model is shown in Figure 5.2 (left). When the
stimulation is turned off, the potential remains at its resting value. It comes from the nature of the
fixed point in the phase portrait, which is a stable fixed point. Acting as an attractor, wherever the
initial conditions are chosen, the trajectory converges to this intersection (see Appendix D.1.1 for the
derivation of the nature of the fixed point).
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When the stimulation is turned on and if the current is large enough to remove the stability of the
fixed point, the trajectory is driven by the velocity vectors (see Figure D.2 in Appendix D.1.2). This
trajectory is attracted by a limit cycle (which is drawn as a circular flow in the vector field). When
the trajectory follows the limit cycle, it corresponds to the spiking mode in the time evolution of the
membrane potential.

When the depolarising current is removed, the fixed point retrieves its stability and the trajectory
converges to this intersection associated to the resting potential value [31].

Figure 5.2 – Phase portraits of the reduced HH model without excitation (top) and in spiking mode
(bottom). The V -nullcline (resp. n-nullcline) stands for the Vm (resp. mK) -nullcline. It is drawn in
full (resp. dashed) line. The trajectory is the red line. Black (resp. white) circle denotes a stable (resp.
unstable) fixed point. The cross is a saddle point. The phase portrait is altered by the integration of
the calcium current. Therefore, the trajectory and so the time-response of the neuron is different. The
reduced HH model fires in tonic mode while the HHCa model fires in bursting mode [31].

Reduced HHCa model
The phase portrait associated to the HHCa model is shown in Figure 5.2 (right). At the beginning, no
current is applied, the hourglass shape of the Vm-nullcline ensures a convergence to the fixed point on
the left of the phase plane which means a hyperpolarised membrane potential. When the stimulation
is turned on, the Vm-nullcline changes its shape and the intersection on the far left part of the plane is
removed. The trajectory follows the path drawn by the velocity vectors. It must travel the region where
the lower branch of the Vm-nullcline is closed to the mK-nullcline. This region displays a vector field
with a very small amplitude. The trajectory moves very slowly. The closest the curves, the slowest the
trajectory moves. This phenomenon is due to the ghost of the fold bifurcation. It highlights the first
electrophysiological signature of the burst called the spike latency. The first spike is delayed compared
to the onset simulation. Then, the trajectory reaches the spiking limit cycle.

The second electrophysiological signature comes from the relative position of the resting state (at
−110 [mV]) and the spiking limit cycle. The spikes train of the burst approximately oscillates between
−60 [mV] and 45 [mV]. By consequent, the amplitude of the plateau is equal to 50 [mV].

When the stimulation is turned off, the Vm-nullcline jumps back to its initial configuration, the
hourglass shape. Therefore, the spiking limit cycle disappears and the fixed point recovers its attrac-
tiveness. The trajectory is driven by the vector field and must follow the Vm-nullcline. As the shape
is a hourglass, the trajectory first moves to increasing values of Vm and then it goes back to the fixed
point. This detour explains the third electrophysiological signature of the calcium current, which is
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the after depolarisation potential (ADP) .

The three electrophysiological features of the burst pattern are entirely described with this new
phase portrait (see Figure 5.3). It is not possible to retrieve them in the phase portrait of the HH
model. The spike latency comes from the apparition of the lower branch of the Vm-nullcline. The
plateau comes from the distance between the fixed point and the spiking limit cycle. And finally, the
ADP exists due to the funnel of the hourglass [31].
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Figure 5.3 – Time evolution of the HH+Ca model (top) when a depolarising current is applied from t =
50 [ms] to t = 100 [ms] with its corresponding phase portrait (bottom). - The three electrophysiological
signatures of a burst pattern are exhibited in both graphs. (inspired from [31])

71



5.3 Normal form and hybrid modeling

HH model
Instead of starting from the electrical analogy of the membrane and developing conductance-based
models, the modeling procedure is based one the shape of the nullclines, the nature of the fixed points
in the phase portrait and the bifurcation diagram. For the HH model, the cubic Vm-nullcline and
the sigmoid mK-nullcline have led to a fold bifurcation which has a key role in the excitability of the
neuron. In a system of local coordinates centered at the bifurcation, the fold normal form is given by:

v̇ = v2 − w + i+ h.o.t. (5.10)

where v is the membrane potential, w the dynamic variable, i is a re-scale input current and h.o.t.
corresponds to higher order terms in v and w [31].

To simulate large-scale population of neurons, Izhikevich proposed to simplify the mathematical
model [42]. He highlighted that the shape of the action potential is not very important because the
trajectory comes back always at the same position as illustrated in Figure 5.4. He captures the sub-
threshold dynamics of the neuron through differential equations and mimics the all-or-none nature of
the spike with a hybrid reset mechanism.He reproduced the fast increase of the potential in the spike
and its automatic return to the same low potential value called reset [31, 66]. Figure 5.5 reveals the
concept of the reset mechanism in the phase portrait and the capture of the subthreshold mechanism.

Figure 5.4 – Voltage reset in the mathe-
matical model of Izhikevich [42]

Figure 5.5 – Phase portrait of FZH model (left)
and reset rule mechanism established by Izhikevich
(right) - V -nullcline (resp. VS nullcline) is in full (resp.
dashed) line, the stable fixed point is the filled circle [66]

The fold hybrid model is defined as:

v̇ = v2 − w + I if v ≥ vth, then
ẇ = ε(av − w) v ← c, w ← d

(5.11)

with vth = 100, ε = 1, a = 0.1, c = 0 and d = 50.
This hybrid model reproduces very well the HH model with a monotonic return and no latency at the
beginning since it is in tonic mode.

The v- and w-nullclines are respectively

0 = v2 − w + I if v ≥ vth, then
0 = ε(av − w) v ← c, w ← d

(5.12)

Notice that the v-nullcline is a parabola and the w-nullcline is a linear expression of v. Their shapes
are well associated to the "zoom" of the nullclines around the fixed point on the phase portrait of the
reduced HH model (see Figure 5.2 (b- left))
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HHCa model
The presence of calcium current alters the shape of the nullclines of the HH model. By consequent,
its previous normal form is too restrictive, it does not capture the complex phase portrait associated
to HHCa model. The bifurcation is no more a fold bifurcation but a transcritical bifurcation. This
can be seen in the evolution of the Vm-nullcline for an increasing value of the current. From Figure
5.6 (a) to 5.6 (b), the two vertical branches of the nullclines become closer. For one specific value of
the current, the two vertical branches merge. Then, for higher current, the two branches split in one
upper branch and one lower branch. Accordingly, the addition of the calcium current strongly alters
the shapes of the nullclines.
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Figure 5.6 – Phase portraits of the reduced HHCa model for different values of the applied current.
- The Vm- and the n-nullclines are respectively drawn in pink full line and grey dashed line and the velocity
vectors are blue. The black circle (resp. white) corresponds to a stable (resp. unstable) fixed point and the
cross is a saddle [31].

The normal form associated to this transcritical bifurcation is:

v̇ = v2 − w2 + i+ h.o.t. (5.13)

Following the Izhikevich approach, the transcritical normal form becomes the transcritical hybrid
model which is described by:

v̇ = v2 − w2 + I if v ≥ vth, then
ẇ = ε(aV − w + w0) v ← c, w ← d

(5.14)

where w0 stands for the calcium conductance.
If the parameter w0 is positive, it corresponds to a low calcium conductance. The same behavior as
the Izhikevich model is expected namely a train of regular spikes. By contrast with a negative w0,
corresponding to a high calcium conductance, a bursting activity is expected.

Figure 5.7 gathers the different phase portraits for different values of I and w0.

- For a low calcium conductance (w0 > 0), the w-nullcline intercepts the upper branch of the
v-nullcline. The behavior is the same as the reduced HH model (see Figure 5.2 (left)).

- For a high calcium conductance (w0 < 0), the w-nullcline intercepts the lower branch of the
v-nullcline. Therefore, it is similar as the phase portrait of the reduced HHCa model (see Figure
5.2 (right))
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Figure 5.7 – Schematisation of the phase portraits of the transcritical hybrid model for positive and
negative values of I and w0. The black full (resp. dashed) line corresponds to the v-nullcline (resp.
w-nullcline). The trajectory is represented by a red line. The shaded area corresponds to the phase
portrait of the fold hybrid model which is captured for I > 0 and w0 > 0 [31].
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5.4 Summary

HH model HHCa modelAdd Calcium current

Time-evolution
Vm

Phase portrait

Conductance-based models

Normal form

STATE-OF-ART

Fold normal form
v-nullcline : Parabola
mK-nullcline: line

Transcritical normal form
v-nullcline : two branches
mK-nullcline: line

Hybrid model
(add a reset rule) 

Cond.based
Models reduction

density of calcium channels

High density

Burst firing

low density

Spiking

Fold hybrid model Transcritical hybrid model

75



76



Chapter 6

Hybrid models of thalamic neuron

This thesis only investigates the modeling of thalamic neuron. As a reminder, a hybrid model consists
of continuous-time differential equations reproducing the flow of ionic currents combined with a reset
mechanism that accounts for the all-or-none principle of the spike [31, 66]. Then, a hybrid model of
a thalamic neuron has to be able to switch from tonic mode to burst mode without mathematical
manipulations [66]. In parallel, this switch has been proven robust in conductance-based models which
integrates the slow dynamics of the calcium channel.

Accordingly, this section extends the transcritical hybrid model and integrates features specific to
a thalamic neuron.

Then, in order to discuss the impact of the integration of the slow calcium channel dynamics, two
hybrid models of the literature are discussed. The first model is the well-known Izhikevich model which
captures the subthreshold dynamics of the reduced HH model. It is based on the fold hybrid form.
The second model is the HYB model which takes into account the alteration of the phase portrait
caused by the calcium current and is based on the transcritical hybrid model.

These two models are studied at the network level and they undergo the same computational
experiments performed on the conductance-based models.

6.1 Transcritical hybrid modeling of thalamic neuron

A model describing a thalamic neuron must include the T-type calcium current, therefore the equation
(5.14) of the transcritical hybrid model must be adapted. Indeed, if the parameter w0 is positive,
it corresponds to a low density of calcium current i.e. the T-type calcium channels are inactivated.
By contrast, if w0 is negative, it corresponds to a high density and so the T-type calcium channels
are activated. In the thalamic neuron, the inactivation of the T-type calcium current is a ultra-slow
mechanism (for driven by the calcium-dependent potassium current) (see Section 2.3.3). This feature
is modeled by the addition of a variable z. Then, a cross-term "vw" is added to tune the slope of
the v-nullcline [31]. The transcritical hybrid model of thalamic neuron is described with the following
equations:

v̇ = v2 + bvw − w2 + I − z if v ≥ vth, then
ẇ = ε(av − w + w0) v ← c, w ← d
ż = −εzz z ← z + dz

(6.1)

where a =0.1, b = -3, c = 15, d = 15, ε = 1, vth = 80, εz = 0.1 and dz = 40.

Low conductance mode
Figure 6.1 (left) displays the phase portrait for the small calcium conductance.
•When the stimulation is off, the resting state is positioned on the left branch of the v-nullcline Figure
6.1A (left).
• When a depolarising current is injected; the following sequence happens;
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1. The v-nullcline splits in a upper branch and a lower branch and there is no more intersection
between the v-nullcline and the w-nullcline. The trajectory is driven towards high potential
values. It corresponds to the spike generation.

2. When the potential reaches the threshold value, the reset occurs setting v to c, w to d and z
to a higher value (z ← z + dz). The variable z acts as a hyperpolarising current. Indeed in the
equation (6.1), z has the same impact as I with a negative sign. It brings closer the two branches.
The w-nullcline intersects the v-nullcline and no more spike can be generated (see Figure 6.1B
(left).

3. Since the parameter z decreases following the equation (6.1), the cell slowly depolarises. It
corresponds to the rise of the v-nullcline and so the interspike period. At one point, the v-
nullcline is above the w-nullcline and so a new spike is generated.

This sequence is sustained until the stimulation is turned off.

High conductance mode
Figure 6.1 (right) displays the phase portrait for the high calcium conductance. The parameter w0 is
negative setting the w-nullcline lower in the phase portrait.
• When the stimulation is off, the fixed point is situated at the intersection between the left branch
of the hourglass, representing the v-nullcline, and the w-nullcline (see Figure 6.1A (right)). This
associated resting potential is lower than for a low-conductance model.
• When the stimulation is on, the following sequence happens;

1. The depolarising current breaks the v-nullcline into an upper and a lower branch. There is no
more intersection between the two curves, a spike can be generated (see Figure 6.1A (right)).
However, the space between the lower branch and the w-nullcline is narrow (yellow trace). The
trajectory progresses very slowly which corresponds to the spike latency characterising a burst.

2. The potential reaches vth and so the reset occurs. As previously, the variables change immediately
and z increases. It brings the two curves spike closer (see Figure 6.1B (right)). The w-nullcline
is lower due to a negative w0 and it intersects the lower branch of the v-nullcline. The trajectory
remains on the upper branch instead of relaxing back to the intersection. Driven by the velocity
vectors, it can continue to move to increasing value of v and a new spike is immediately generated,
and so on. The relative position between the resting hyperpolarised state and the limit cycle
associated to the spike generation explains the second electrophysiological characteristic of the
burst; the plateau.

3. At each spike generation, z increases which is a synonym of the inactivation of the T-type calcium
channels. Finally, the v-nullcline comes back to the hourglass shape. Therefore, the trajectory
cannot move to high potential values and it has to follow the left branch of the v-nullcline and
goes back to the hyperpolarised resting potential. The funnel forces the trajectory to firstly
move towards increasing values of v and then reach the fixed point at a lower potential value. It
corresponds to the third electrophysiological signature of the burst; the ADP. One sequence of
bursting is over. There is no more a firing activity.

4. The variable z is not reset any more, so it decreases following its equation (ż = −ezz). By
decreasing, the v-nullcline breaks into an upper and a lower branch. Then, these two branches
move away.

5. When the intersection between the lower branch and the w-nullcline is removed, the trajectory
finds a path to reach high potential value corresponding to a spike.

The sequence is repeated as long as a current is applied. When the stimulation is turned off, the
v-nullcline comes back to its hourglass shape and the trajectory is forced to relax back to its resting
potential(see Figure 6.1A (right)).

78



Figure 6.1 – Phase portrait of the transcritical hybrid model of a thalamic neuron for a low (resp.
high) conductance mode on the left (resp. right). The red line is the trajectory. The square is the
reset point. The dashed-line is the w-nullcline. When the simulation is on (resp. off), the v-nullcline
is drawn in black (resp.gray). The different shades of gray are associated to value of z. The darker the
curve, the smaller z. [31]
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6.2 Hybrid models of thalamic neurons existing in the literature

Izhikevich
Izhikevich model is described by the following equations:

v̇ = 0.04v2 + 5v + 140− vs + I if v ≥ 30, then
v̇s = a(bv − vs) v ← c, vs ← vs + d

(6.2)

where v stands for the membrane potential in [mV], u is the recovery variable. The parameters a, b, c
and d are independent parameters which shape the firing pattern [42] and I is the excitatory current.
It is an "improved" version of the fold hybrid model (see equation (5.11)). Indeed, the associated phase
portrait consists in a parabola for the v-nullcline and a line for the vs-nullcline.

Depending on the parameter values, Izhikevich affirms that his model can generate different firing
patterns with different sets of parameters described in Figure 6.2.
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HYB
This model is based on the transcritical hybrid model of the thalamic neuron (see Section 6.1 and [31]).
It reproduces the shape of the nullclines in the reduced HHCa model, with the transcritical bifurcation
and the ultra-slow inactivation of the T-type calcium current. Indeed, this model relies on a time-scale
separation leading to three equations fast, slow and ultra-slow. The slow variable, previously noted w,
is xs and the ultra-slow, previously z, is xus.

The improvement comes from the weighted sum in the first equation. The slow variable and the
ultra-slow variable affect the membrane potential through gains noted gs and gus. It can be visualised
as parallel feedback loops with their associated time scale and weight (see Figure 6.3). The density of
calcium channels is determined by the sign of the slow feedback gain. If gs is negative (resp. positive),
the density is low (resp. high).

This model called HYB is described by the following equations:

v̇ = (v − vshift)2 − x2s + b(v − vshift)xs + gsxs − gusxus + Istatic + Iapp
ẋs = εs(as(v − vshift)− xs)
ẋus = εus(aus(v − vshift)− xus)

if v − vshift ≥ vth
v ← c, xs ← ds, xus ← xus + dus

(6.3)

where v (resp. xs and xus) merges the membrane potential and fast variables (resp. all slow recovery
variables and all ultra- slow adaptation variables), gs (resp. gus) represents the slow (resp. ultra-
slow) equivalent gain, Istatic is the static current determining the resting potential and Iapp is the
applied current. The other parameters are fixed throughout the analysis b = −2, εs = 1, εus = 0.025,
as = aus = 0.1, vth = 40, vshift = −70 c = −45, ds = 30 and dus = 20.

Figure 6.3 – Abstract reduced model with three gains contributing at different time scales. E (resp.I)
means positive feedback (resp. negative) feedback and E/I is a mixed feedback [26].

6.3 Switch in Hybrid Models

Theses two hybrid models are not able to switch from tonic mode to burst mode following a hyper-
polarising current. As a reminder, the hyperpolarised induced current aims to open calcium channels
at lower value of the membrane potential (see Section 2.3.3). Therefore, in order to mimic a hyper-
polarised induced bursting in a hybrid model, the switch from one mode to another is achieved by a
switch in the parameters as illustrated in Figure 6.4.

Switch in Izhikevich model
According to Figure 6.2, this switch can be reproduced by changing the value of the parameter c from
ctonic equals to -65 to cburst equals to -50. The other parameters are fixed such as a=0.02 and b=0.2,
d=2 and Iapp=15 [42]. Figure 6.5 shows the two firing patterns and the mechanisms allowing the switch
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(a) Izhikevich (b) HYB

Figure 6.4 – Voltage trace (bottom) of a switch from tonic mode to bursting mode in Izhikevich model
(left) and HYB model (right) thanks to a parameter value change (top)

between these two modes in the phase portrait.
• Spiking mode (see Figure 6.5, on the left): the trajectory starts from the reset value (blue square)
at ctonic which is above the v-nullcline. In this region, the trajectory is driven to the left which cor-
responds to the hyperpolarisation part. Then, it rapidly goes towards vth, corresponding to the fast
upstroke of the spike. When it reaches the threshold value, the reset mechanism occurs and the vari-
ables are positioned in the blue square. The same sequence can be reproduced and it perfectly draws
the spike.
• Bursting mode (see Figure 6.5, on the right): when the first upstroke in the phase plane reaches
vth, the reset mechanism occurs and sets v to cburst and vs to vs + d. By contrast to the spiking mode
associated with ctonic, cburst is greater and so not included inside the parabola of the v-nullcline. This
region drives the trajectory to the right which corresponds to the generation of the second spike. The
reset mechanism occurs again and so on. After several spike generations, u has increased such as it
lies inside the parabola where the trajectory is driven to the left. It corresponds to the end of the
burst and the hyperpolarisation. Then, the reset takes place again and cburst is still on the right of the
v-nullcline, the whole process starts over again [66].
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Figure 6.5 – Schematic description of the tonic mode (left) and bursting mode (right) in Izhikevich
model with the voltage trace (top) and its associated phase portrait (bottom). The v-nullcline (resp.
vs-nullcline) is drawn in black (resp.gray) line. The reset point in tonic mode (resp. bursting mode) is
the blue (resp. orange) square. (inspired from [66])

Switch in HYB model
By contrast to Izhikevich model, in the HYB model, the switch is not performed by changing the reset
rule but by changing the value and the sign of gs, which accounts for the slow equivalent gain (see
Figure 6.4 (right)).

In a thalamic neuron, a hyperpolarisation-induced bursting is characterised by the de-inactivation
of the T-type calcium channels (see Section 2.3.3). To reproduce this behavior, the density of calcium
channels increases, which corresponds to a switch in the sign of the slow feedback gain from negative
to positive [26].

The impact in the phase portrait can be explained with the phase portrait of the transcritical
hybrid model shown in Figure 6.1.

The density of the calcium channel is fixed by the value w0 in the transcritical hybrid model. In the
phase portrait, a low (resp.high) density mode is visualised by moving the w-nullcline up to intercept
the upper (resp. lower) branch of the v-nullcline. The position of this intersection governs the firing
pattern (see Figure 6.1).

In the HYB model, w0 is not in the slow time-scale equation. Therefore, the linear nullcline does
not move. It is replaced by the action of the slow feedback gain in the first equation. If the density
of the calcium channels is low, the slow feedback gaings is negative. In contrast, if the density of the
calcium channels is high, the slow feedback gain gs is positive [26]. In the phase portrait, it is no
more the w-nullcline which moves but the v-nullcline. However, from a dynamic point of view, it is
equivalent.
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6.4 Network Analyses

This section studies these two hybrid models of thalamic neuron at the network level. Once more,
the behavior of neuron populations in the thalamus relies on the excitatory-inhibitory circuit between
the relay cells and the reticular nucleus cells. The switch at the cellular level induces a rhythmic
synchronisation in the larger population.

The two hybrid models rely on two different normal forms; either a fold normal form like the HH
model for the Izhikevich’ or a transcritical normal form like the HHCa model for the HYB. Besides,
the switch from tonic mode to bursting mode is based on a mathematical manipulation of the reset
rule for Izhikevich while for the HYB model, the switch is a synonym of the de-inactivation of the
T-type calcium channels.

The goal of the network analysis for these hybrid models is similar to the network analysis for
the conductance based models. We want to show that models that lack the slow dynamics of the
calcium current (such as Izhikevich model) are not able to handle variability that mimics the regulatory
mechanisms present in the thalamic neurons population. Consequently, we will identify the hybrid
model that is suitable for studies grounded on the synaptic plasticity or neuromodulation studies.

The same protocol as the network analysis of conductance-based model is followed. The robustness
analysis is performed on a 2-cells E-I network, then the modulation properties are displayed, and
finally, the population rhythm is computed through the derivation of the spectrogram of the LFP.
The synaptic perturbations are exactly the same as those injected in conductance-based models (see
Section 4.3.1). The main difference with the conductance-based models is the choice of the intrinsic
perturbations. Previously, the maximum conductances and the capacitance were perturbed in order
to reproduce the action of neuromodulators. Here for Izhikevich model, the parameters c et d are used
to control the shape of the burst (see Section 6.3 and [42]). Similarly, for HYB, gs and gus dictate the
firing mode and the number of spikes per burst [26].

6.4.1 ANALYSIS OF THE ROBUSTNESS

The robustness analysis is based on a 2-cells E-I network connected with two synaptic connections
AMPA and GABAa. Note that since it is not a real hyperpolarisation-induced bursting, GABAA is
sufficient to hyperpolarise the two populations of neurons.

On one side, in order to reproduce the synaptic plasticity, the connections are subjected to pertur-
bations called extrinsic perturbations acting on the synaptic weight gsyn (see Section 4.3). On the other
side, in order to reproduce the effect of neuromodulators, the parameters shaping the firing patterns
are perturbed. These perturbations are called intrinsic perturbations.

Similarly, the parameters in the hybrid models are picked randomly following a uniform distribution
in ranges subjected to the same relative intrinsic variability noted γ and expressed in %. The changes
in parameter values correspond to the intrinsic variability.

Procedure

The robustness comparison between Izhikevich and HYB models is achieved by deriving the evolution
of the percentage of networks that have switched from tonic to bursting and generated a synchronous
bursting (noted y in %).It follows the same protocol as done for the conductance-based model (see
Figure 4.5)

Results

Figure 6.6 illustrates the percentage of rhythmic networks as a function of γ. The first observation
is the decrease of the rhythmic network activity with an increasing intrinsic variability. The second
remarkable observation is the robustness of the HYB model against Izhikevich. Indeed after γ = 5%,
the percentage of rhythmic networks in Izhikevich model shrinks and then its always stays lower than
HYB model.
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Similarly to the conductance-based models, at γ = 0% when only the synaptic connections are
perturbed, both models generate 100% of rhythmic networks. The extrinsic perturbation does not
affect the robustness as much as the intrinsic perturbation.

Figure 6.6 – Evolution of the percentage of rhythmic networks (y) as a function of the relative intrinsic
variability (γ) for Izhikevich and HYB models computed with the nominal values of the intrinsic
parameters.

The off-centering does not really impact the shape of the curves in both model(see Figure D.4 in
Appendix D.3.2). As well as in the conductance-based modeling, some sets of parameters will provide
better or worse results. In the sphere analogy (see Figure 4.7), it means good set of parameters are
situated in the middle of the orange area.

6.4.2 ANALYSIS OF TUNABILITY

Procedure

An analysis similar to the one carried out for the conductance-based models is followed (see Section
4.4). The physiological property of the hyperpolarisation-induced bursting is interesting to exhibit (see
equation (4.2)). Then, the different characteristics of the two firing patterns are displayed when the
model is subjected to the maximum value of the relative intrinsic variability γ which gives at least 40%
of rhythmic networks. The maximum value is called γ∗ such as y ≥ 40% For Izhikevich, γ∗ is equal to
17.5% and for HYB is equal to 30%.

Results
• Physiological property
Figure 6.7 shows the evolution of the tonic and the intraburst frequencies of the rhythmic networks
when the intrinsic relative variability (γ) increases.

The general observations are the same as the one done in Section 4.4 concerning the decrease of
the percentage of rhythmic networks for an increasing value of γ, and the small impact of the synaptic
plasticity on the modulation (at γ = 0%).

The physiological property is verified in both models; they have a tonic frequency lower than the
intraburst frequency.
• Tunability
Figure 6.8 shows the distribution of the four firing characteristics of the inhibitory cells. Similar results
are shown for the excitatory cells (see Figure D.5 in Appendix D.3.3).
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HYB

Izhikevich

Figure 6.7 – Evolution of the relationship between the tonic frequency and the bursting frequency for
each rhythmic network for an increasing relative intrinsic variability in Izhikevich and HYB models.

- Duty cycle: Izhikevich covers a wider range than HYB model.
- Interburst frequency: the mean of both models is physiological and they cover quite a wide range
too.

- Tonic frequency: both means are physiological (according to [15, 50]) and the covered range is
sightly bigger for the HYB model.

- Intraburst frequency: this characteristic is too high for the HYB model. For Izhikevich model,
the mean is still quite high and the covered range is very large.

Figure 6.8 – Mean and standard deviation of the distribution of the four firing characteristics for the
rhythmic networks in HYB and Izhikevich models computed for γ∗
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6.4.3 ANALYSIS OF HETEROGENEITY

Procedure

The computational experiment done to evaluate the activity of the population is exactly the same as
the one carried out for the conductance based model (see Section 4.5). A 200-cells E-I network is cre-
ated. The synaptic connections are exposed to the same variability as described in Section 4.3. Then,
each cell is computed from parameters randomly picked following a uniform distribution in ranges
subjected to the relative intrinsic variability γ.

The key interest of this computational experiment is even if at the cellular level, the voltage-traces
are heterogeneous, a population rhythm exists as displayed in Figure 4.16. The population rhythm
of the inhibitory cells are compared in two situations; either when only the synaptic connections
are subjected to perturbations or both synaptic connections and the parameters are subjected to
perturbations (for an relative intrinsic variability equal to γ = 10%).

Results

Figure 6.9 illustrates the spectrograms of the LFP recorded in a 200-cells E-I network where only the
inhibitory cells are represented. The spectrograms associated to the excitatory cells are displayed in
Figure D.6 in Appendix D.3.4. They show similar results.

At 20 [s], the change in parameters values is supposed to induce a switch in the firing mode in each
cell. The population rhythm results in the synchronisation of each cell. When both models are only
subjected to extrinsic perturbations, they display a population rhythm indicated with a larger spectral
power in a confined frequency band around 10 [Hz] for Izhikevich and respectively 6 [Hz] for the HYB
model. The intensity of this band is higher for the HYB model.

Then, the parameters are subjected to intrinsic variability, the synchronisation of the cells is less
pronounced, resulting in a smaller intensity of the spectral power band and a wider range of frequency.
For both values of γ, Izhikevich displays a smaller intensity than the HYB model.

model WITHOUT INTRINSIC VARIABILITY WITH INTRINSIC VARIABILITY
γ = 0% γ = 10%

Izhikevich

HYB

Figure 6.9 – Spectrogram of the LFP of the I-cells populations in a 200 network without intrinsic
variability (on the left) and with a relative intrinsic variability of 10% (on the right) for Izhikevich
model and HYB model. The intensity of the power spectral content is expressed in Power/Frequency,
denoted P/f.
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6.5 Discussion

This section aimed at studying two hybrids models of thalamic neuron at the network level. The
thalamus is well-known for its state-dependent behavior. At the cellular level, the state change from
awake to asleep is characterised by a switch from spiking to bursting. At the network level, this switch
in the firing pattern is seen as a switch in the population rhythm; from an asynchronous behavior to
a synchronisation of the population with the emergence of a slow frequency rhythm. Neuromodula-
tion mechanisms and synaptic plasticity are two components interacting with this switch. In order
to deeper study thalamic neuron at the network level, a model is expected to reproduce this switch
property without being affected by these regulatory mechanisms [24, 25, 29, 31, 35, 50].

Therefore, this section compares two hybrid models relying on two distinct methods to reproduce
the two firing patterns characterising the behavior of a thalamic neuron. On the one hand, Izhikevich
model is based on the fold normal form. This phase portrait is derived from the reduction of the HH
model. That model is known to mimic the sodium-potassium spike. At the cellular level, Izhikevich
model is able to switch from tonic to burst mode thanks to a change of the reset rule. Indeed,
this mathematical manipulation moves away from physiological interpretation. Besides, this reset
alteration does not respect the interpretation of a hybrid model. The definition is founded to "the
local approximation of the reduced conductance based model completed by a reset rule compatible
with the global continuous-time dynamics" [66]. When Izhikevich modifies the rule, he destroys the
translation to an equivalent continuous-time phase portrait [66].

On the other hand, the HYB model is based on the transcritical normal form which is a reduction
of the HH model altered by the slow kinetics of the T-type calcium channels. The switch at the cellular
level is achieved by changing the parameter reflecting the proportion of calcium channels which are not
activated [26, 31]. The biological foundation of this model brings the robustness at the network level
as proved by the different computational experiments. The model handles well regulatory mechanisms
such as one network over two is still able to switch and burst synchronously when the parameters gs
(resp. gus) are picked in the range [70%gs; 130%gs] (resp. [70%gus; 130%gus]). The model is also very
tunable. The high value of the tonic frequency can be decreased by reducing the excitatory current.
Furthermore, the population rhythm when 200-cells are subjected only to synaptic variability is very
distinguishable.

Accordingly, the Izhikevich model lacks physiological interpretation and so it cannot be used in neu-
rocomputational studies. By contrast, HYB model is a good candidate for deeper network analysis.

However, the switch from one mode to another is achieved by changing the density of calcium
channels. This alteration is achieved "manually" while in a real thalamic neuron, the de-inactivation
of calcium channels occurs when the membrane potential is hyperpolarised. This mechanism can be
integrated in the model by adding a new equation accounting for the voltage-dependent adaptation of
the slow gain gs in the ultraslow time scale [26]:

τsġs = ags(v − vs)− gs + gs,min (6.4)

Thanks to this fourth equation, the model can simulate a real hyperpolarisation-induced-bursting
as shown in Figure 6.10.

This adapted model is now a very good candidate for more complex computational experiments. It
reproduces the real hyperpolarisation-induced bursting at the cellular level and it is robust to synaptic
variability and intrinsic variability [28]. Its advantage compared to Drion model is its hybrid nature
which leads to less time-consuming simulations.

As a preliminary comparison, the computation-time of the HYB model and Drion model for four
experiments is given in Table 6.1.

The first simulation is the generation a HIB. Only the resolution of the differential equations is
achieved, in order to obtain the membrane potential evolution. The gain by using the HYB model is
equal to 55 [ms]. Then, the second experiment is the generation of 100 circuits of 2-cells connected.
Only the firing characteristics are memorised. Using the hybrid model saves 9 [min]. The third (resp.
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Figure 6.10 – The HYB model reproduces a hyperpolarisation-induced bursting - the step hyerpolarising
current acts on the slow adaptation of the slow gain which in turn changes the firing pattern from tonic to
bursting mode. (bottom) The tonic frequency is well lower than the interburst frequency [26]

fourth) experiment is the generation of a circuit of 200 (resp. 500) cells and to compute the LFP. Using
the HYB model saves 6 [min] (resp. 23 [min]).

Experiment Drion HYB Gain
HIB in 1cell [ms] 90 35 55
Characteristics of 100 networks of 2-cells[min] 16 7 9
LFP for 200 cells [min] 29 23 6
LFP for 500 cells 3h13 2h50 23 min

Table 6.1 – Computation-time comparison between Drion and HYB models for different experiments.
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6.6 Summary

Slow feedback gain
= density of the calcium channels

gs<0 = low density          tonic mode
gs>0 = high density           bursting mode
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ẇ = ✏(av � w) v  c, w  d
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Chapter 7

Conclusion and Perspectives

7.1 Summary

This thesis is devoted to the comparison of two classes of thalamic neurons models. One class integrates
the slow activation of the T-type calcium current while the other class assumes that this activation is
fast.

We show that the class integrating the slow kinetics provides better results in terms of robustness.
This demonstration is performed at the cellular and network levels, for conductance-based models or
reduced models. Therefore, the models of this class are suitable for studies concerning the neuromod-
ulation or the synaptic plasticity. In opposition to the models of the other class, which assumes the
fast activation of the calcium current, are fragile and rigid.

To reach this conclusion, the thesis is articulated into three main parts.
Part I sets the background which is necessary to enter the field of computational neuroscience.

It reminds what a neuron is and its electrical analogy. Then, the first neuron model elaborated by
Hodgkin and Huxley (HH) is derived. Besides, since this thesis only focuses on thalamic neurons, un-
derstanding the role and the behavior of the thalamus is fundamental. It exhibits two firing patterns
depending on the state; during wakefulness, the neuron is in spike mode and during sleep, the neuron
is in bursting mode. Considering a larger population, sleep is characterised by a neuronal synchroni-
sation. This sleep-dependent activity is governed by the T-type calcium current.

Part II is dedicated to the conductance-based modeling of thalamic neuron. We compared five
models; Destexhe (1998), Drion (2017), Huguenard and McCormick (1992) (HM), Rush and Rinzel
(1994) (Rush), Wang (1994). These models differ in terms of parameter value, number of currents and
their kinetics. Destexhe, Drion and HM models have considered the slow kinetics of the activation of
the T-type calcium current while Rush and Wang models have set the activation at its steady-state
value.

Then, this common reduction strategy is discussed at the cellular level in [35]. It is shown that
if the activation of the calcium channels is fast, it merges with the activation of the sodium channel
and the robustness of the bursting model is lost. Therefore, the first contribution is to compare the
robustness of the five conductance-based models when the maximal conductances are uniformly scaled.
Rush and Wang models are no more able to switch from tonic mode to bursting mode. They cannot
mimic the state-dependent behavior of the thalamic neuron while the three other models switch.

We creates a new version of the Rush model called RushCa which conserves the slow kinetics of
the calcium channels activation. Contrarily to Rush model, this model can handle the perturbation
and still switch.

Afterwards, moving to the network level, we were interested in thalamic neuron models which
can reproduce the rhythmic activity without a change in the synaptic connections and can handle
neuromodulation. Therefore, the same six conductance-based models were studied by perturbing the
synaptic connections and the intrinsic parameters. For the robustness analysis, 100 E-I networks of
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2-cells were generated for a growing intrinsic perturbation. Drion model leads in terms of robustness,
followed by Destexhe and RushCa models. When the parameters are randomly picked in an interval
of ±30% around their nominal values, HM, Rush and Wang models are only able to switch one out of
five times. Their robustness is poor.

The tunability of rhythms at the cellular level of the 2-cells E-I networks in each model has been
studied by displaying the characteristics of the firing patterns; the duty cycle, the tonic, the interburst
and the intraburst frequencies. Only Destexhe, Drion and Wang models generate networks where the
tonic frequency is lower than the intraburst frequency which is a property of the switch. However,
Rush and Wang models present firing characteristics which are not representative of thalamic neurons.
Then, HM and RushCa models do not display a nice tunability. This comes from the high-dimensional
order of the HM model. For RushCa model, a deeper elaboration of the model might help. Indeed,
only the activation of the calcium current has been changed without adapting the other kinetics.

Finally, the switch must be robust across the scales. An E-I circuit of 200 cells is created from
each model with perturbations added on the synaptic connections and intrinsic parameters. Drion
and Destexhe models are the only conductance-based models which present a population rhythm when
their intrinsic parameters are subjected to 20%.

Part III investigated the reduced modeling. First, the reduction of HH model was performed and
it leads to its description in the phase plane [34]. In parallel, including the calcium current in the HH
model drastically affects the phase portrait [31]. Two hybrid models were developed based on these
two distinct reduced models. One relies on the fold normal form while the other one relies on the
transcritical normal form. Indeed, a hybrid model is an approximation of the phase portrait completed
with a reset rule reproducing the all-or-none nature of the spike. Understanding the definition of a
hybrid model and the alteration of the phase portrait caused by the presence of calcium is important
to investigate the hybrid modeling of thalamic neuron.

After laying the foundation of the reduced modeling, we are interested in hybrid models that can
fire in spiking mode and bursting mode in order to mimic thalamic neuron. We retrieve two models
from the literature. On the one hand, Izhikevich model is an extended version of the hybrid model
based on the fold normal form. It is able to switch from one mode to another by changing its reset
rule [42]. On the other hand, HYB model leans on the transcritical normal form. This model switches
by changing the parameter representing the density of calcium channels.

The same network analyses as those done on the conductance-based models were performed on
these two hybrid models. Izhikevich model is less robust than the HYB model. On the one hand, this
is explained by the origin of the switch that relies on a mathematical manipulation of the reset rule.
This breaks the connection with the conductance-based modeling because it is impossible to retrieve
an equivalent continuous phase portrait [66]. On the other hand, the HYB model is based on the new
phase portrait founded from the reduced HH model with integrates the slow dynamics of the calcium
current activation. Its parameters have a biological interpretability.

Through all these computational experiments performed at the cellular or the network levels, for
conductance-based models, the slow kinetics of the calcium current activation has been shown to be
primordial to ensure the robustness of the thalamic neuron model. Similarly, for hybrid models, the
lack of the slow dynamics leads to fragile and rigid models which deviate from the biology.

In general, scientists elaborate their model following the HH model and add new currents. They fit
the kinetics of each current with their experimental data. However, another way to establish a model
starts with the deep understanding of the dynamics of the different currents present in the thalamus.
Then, studies, in the phase plane, are performed as well as analysis of the weighted contribution of
each current in the firing patterns as done in [29, 36]. This procedure drives the Drion model to be
the most robust presented in this work.
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In addition, as shown in this thesis, a robust thalamic neuron model does not necessarily require
a complex biological description. The robustness key is the contribution of each current at the right
time scale. The HYB model, which integrates this time-scale separation, is sufficient to reproduce a
robust switch. The advantage of the HYB model, compared to a conductance-based model, is its lower
computation-time. So, it is a good candidate for large neurons population.

7.2 Prospects

Implications in computational experiments
This thesis contributes to show the importance of the slow dynamics of the calcium current activation
on thalamic neuron models through computational experiments performed both at the cellular and
the network levels. It would be interesting to improve these experiments by increasing the number
of cells and networks. It would require faster computers or longer periods. Moreover, a more general
comparison procedure could be investigated. The conductance-based models have different currents
and associated kinetics. They could be reduced to common features called dynamic input conductances
following the protocol given in [27]. These quantities mimic the role of ion channels impacting a firing
pattern at one specific time scale. All the models would be reduced to the same features according to
their own kinetics and so the comparison would be more general.

Then, verifying the impact of the reduction strategy could be done for models of other brain parts
that have the two firing patterns for example, the STG cell or the Purkinje cell.

Implications in applications of thalamic models
The interest on the thalamic neurons is not only a modeling challenge for the engineers but it also
helps better understanding the pivotal role of the thalamus for neuroscientists. Indeed, the transition
from wakefulness to sleep is correlated with a change in the processing of neuron signals [50, 59]. The
synchronisation of neurons characterising the sleep state in the thalamus is associated with a filtering
of the input information towards the cortex.

An extreme situation is the development of synchronised sleep oscillations into absence epilepsy
during wakefulness. It is seen as a brain disconnection from the rest of the world [29, 62]. An absence
seizure is characterised by a brief loss followed by a return of consciousness [17, 60]. The patient looses
its ability to respond to sensory stimuli and he has no recall of the episode [45].

The hallmark of absences is a 3Hz synchronous network activity in the thalamic circuitry [39]. This
typical feature is called spike-wave discharges (see Figure 7.1 (top)). This manifestation of absence
epilepsy and sleep spindles (see Figure 7.1 (bottom)) have a common neuronal network mechanisms.
It suggests a close relationship between them [61].

Figure 7.1 – EEG recording of spike-wave discharges (top) and spindle waves (bottom) in 8.6-month-old
WAG/Rij rat - [61]
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Voltage-activated T-type calcium channels play a major role in the generation of burst firing. It is
thought that they have also a critical role in the mechanism of absence epilepsy. Besides, some exper-
iments have detected changes in the gene encoding of these channels in some patients with epilepsies
[10, 39]. The drug currently used in the anti-epileptic treatment is ethosuximide which is shown to
block T-type calcium channels in thalamic relay neurons [60].

Therefore, this disease highlights the importance of a good thalamic neuron model that includes
the biological behavior of the T-type calcium channels. Having a robust model is crucial to perform
network simulations and therefore deeper studies on the impact of these channels.

Another interesting topic is to understand how the sleep contributes to memory; a property called
sleep-dependent memory consolidation [49]. Some studies show a relationship between the rhythmic
activity of the thalamus and the synaptic plasticity, and hence, in the process of memory consolidation
[61]. The mechanisms underlying the relationship are still largely unknown. Robust models that
reproduce the changes in thalamic rhythmic activity could help fitting this gap.

“ If you feel you are in a black hole, don’t give up. There’s a way out. ”
Stephen Hawking
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Appendix A

Conductance-based models of thalamic
neuron: detailed modeling

A.1 Hodgkin and Huxley model [38]

The HH model [38] follows these equations

CmV̇m = −ḡNam3
NahNa(Vm − VNa)− ḡKm4

K(Vm − VK)− gL(Vm − VL) + Iapp (A.1)

with VNa = 50 [mV], VK = −77 [mV], Cm = 1[nF ], ḡNa = 120[mS], ḡK = 36. The applied current
Iapp is defined by

Iapp = Icst + Istep(t >= Tstep,init&T <= Tstep,end)

The dynamics of the gate variables are

ṁNa =
mNa,∞(Vm)−mNa

τmNa(Vm)
ḣNa =

hNa,∞(Vm)− hNa
τhNa(Vm)

ṁK =
mK,∞(Vm)−mK

τmK (Vm)

The time constant of a gate called X is defined as

τX(Vm) =
1

αX(Vm) + βX(Vm)
X∞(Vm) =

αX(Vm)

αX(Vm) + βX(Vm)

The corresponding rate constants are

Sodium activation Sodium inactivation Potassium activation

αmNa =
Vm + 35

10
[
1− e−(Vm+35)/10

] αhNa
= 0.07e−(Vm+60)/20 αmK =

Vm + 50

100
[
1− e−(Vm+50)/10

]

βmNa = 4e−(Vm+60)/18 βhNa
=

1

1 + e−(Vm+30)/10
βmK = 0.125e−(Vm+60)/80

The steady-state variables and the time-constants are respectively shown in Figures A.1 and A.2.

Figure 2.8 is generated thanks to the following stimulation: Icst = 0, Istep = 50[nA], Tstep,init = 10[ms]
and Tstep,end = 40[ms].
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Figure A.1 – Steay-state gating variables [37] Figure A.2 – Time constants associated to the
gating variables [37]

A.2 Huguenard and McCormick model [19]

Model equations
The principal equation governing the change in the membrane potential is

CmV̇m = −(INa + INap + IL + IT + ICaT + IA + IK2 + IKleak + INaleak) + Iapp (A.2)

In order to describe each ionic current with the associated gate, we used the follow notation; the
current Ix has a activation gate mx and an inactivation gate hx. Table A.1 exhibits the Ohm’s law of
each current. Iapp is composed of a constant applied current Icst and Istep corresponds to a varying
temporary step current.

Ix Name of the current Equation (Ohm’s law)
INa Transient Na+ INa = ḡNam

3
NahNa(Vm − VNa)

INap Depolarisation-activated Na+ INap = ḡNapmNap(Vm − VNa)
IL High-threshold Ca2+ IL = ḡLm

2
L(Vm − VCa)

ICaT Low-threshold Ca2+ ICaT = ḡCaTm
2
CaThCaT (Vm − VCa)

IC Ca2+-activated K+ IC = ḡCmC(Vm − VK)
IA Transient and depolarisation-activated K+ IA = ḡAm

4
AhA(Vm − VK) + ḡA2m

4
A2hA2(V − VK)

IK2 Slowly inactivating and depolarisation-activated K+ IK2 = ḡK2amK2hK2a(Vm − VK)
+ḡK2bmK2hK2b(Vm − VK)

IKleak K+ leak IKleak = gKleak(Vm − VK)
INaleak Na+ leak INaleak = gNaleak(Vm − VNa)

Table A.1 – Ohm’s equations of the different ionic currents described in the model of Huguenard and
McCormick [19, 40].

Units
The potentials are expressed in [mV], the conductances in [µS], the current in [nA], the capacitance in
[µF/cm2] and the time in [ms].

Parameters
VNa = 45, VCa = 120, gNa = 12, gNap = 7e − 3, gNaleak = 2.65e − 3, VK = −105, gA = 20e − 3,
gA2 = 15e− 3, gKleak = 7e− 3, gK2a = 38e− 3, gK2b = 26e− 3, gc = 1, gL = 0.8, C = 0.29.
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Description of the ionic current kinetics

Sodium activation INa Sodium inactivation INa

αmNa =
0.091(V + 38)

1− exp(−(V + 38)/5)
αhNa

= 0.016exp((−55− V )/15)

βmNa =
−0.062 ∗ (V + 38)

1− exp((V + 38)/5)
βhNa

= 2.07/(exp((17− V )/21) + 1)

NaP activation (INap) high threshold Ca2+ activation Ca2+-activated K+ activation (IC) (IL)

αmNap =
0.091 ∗ (V + 38)

1− exp(−(V + 38)/5)
αmL =

1.6

1 + exp(−0.072 ∗ (V − 5))
αmC = 2.5e5 ∗ CaL ∗ exp(V/24)

βmNap =
−0.062 ∗ (V + 38)

(1− exp((V + 38)/5)
βmL =

0.02 ∗ (V − 1.31)

exp((V − 1.31)/5.36)− 1
βmC = 0.1 ∗ exp(−V/24)

T-type activation (ICaT ) T-type inactivation (ICaT )
mCaT,∞ = 1/(1 + exp(−(V + 57)/6.2)) hCaT,∞ = 1/(1 + exp((V + 81)/4.03))

τmCaT = 0.612 +
1

exp(−(V + 131.6)/16.7) + exp((V + 16.8)/18.2)
if V<-80[mV] τhCaT

= exp((V + 467)/66.6)

else τhCaT
= exp(−(V + 21.88)/10.2) + 28

A activation (IA)
mA,∞ = 1/(1 + exp(−(V + 60)/8.5))

if V<-63 : τmA = 0.37 +
1

(exp((V + 35.82)/19.697) + exp((V + 79.69)/− 12.7)
else τmA = 19

A inactivation (IA)
hA,∞ = 1/(1 + exp((V + 78)/6))

if V<-63 τhA =
1

exp((V + 46.05)/5) + exp((V + 238.4)/− 37.45)
else τhA = 19

A2 activation (IA)
mA2,∞ = 1/(1 + exp(−(V + 36)/20))

if V<-63 : τmA2 = 0.37 +
1

exp((V + 35.82)/19.697) + exp((V + 79.69)/− 12.7)
else τmA2 = 19

A2 inactivation (IA)
hA2,∞ = 1/(1 + exp((V + 78)/6))

if V<-73[mV] τhA2
=

1

exp((V + 46.05)/5) + exp((V + 238.4)/− 37.45)
else τhA2

= 60
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K2 activation (IK2)
mK2,∞ = 1/(1 + exp((V + 43)/− 17))

τmK2 =
1

exp((V − 81)/25.6) + exp((V + 132)/− 18)
+ 9.9

K2 type A inactivation (IK2)
hK2a,∞ = 1/(1 + exp((V + 58)/10.6))

τhA =
1

exp((V − 1.329)/200) + exp((V + 130)/− 7.1)
+ 120

K2 type B inactivation (IK2)
mK2b,∞ = 1/(1 + exp((V + 58)/10.6))

if V<-70 : τmK2b
=

1

exp((V − 1.329)/200) + exp((V + 130)/− 7.1)
+ 120

else τmK2b
= 8.9

Parameter values to obtain different firing patterns

Figure 3.2
Parameters Tonic PIR HIB
Icst 0 0 1
Istep 2 -0.5 -0.9
Tstep,init 100 1000 1000
Tstep,end 500 2000 2000
gCaT 0.3 0.3 1

Single-cell robustness analysis :
Figure 3.5, same excitation as HIB except that Cm is increased of 20% (1.2Cm = 0.232) or decreased
of 20% (0.8Cm = 0.348).
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Parameter values for the network simulations

Figure 4.8 4.9
Conductance set 0 set 1 set 2 set 3
Cm 0.29 0.2834 0.2724 0.2922
gNa 12 11.81 11.78 11.92
gNap 7e-3 0.006686 0.006701 0.007117
gNaleak 2.65e-3 0.00261 0.002838 0.002431
gA 20e-3 0.02019 0.021867 0.01872
gA2 15e-3 0.01513 0.01507 0.01616
gKleak 7e-3 0.006814 0.006832 0.007068
gK2a 38e-3 0.03715 0.0399 0.0376
gK2b 0.26e-3 0.02472 0.02734 0.02658
gc 1 0.9502 1.03 0.9978
gT 1 0.96035 0.9237 1.055
gL 0.8 0.8060 0.7762 0.7562
Icst 1.5
Istep -1.5
Tstep,init 6000
Istep,end 110000
Ttransient 1000
gAMPA 0.1
gGABAa 0.4
gGABAb

2

A.3 Destexhe model [22]

The membrane potential evolution is given by

CmV̇m = −INa − IK − ICaT − Ileak + Iapp (A.3)

The detailed equation of the model describing with Ohm’s law is

CmV̇m = −ḡNam3
NahNa(Vm − VNa)− ḡKm4

K(Vm − VK)
−ḡCaTm2

CaThCaT (Vm − VCa)− gleak(Vm − Vleak) + Iapp
(A.4)

with V 2(V ) = V − Vtraub, Vtraub = −63

Units
The potentials are expressed in [mV], the conductances in [mS/cm2], the current in [pA], the capaci-
tance in [pF] and the time in [ms].

Parameters:
VNa = 50, gNa = 0.1, VK = −100, gK = 0.08, Vleak = −82, gleak = 5e− 5, VCa = 120, C = 1e− 3
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Description of the ionic current kinetics

Sodium activation (INa) Sodium inactivation (INa) Potassium activation (IK)

αmNa =
0.32 ∗ (13− V 2(V )

exp((13− V 2(V ))/4)− 1
αhNa

= 0.128 ∗ exp((17− V 2(V ))/18) αmK =
0.032 ∗ (15− V 2(V )

exp((15− V 2(V ))/5)− 1

βmNa =
.28 ∗ (V 2(V )− 40

exp((V 2(V )− 40)/5)− 1
βhNa

=
4

1 + exp((40− V 2(V ))/5)
βmK = 0.5 ∗ exp((10− V 2(V ))/40)

T-type activation (ICaT ) T-type inactivation (ICaT )
mCaT,∞ = 1/(1 + exp(−(V + 50)/7.4)) hCaT,∞ = 1/(1 + exp((V + 80)/5))

τmCaT = 1 +
0.33

exp(−(V + 100)/15) + exp((V + 25)/10)
τhCaT

= 28.3 +
0.33

exp((V + 48)/4) + exp(−(V + 407)/50)

Parameter values to obtain different firing patterns

Figure 3.3
Parameters Tonic PIR HIB
Icst 0.3e−3 0.1e−3 0.3e−3

Istep 0 −0.4e−3 −0.2e−3

Tstep,init 0 800 1000
Tstep,end 0 1500 2000
gCaT 0.008 0.003 0.008

Robustness analysis at the cellular level
Figure 3.5, same excitation as HIB except that Cm is increased of 20% (1.2Cm = 1.2e−3) or decreased
of 20% (0.8Cm = 0.8e− 3).

Parameter values for the network simulations

Figure 4.8 4.9
Conductance set 0 set 1 set 2 set 3
Cm 1e-3 0.001023 0.0009821 0.0009543
gNa 0.1 0.1045 0.1047 0.1019
gleak 5e-3 5.005e-3 4.8e-3 5111e-3
gK 0.08 0.07681 0.07987 0.0778
gCaT 0.06 0.006136 0.005739 0.005773
Icst 0.3e-3
Istep -0.6e-3
Tstep,init 6000
Istep,end 110000
Ttransient 1000
gAMPA 0.1e-3
gGABAa 0.2e-3
gGABAb

1e-3
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A.4 Drion model [29]

The evolution of the membrane potential is given by

CmV̇m = −INa − IK − ICaT − IK,Ca − IH − Ileak + Iapp (A.5)

By integrating the Ohm’s law equations of each ionic current, the model is described as

CmV̇m = −ḡNam3
NahNa(Vm − VNa)− ḡK,Dm4

K,D(Vm − VK)− ḡCa,Tm3
Ca,ThCa,T (Vm − VCa)

−ḡK,CamK,Ca∞(Ca)(Vm − VK)− ḡHmH(Vm − VH)− ḡleak(Vm − Vleak) + Iapp
(A.6)

Units
The potentials are expressed in [mV], the conductances in [mS/cm2], the current in [µA/cm2], the
capacitance in [µF/cm2] and the time in [ms].

Parameters
C = 1, VNa = 50, VK = −85, VCa = 120, Vl = −55, VH = −20, gl = 0.055, gNa = 120, gKd = 30,
Kd = 170.

Description of the ionic current kinetics
The gating variables are defined thanks to two mathematical expressions:

mX,∞ =
1

1 + exp((V +A)/B)
τX = A− B

1 + exp((V +D)/E)

Param. A B Param. A B D E
mNa,∞ 35.5 - 5.29 τmNa 1.32 1.26 120 -25
hNa,∞ 48.9 5.18 τhNa

(0.67/(1 + exp((V + 62.9)/− 10.0))) ∗ (1.5 + 1/(1 + exp((V + 34.9)/3.6)))
mKd,∞ 12.3 -11.8 τmKd

.2 6.4 28.3 -19.2
mCaT,∞ 67.1 -7.2 τmCaT 21.7 21.3 68.1 -20.5
hCaT,∞ 80.1 5.5 τhCaT

410 179.6 55. -16.9
mH,∞ 80. 6. τmH 272. -1149. 42.2 -8.73

The steady-state value of the activation gating variable of the calcium activated current (mK,Ca,∞(Ca)
is defined separately:

mK,Ca,∞(Ca) = (Ca/(Ca+Kd))2

with Ċa = (−k1ḡCaTm
3
CaThCaT (Vm − V Ca)− k2Ca).
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Parameter values to obtain different firing patterns

Figure 3.4
Parameters Tonic PIR HIB
Icst 1.5 -1.5 0
Istep 0 -1.4 -1.5
Tstep,init 0 1000 1000
Tstep,end 0 3000 5000
gCaT 0.2 0.1 0.6
gH 0.02 0.02 0.01
gKCa 4 0 4
k1 1.e-1 1.e-1 0.2e-1
k2 1.e-1 1.e-1 0.02e-1

Robustness analysis at the cellular level
Figure 3.5, same excitation as HIB except that Cm is increased of 20% (1.2Cm = 1.2) or decreased of
20% (0.8Cm = 0.8).

Parameter values for the network simulations

Figure 4.8 4.9
Conductance set 0 set 1 set 2 set 3
Cm 1 1.038 1.025 1.05
gl 0.055 0.0569 0.05236 0.05347
gNa 170 163.1 171.1 164.5
gKd 40 39.63 38.76 38.08
k1 e− 1 0.09544 0.1033 0.1003
k2 0.1e− 1 0.009753 0.009898 0.009782
gH 0.01 0.01048 0.01034 0.009839
gKca 4 4.017 4.185 4.018
gCaT 0.55 0.5750 0.5574 0.5681
Icst 1
Istep -3.6
Tstep,init 6000
Istep,end 110000
Ttransient 1000
gAMPA 0.1
gGABAa 0.4
gGABAb

2

A.5 Rush and Rinzel model [56]

The membrane potential evolution is described by:

CmV̇m = −INa − IK − ICaT − INaleak − IKleak + Iapp (A.7)

The simplified version of the Wang’s model is based on the observation that the activation of the
calcium current is fast. They assumed that this activation is instantaneous [56, 68]. So, the T-type
calcium current is modelled as

ICaT = ḡCaTm
3
CaT,∞(Vm)hCaT (Vm − VCa) (A.8)
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Finally, the evolution of the membrane potential defined in this model consists in five ionic currents
i.e. characterised by five conductances including two leak conductances

CmV̇m = −ḡNam3
Na,∞(Vm)(0.85−mK)(Vm − VNa)− ḡKdm4

K(Vm − VK)

−ḡCaTmCaT,∞(Vm)3hCaT (Vm − VCa)
−ḡNaleak(Vm − VNa)− ḡKleak(Vm − VK) + Iapp

(A.9)

Units
The potentials are expressed in [mV], the conductances in [mS/cm2], the current in [µA/cm2], the
capacitance in [µF/cm2] and the time in [ms].

Parameters
VNa = 55, VK = −85, VCa = 120, gNa = 120, gKd = 10, gNaleak = 0.01429, gKleak = 0.08571,
θs = −63[mV], ks = −7.8, θh = −72[mV], kh = 1.1, σm = 10.3, σn = 9.3, θ = 1, Cm = 1.

Description of the ionic current kinetics

Sodium activation (INa) Potassium activation (IK)

αmNa =
0.1(V + 35− θm)

1− exp(−0.1(V + 35− σm))
αmK =

0.01(V + 50− σn)

1− exp(−0.1(V + 50− σn)
βmNa = 4exp(−0.05(V + 60− σm)) βmK = 0.125exp(−0.0125(V + 60− σn))

To compute hNa is defined by (0.85−mK). Then, τmK is equal to
0.05

αmK + βmK

.

T-type calcium current (ICaT ) is defined by

mCaT,∞ = 1/(1 + exp((V − θs)/ks))

CaT2+ inactivation

αhCaT
=

1

0.5 + sqrt(0.25 + exp((V − θh)/kh))

βhCaT
=

exp((V + 150)/18

1.5 + sqrt(0.25 + exp((V − 80)/4)))
+ 30

Parameter values to obtain different firing patterns

Figure 3.5
Parameters Tonic PIR HIB
Icst 15 0 15
Istep 0 -1.5 -16
Tstep,init 0 500 500
Tstep,end 0 1000 2000
gCaT 0.3 0.3 0.3

Robustness analysis at the cellular level
Figure 3.5, same excitation as HIB except that Cm is increased of 20% (1.2Cm = 1.2) or decreased of
20% (0.8Cm = 0.8).
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Parameter values for the network simulations

Figure 4.8 4.9
Conductance set 0 set 1 set 2 set 3
Cm 1 0.9855 0.9559 0.9748
gNa 120 114.5 122.5 119.4
gKd 10 9.531 10.10 9.9739
gNaleak 0.01429 0.014 0.015 0.01418
gKleak 0.08571 0.08975 0.0872 0.08997
gCaT 0.3 0.3128 0.2965 0.3122
Icst 15
Istep -16.2
Tstep,init 6000
Istep,end 110000
Ttransient 1000
gAMPA 0.1
gGABAa 0.4
gGABAb

2

A.6 Modified Rush and Rinzel model called RushCa

This model was created with the help of Ilario Cirillo, University of Cambridge.

The membrane potential evolution is described by:

CmV̇m = −ḡNam3
Na,∞(Vm)(0.85−mK)(Vm − VNa)− ḡKdm4

K(Vm − VK)

−ḡCaTm3
CaThCaT (Vm − VCa)

−ḡNaleak(Vm − VNa)− ḡKleak(Vm − VK) + Iapp

(A.10)

Units: they are the same as in Rush model.

Parameters Only these two parameters have changed σm = 8, σn = 9.

Description of the ionic current kinetics

CaT2+ activation
mCaT,∞ = 1/(1 + exp((V − θs)/ks))
τmCaT =

1.7 + exp(−(V + 28.8)/13.5)

1 + exp(−(V + 63)/7.8)

Parameter values to obtain different firing patterns

Figure 3.7
Parameters Tonic PIR HIB
Icst 15 0 15
Istep 0 -1.5 -16
Tstep,init 0 500 500
Tstep,end 0 1000 2000
gCaT 0.35 0.35 0.35
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Robustness analysis at the cellular level
Figure 3.5, same excitation as HIB except that Cm is increased of 20% (1.2Cm = 1.2) or decreased of
20% (0.8Cm = 0.8).

Parameter values for the network simulations

Figure 4.8 4.9
Conductance set 0 set 1 set 2 set 3
Cm 1 1.042 0.9802 1.0132
gNa 120 122.4 124.3 119.8
gKd 10 9.83 10.23 10.35
gNaleak 0.01429 0.01492 0.014 0.0139
gKleak 0.08571 0.08787 0.08164 0.0843
gCaT 0.35 0.3579 0.363 0.334
Icst 15
Istep -16.2
Tstep,init 6000
Istep,end 110000
Ttransient 1000
gAMPA 0.1
gGABAa 0.4
gGABAb

2

A.7 Wang model [67]

The evolution of the membrane potential is described

CmV̇m = −ICaT − Ig − INa − IK − INap − Ileak + Iapp (A.11)

He used his model of the T-type calcium current in 1991 [68] and replaced the activation variable by its
steady-state value. He justified his assumption by the fast activation of the calcium current (similarly
as Rush and Rinzel who used this T-type model and reduced it). The T-type current is described as

IT = gCam
3
Ca,∞(Vm)hCa(Vm − VCa) (A.12)

The model describes with the Ohm’s law is given by

CmV̇m = −gCa,Tm3
CaT,∞(Vm)hCa,T (Vm − VCa)− ghm2

h(Vm − Vh)− gKm4
K(Vm − VK)

−gNam3
Na,∞(Vm, σNa)(0.85−mK)(Vm − VNa)− gNaPm3

NaP,∞(Vm, σNaP )(Vm − VNa)
−gl(Vm − Vl) + Iapp

(A.13)

Units
The potentials are expressed in [mV], the conductances in [mS/cm2], the current in [µA/cm2] and the
capacitance in [µF/cm2].

Parameters
Cm = 1, VCa = 120, VH = −40, VK = −80, VNa = 55, Vl = −70, σK = 10, σNa = 6, σNaP = −5,
θh = −79, kh = 5, gH = 0.04, gKd = 30, gNa = 42 , gNaP = 9, gl = 0.12.

Description of the kinetics of each ionic current
For the depolarisation-activated Na+ current (INap), the activation is the same as the activation

of the sodium current with σNaP instead of σNa
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Sodium activation (INa) Potassium activation (IK)

αmNa =
−0.1(V + 29.7− σNa

exp(−0.1(V + 29.7− σNa))− 1
αmK =

−0.01(V + 45.7− σK
exp(−0.1(V + 45.7− σK))− 1

βmNa = 4exp(−(V + 54.7− σNa)/18) βmK = 0.125exp(−(V + 55.7− σK)/80)

H activation
mH,∞ = 1/(1 + exp((V + 69)/7.1))

τmH =
1000

exp((V + 66.4)/9.3) + exp(−(V + 81.6)/13)

CaT2+ activation CaT2+ inactivation
mCaT,∞ = 1/(1 + exp(−(V + 65)/7.8)) hCaT,∞ = 1/(1 + exp((V − θh)/kh))

τhCaT
=

1

1 + exp((V − θh)/kh))
exp((V + 162.3)/17.8) + 20.0

Parameter values to obtain different firing patterns

Figure 3.6
Parameters Tonic PIR HIB
Icst 5 -2.5 2.5
Istep 0 -2.5 -3.5
Tstep,init 0 500 500
Tstep,end 0 1000 2000
gCaT 0.8 0.8 0.8

Robustness analysis at the cellular level
Figure 3.5, same excitation as HIB except that Cm is increased of 20% (1.2Cm = 1.2) or decreased of
20% (0.8Cm = 0.8).

Parameter values for the network simulations

Figure 4.8 4.9
Conductance set 0 set 1 set 2 set 3
Cm 1 0.9792 0.9667 1.018
gCaT 1 1.017 1.015 1.010
gH 0.04 0.04134 0.03973 0.0411
gKd 30 30.31 28.52 28.69
gNa 42 42.69 43.43 40.48
gNaP 9 8.692 8.653 9.417
gl 0.12 0.1219 0.1178 0.114
Icst -0.5
Istep -0.8
Tstep,init 6000
Istep,end 110000
Ttransient 1000
gAMPA 0.1
gGABAa 0.4
gGABAb

4
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Appendix B

Julia pseudo-code of a thalamic neuron
conductance-based model

TC.jl

1 ##### GATING FUNCTIONS #####
2 # Na: activation
3 alpha_mNa(V:: Float64)= ...
4 beta_mNa(V:: Float64) = ...
5 mNa_inf(V:: Float64) = alpha_mNa(V)/( alpha_mNa(V)+beta_mNa(V))
6 tau_mNa(V:: Float64) = 1/( alpha_mNa(V)+beta_mNa(V))
7

8 # Na: inactivation : hNa
9 # K: activation : mK

10

11 # CaT: activation
12 m_CaTinf(V:: Float64) = ....
13 # if the activation is considered as slow
14 tau_mCaT(V:: Float64) = ...
15

16 # CaT: inactivation
17 hCaT_inf(V:: Float64) = ...
18 tau_hCaT(V:: Float64) = ...
19

20 # Others currents
21

22 ##### EVOLUTION Vm: Cm dVm/dt = − sum (g_ion mion^a hion^b (Vm − Vion) +
Iapp

23 function dV(Cm::Float64 , V::Float64 , mNa::Float64 , hNa::Float64 , mCaT::
Float64 , hCaT::Float64 , #... other ionic gating variables, Iapp::Float64)

24 (dt)*(1/Cm)*(-gCaT*mCaT^a*hCaT^b*(V-VCa) -gNa*mNa^a*hNa^b*(V-VN) -gKd*mK^a
*(V-VK) - gl*(V-Vl) + Iapp

25 end
26 # a and b: fitting parameters depending on the model
27 # for instantaneous activation of calcium channels: −gCaT*mCaT_inf(V)^a*hCaT

^b(V−VCa)
28

29 ##### DYNAMICS of the gates #####
30 dmNa(V::Float64 ,mNa:: Float64) = (dt)*((1/ tau_mNa(V))*( mNa_inf(V) - mNa))
31 dhNa(V::Float64 ,hNa:: Float64) = (dt)*((1/ tau_hNa(V))*( hNa_inf(V) - hNa))
32 dmK(V::Float64 ,mK:: Float64) = (dt)*((1/ tau_mK(V))*( mK_inf(V) - mK))
33 dhCaT(V::Float64 ,hCaT:: Float64) = (dt)*((1/ tau_hCaT(V))*( hCaT_inf(V) - hCaT)

)
34 ## if the activation of the calcium channels is slow:
35 dmCaT(V::Float64 ,mCaT:: Float64) = (dt)*((1/ tau_mCaT(V))*( mCaT_inf(V) - mCaT)

)
36
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37 ##### RESOLUTION #####
38 function simulateTC(Cm::Float64 , Icst::Float64 , Istep ::Float64 , Tstepinit ::

Int64 , Tstepend :: Int64)
39 # Initial conditions
40 V:: Float64 =-70.
41 Vprev:: Float64 =-70.
42 mNa:: Float64=mNa_inf(V)
43 hNa:: Float64=hNa_inf(V)
44 mCaT:: Float64=mCaT_inf(V) # if the activation is slow
45 hCaT:: Float64=hCaT_inf(V)
46 #other currents gating variables intialisation
47

48 VV = zeros(Tdt)
49

50 # Euler resolution
51 for z = 1:Tdt
52 if(convert(Int64 , Tstepinit/dt) >= z & convert(Int64 ,Tstepend/dt)<z)
53 Iapp = Icst +Istep
54 else
55 Iapp = Icst
56 end
57

58 V += dV(C,Vprev ,mNa ,hNa ,mK ,mCaT ,hCaT ,..., Iapp)
59 mNa += dmNa(Vprev ,mNa)
60 hNa += dhNa(Vprev ,hNa)
61 mK += dn(Vprev ,mK)
62 mCaT += dmCaT(Vprev ,mCaT) # if the activation is slow
63 hCaT += dhCaT(Vprev ,hCaT)
64

65 Vprev = copy(V)
66 VV[z] = copy(V)
67 end
68

69 return VV
70 end
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Simu_TC.jl

1 # Defines output directory
2 cd("/Users /...")
3

4 # Loads packages
5 using PyPlot
6 PyPlot.hold(false)
7

8 # Include model
9 include("TC_model.jl")

10

11 # Simulation parameters
12 const T=200
13 const dt = 0.01
14 const Tdt = convert(Int64 ,T/dt)
15 const t = linspace(dt ,T,Tdt)
16 const Icst = 1.
17 const Istep = -2.
18 const Tstepinit = 50
19 const Tstepend = 150
20

21 # Model parameters
22 const Cm =1.
23 const VNa = ..., const VK = ..., const VCa = ..., #Nernst potential of the

other currents
24 const Vl = ...
25 const gNa =..., const gK=..., const gCaT =..., #max conductance of the other

currents
26 const gl = 0.12*z
27

28 @time y = simulateTC_wang(C,Iapp , Istep , Tstepinit , Tstepend)
29

30 # figure generation
31 Figure
32 plot(t,y)

A15



A16



Appendix C

Additional results of conductance-based
models at the network level

C.1 Tunability cell E

Figure C.1 – Mean and standard deviation of the distribution of the four firing characteristics for the
rhythmic networks in each model computed for γ∗
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C.2 Spectrograms of the LFP of the E-cells population

Model WITHOUT INTRINSIC VARIABILITY WITH INTRINSIC VARIABILITY
γ = 0% γ = 10%

Destexhe

Drion

HM

Rush

RushCa

Wang

Figure C.2 – Spectrogram of the LFP of the E-cells populations in a 200 network without intrinsic
variability (on the left) and with a relative intrinsic variability of 10% (on the right) for each model.
The intensity of the power spectral content is expressed in Power/Frequency, denoted P/f.
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Appendix D

Complement on hybrid modeling

D.1 Reduced HH model

D.1.1 Nature of the fixed points

The nature of the fixed point (x∗,y∗) can be identified by considering the linearisation of the vector
field at the fixed point. It means by computing the jacobian matrix A evaluated at (x∗,y∗). The
linearized system is given by:

(
V̇m
ṅ

)
=



∂f1
∂Vm

∂f1
∂n

∂f2
∂Vm

∂f2
∂n




(x∗,y∗)

(
Vm
n

)
(D.1)

The sign of the real part of the eigenvalues of the jacobian matrix permit to determine the nature of
the fixed point. As a reminder, the classification can be based on the trace and the determinant of the
jacobian matrix (see Figure D.1a) or based on the sign of the eigenvalues (see Figure D.1b) .

(a) Diagram based on the trace τ and the determinant
∆ of the jacobian matrix. [64]

Sign Nature
of the eigenvalues of the fixed point
λ1,2> 0 unstable node

Real λ1,2< 0 stable node
eigenvalues λ1 > 0, λ2 < 0 saddle node

λ1 < 0, λ2 > 0 saddle node
Re{λ1,2 } > 0 unstable spiral

Complex Re{λ1,2 } < 0 stable spiral
eigenvalues Re{λ1,2 } = 0 center

(b) Table based on the sign for real eigenvalues and the
sign of the real part for complex eigenvalues.

Figure D.1 – Classification of the type and the stability of all the fixed points. - The equivalence between
the graph and the table comes from λ1,2 = 0.5(τ ±

√
τ2 + 4∆), ∆ = λ1λ2 and τ = λ1 + λ2

Depending on the applied current, the configuration on the phase plane is different and therefore
the coordinates of the fixed point change.

Case 1: the applied current is not large enough, the fixed point is situated in the bottom left on
the phase plane. For Iapp = 0 [nA], the coordinates of the fixed points are (-62.787, 0.276) and the

A19



eigenvalues of the jacobian matrix evaluated at this point are:

λ1 = −0.2635 + 0.7844i
λ2 = −0.2635− 0.7844i

(D.2)

Since both eigenvalues have negative real parts, the fixed point is a stable spiral.

Case 2: the applied current is large enough, the intersection occurs at higher values of both
variables. For Iapp = 12 [nA], the coordinates of the fixed point are (-53.248, 0.4245) and the eigenvalues
of the jacobian matrix evaluated at this point are:

λ1 = 0.2857 + 0.7847i
λ2 = 0.2857− 0.7847i

(D.3)

Both eigenvalues have positive real parts, the fixed point is an unstable spiral.

The values themselves have not a significant role in the determination of the nature. Since it is a
qualitative analysis, the numerical values are not discussed.

For one particular value of the applied current called IAH , the fixed point corresponds to a center
(the real part of the eigenvalues is zero). It defines a Hopf bifurcation.

D.1.2 Vector field
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(a) Iapp = 0[nA] (b) Iapp = 20[nA]

Figure D.2 – Phase portraits of the reduced Hodgkin-Huxley model without (left) and with an applied
current (right). - The Vm- and the n-nullclines are respectively drawn in pink full line and grey dashed line
and the velocities vectors are blue. The black (resp. white) circle corresponds to a stable (resp. unstable)
intersection. [31]

D.2 Reduced HHCa model

D.2.1 Nature of the fixed points

Depending on the nullclines configuration the number and the position of the intersections vary.

For low current values (even negative values), the Vm-nullcline has a hourglass shape crossing in only
one point the n-nullcline. This intersection is situated in the far left on the phase plane (see Figure 5.6).
For example, if Iapp = 0[nA], the intersection occurs at (Vm = −110.98 [mV], n = 5.7765 ∗ 10−3[-]).
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The eigenvalues of the jacobian matrix evaluated at this fixed point (see equation D.1) are

λ1 = −0.3005
λ2 = −0.2372

(D.4)

By referring to Figure D.1b, both eigenvalues are real and negative, the fixed point is a stable node.

With deeper analysis, two other intersections exist between the n-nullcline and the right branch of
the Vm-nullcline. Due to numerical imperfections with the function ezplot on Matlab, the curves do
not intersect on the plot. In [31], there are identified as a saddle and a unstable point. It can be also
deduced from the vector field.

If the current increases, there are three intersections (see Figure 5.6). The identification of their
nature is sum up in the Figure D.3.

Points Coordinates (Vm,n) Value Analyse Nature
A (−83.65,0.0669) λA,1 = −0.4468 real, < 0 stable node

λA,2 = −0.0348 real, < 0

B (−63.99, 0.2587) λB,1 = 0.6032 real, > 0 saddle node
λB,2 = −1.1845 real, < 0

C (−48.20, 0.5032) λC,1 = 3.4478 real, > 0 unstable node
λC,2 = 0.9242 real, > 0

Figure D.3 – Determination of the nature of the three fixed points for a intermediate value of the
applied current in tabular form.

For higher current values, the two intersections between the lower branch of the Vm-nullcline and
the n-nullcine merge Then, only one intersection remains between the upper branch of the Vm-nullcline
and the n-nullcline (see Figure 5.6). The eigenvalues of the jacobian matrix evaluated at this fixed
point are

λ1 = 18.3975
λ2 = 0.5967

(D.5)

The fixed point is a unstable node. It could be deduced from the point C.
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D.3 Additional Network Analyses of hybrid model of thalamic neuron

D.3.1 Paramters used for the simulations in Izhikevich and HYB models

Switch in hybrid modelsin Figure 6.4:
- Izhikevich
ctonic = −65, cburst = −50, d = 1

- HYB:
Vth = 40, as = 0.1 = aus, b = −2, c = −45, d = 30, dz = 20, Vsyn = −75, τs = 1, Vss = −2., Vshift =
−70, εs = 1, εus = 0.025, gs,tonic = −10, gs,burst = −30, gus = 1, Iapp = 15, Tstep = 400
Rhythmic networks as a function of γ in Figure 6.6:
- Izhikevich: set 0: dE = 1.4, dI = 1 ctonic = −65, cburst = −50, gAMPA = 0.1 = gGABAA

- HYB: set 0 :cell E: gus,E = 1.2 and cell I gus,I = 0.8, gAMPA = 1000, gGABAA
= 100000

Off-centering for Figure D.4 - Izhikevich:
same synaptic conductances
set 1:dE = 1.429, dI = 0.9594, cE,tonic = −66.76, cE,burst = −49.07, cI,tonic = −65.59, cI,burst = −48.94.
set 2: dE = 1.426, dI = 0.9798, cE,tonic = −62.57, cE,burst = 50.42, cI,tonic = −62.8, cI,burst = −52.43.

- HYB:
same synaptic conductances
set 1: gus,E = 1.214, gus,I = 0.8295, gs,Etonic = −9.671, gs,Eburst

= 30.57, gs,Itonic = −10.43,
gs,Iburst = 29.54.
set 2: gus,E = 1.240, gus,I = 0.7924, gs,Etonic = −10.04, gs,Eburst

= 28.68, gs,Itonic = −10.48,
gs,Iburst = 29.92.

Spectrograms in Figure D.6 and 6.9:
Same parameters as the one used for Figure 6.6.

D.3.2 Rhythmic network activity computed with the off-centered nominal values

Figure D.4 – Evolution of the percentage of rhythmic networks as a function of the relative intrinsic
variability for Izhikevich’s model and HYB model computed with the nominal values of the intrinsic
parameters and two off-centering set of parameters
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D.3.3 Tunability analysis

Figure D.5 – Mean and standard deviation of the distribution of the four firing characteristics for the
rhythmic networks in HYB and Izhikevich model computed for γ∗

D.3.4 Population rhythm analysis

model WITHOUT INTRINSIC VARIABILITY WITH INTRINSIC VARIABILITY
γ = 0% γ = 10%

Izhikevich

HYB

Figure D.6 – Spectrogram of the LFP of the E-cells populations in a 200 network without intrinsic
variability (on the left) and with a relative intrinsic variability of 10% (on the right) for Izhikevich’s
model and HYB model. The intensity of the power spectral content is expressed in Power/Frequency,
denoted P/f.
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