
1 23

Statistical Inference for Stochastic
Processes
An International Journal devoted to
Time Series Analysis and the Statistics
of Continuous Time Processes and
Dynamical Systems
 
ISSN 1387-0874
 
Stat Inference Stoch Process
DOI 10.1007/s11203-013-9078-x

Asymptotic normality of recursive
estimators under strong mixing conditions

Aboubacar Amiri



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media Dordrecht. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Stat Inference Stoch Process
DOI 10.1007/s11203-013-9078-x

Asymptotic normality of recursive estimators under
strong mixing conditions

Aboubacar Amiri

Received: 12 June 2012 / Accepted: 25 January 2013
© Springer Science+Business Media Dordrecht 2013

Abstract The main purpose of this paper is to estimate the regression function by using a
recursive nonparametric kernel approach. We derive the asymptotic normality for a general
class of recursive kernel estimate of the regression function, under strong mixing conditions.
Our purpose is to extend the work of Roussas and Tran (Ann Stat 20:98–120, 1992) concerning
the Devroye–Wagner estimate.

Résumé Dans ce papier, nous nous intéressons à l’estimation de la fonction de régression
par une approche non-paramétrique par noyau. Nous établissons la normalité asymptotique,
pour une famille générale d’estimateurs récursifs à noyau de la fonction de régression, sous
une hypothèse de forte mélangence. Notre rsultat généralise ainsi le résulttat de Roussas and
Tran (Ann Stat 20:98–120, 1992) sur l’estimateur de Devroye–Wagner.

Keywords Recursive kernel estimators · Regression function · Strong mixing processes ·
Asymptotic normality

Mathematics Subject Classification 62G05 · 62G07 · 62G08

1 Introduction

In this paper we consider nonparametric sequential estimation of a regression functional,
for dependent observations. Regression function estimation is an important issue in data
analysis and remains a subject of hight interest, which covers many applied fields such as
prediction, econometrics, decision theory, classification, communications and control sys-
tems. The literature on this topic is still growing and some relevant works on the subject
include the monographs by Prakasa-Rao (1983), Gyorfi et al. (1989) and Yoshihara (1994),
while more recent results are presented in, for example, the books by Györfi et al. (2002)
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Stat Inference Stoch Process

and Bosq and Blanke (2007). Sequential estimation is achieved with the use of recursive
estimators, typically kernel ones, and the purpose of this paper is to study a certain class
of them. An estimator is said to be ‘recursive’ if its value calculated from the first n obser-
vations, say fn , is only a function of fn−1 and the nth observation. In this way, the esti-
mator can be updated with each new observation added to the database. This recursive
property is clearly useful in sequential investigations and also for a fairly large sample
size, since addition of a new observation means that the non-recursive estimators must be
entirely recomputed. Besides, we are required to store extensive data in order to re-calculate
them.

The first kernel recursive regression estimator was introduced by Ahmad and Lin (1976)
taking the form

r AL
n (x) :=

n∑

i=1
Yi K

(
x−Xi

hi

)

n∑

i=1
K

(
x−Xi

hi

) ,

which is a recursive version of the Nadaraya-Watson estimate. Also, Devroye and Wagner
(1980) propose the recursive estimator of the form

r DW
n (x) :=

n∑

i=1

Yi
hi

K
(

x−Xi
hi

)

n∑

i=1

1
hi

K
(

x−Xi
hi

) .

In the literature r AL
n (x) and r DW

n (x) are respectively the so-called recursive and semi-
recursive estimators. Various results on the latter estimators were established in an indepen-
dent and identically distributed (i.i.d.) case, by many authors, we cite, among many others,
Ahmad and Lin (1976), Devroye (1981), Greblecki and Pawlak (1987), Krzyżak (1992) and
Walk (2001). In the dependent case, the majority of works are focused on Devroye-Wagner
estimate. In a context of strong mixing processes, Roussas (1990) gave the uniform almost
sure convergence for r DW

n (x), and Roussas and Tran (1992) showed its asymptotic normality.
Under ϕ-mixing conditions, Qin (1995) have provided the asymptotic normality of r DW

n (x),
and Wang and Liang (2004) have studied the almost uniform convergence for truncated ver-
sions of r DW

n (x) and r AL
n (x) in the same context. It should be noted that, unlike the iid case,

more results are only obtained for r DW
n (x) in dependent case. In particular, no asymptotic

normality has so far been established for r AL
n (x) in this context. Also we remark that, the

approach used by Roussas and Tran (1992) to establish the asymptotic normality of r DW
n (x)

cannot be generalized step by step to r AL
n (x). Indeed, the adaptation of their proof to r AL

n (x),
needs to assume that the sequence 1

n

∑n
i=1(hi/hn)2d converges to a finite limit, for the

study of a few covariance terms. The earlier condition is not satisfied by the popular choice

hn = cn− 1
d+4 for d > 3. Also, their proof uses the fact that for all i = 1, . . . , n hn < hi ,

while the same approach applied to r AL
n (x), leads to assume that hn > hi , which contradicts

the optimal choice of hn .
This paper deals with an extension of the work by Roussas and Tran (1992) to the gen-

eral family of recursive estimators introduced by Amiri (2012), whose r DW
n (x) and r AL

n (x)

are special cases. The paper is organized as follows. In the next section, we present our
main assumptions and the results for regression estimation. The proof of the main result is
postponed until Sect. 3.
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2 Sequential regression estimation

2.1 Notation and assumptions

Let {(Xt , Yt ), t ∈ N} be a sequence of random variables on probability space (�, F, P),
taking values in R

d × R
d ′

(d ≥ 1, d ′ ≥ 1), and having probability density function f(X,Y )

with respect to the Lebesgue mesure. We assume that m is a Borelian function on R
d ′

into R

such that ω �→ m2 (Yt (ω)) is P-integrable, and define the regression function as

r(x) :=
⎧
⎨

⎩
E (m (Y0) |X0 = x) =

∫
Rd′ m(y) f(X,Y )(x, y)dy

f (x)
:= ϕ(x)

f (x)
, if f (x) > 0

Em(Y0), if f (x) = 0,

where f is the probability density function of X0. Note that the transformation m is chosen by
the statistician, leading to multiple choices of estimation. Typical examples of m are identity
and polynomial functions to estimate respectively the usual regression and the conditional
moments.

Throughout the paper we suppose that f, ϕ ∈ C2
d (b), where C2

d (b) denotes the set of
twice-differentiable functions, with bounded second derivative. This condition is classical in
the area of nonparametric estimation and has been used by Roussas and Tran (1992), Bosq
and Blanke (2007), among others.

To estimate the functional r(x), we consider the general family of kernel regression
estimators introduced in Amiri (2012), defined by

r�
n(x) :=

n∑

i=1

m (Yi )

hd�
i

K

(
x − Xi

hi

)

n∑

i=1

1

hd�
i

K

(
x − Xi

hi

) , � ∈ [0, 1], (1)

which can be computed recursively by

r�
n(x) =

(
n−1∑

i=1
hd(1−�)

i

)

ϕ�
n−1(x) +

(
n∑

i=1
hd(1−�)

i

)

m(Yn)K �
n (x − Xn)

(
n−1∑

i=1
hd(1−�)

i

)

f �
n−1(x) +

(
n∑

i=1
hd(1−�)

i

)

K �
n (x − Xn)

,

where

ϕ�
n(x) := 1

n∑

i=1
hd(1−�)

i

n∑

i=1

m(Yi )

hd�
i

K

(
x−Xi

hi

)

, f �
n (x) := 1

n∑

i=1
hd(1−�)

i

n∑

i=1

1

hd�
i

K

(
x−Xi

hi

)

,

and K �
i (·) := 1

hd�
i

i∑

j=1
hd(1−�)

j

K
( ·

hi

)
. Our class of estimates includes the popular kernel

recursive estimators r AL
n (x) and r DW

n (x), corresponding to the cases � = 0 and � = 1,
respectively.

At this point, we can make some assumptions and provide the main theorem. Throughout
this paper the kernel K is assumed to satisfy the following conditions.
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Assumption H1 (i) K : R
d �→ R is bounded, symmetric and positive function such that∫

Rd K (t)dt = 1;

(ii) lim‖x‖→+∞
‖x‖d K (x) = 0;

(iii)
∫

Rd |viv j |K (v)dv < ∞, i, j = 1, . . . , d.

Assume the sequence hn satisfies the following conditions.

Assumption H2 (i) hn ↓ 0, nhd+2
n → ∞;

(ii) For all r ∈ (−∞, d + 2], Bn,r := 1
n

n∑

i=1

(
hi
hn

)r → βr > 0 as n → ∞;
(iii) For each sequence of integers un and vn such that un ∼ vn , then hun ∼ hvn .

1

Assumption H3 (i) The process (Xt ) is α-mixing with

αX (k) ≤ γ k−ρ, k ≥ 1, γ > 0 and ρ > max

(

2,
d + 2

2

)

;

(ii) For each couple (s, t), s �= t, the random vector (Xs, Xt ) admits a probability density
function f(Xs ,Xt ) such that sup

|s−t |≥1
‖ gs,t ‖∞< ∞, where gs,t (·, ·) := f(Xs ,Xt )(·, ·)

− f (·) f (·).

Assumption H4 (i) The function E
(
m2(Y )|X0 = ·) f (·) is both continuous and bounded

away from zero at x ;
(ii) There exist λ > 0, θ > 0 such that E exp(λ|m(Y0)|θ ) < ∞;
(iii) For each k �= k′, the random vector (Xk, Yk, Xk′ , Yk′) admits a probability den-

sity function f(Xk ,Yk ,Xk′ ,Yk′), such that sup
|k−k′|≥1

sup
(s,t)∈R2d

∫
Rd′

∫
Rd′

∣
∣Gk,k′ (s, u, t, v)

∣
∣ dudv

< ∞, where Gk,k′ (·, ·, ·, ·) = f(Xk ,Yk ,Xk′ ,Yk′) (·, ·, ·, ·) − f(X,Y ) (·, ·) f(X,Y ) (·, ·) .

Assumptions H.1 and H.3 are classical in a nonparametric estimation field and they are
similar to those classically used in the nonrecursive case. The former is satisfied by Gaussian
and Eipanechnikov kernels, while the latter is checked by linear processes, as soon as f is
bounded. Note that H.1(i)–(ii) are technical conditions, the first allows the cancellation of the
first-order term of Taylor development in the computation of the bias term, while the latter
ensures the existence of the second-order term. Much more should be said about assumption
H.2. It is particular to the recursive problem and is clearly unrestrictive, since the choice
hn = Cnn−ν , with Cn ↓ c > 0, and 0 < ν < 1 is a typical example of bandwidth satisfying
H.2. Concerning H.4, the condition H.4(ii) is clearly checked if m is a bounded function,
and implies that

E

(

max
1≤i≤n

|m(Yi )|p
)

= O
(
(ln n)p/θ

)
, for all p ≥ 1, n ≥ 2.

The earlier condition was used by Bosq and Cheze-Payaud (1999) to study the mean
square error of the Nadaraya-Watson estimator. Assumption H.4(iii) was used by Roussas
and Tran (1992) to study the asymptotic normality of r DW

n (x).
Now, we can provide the main result.

1 If an and bn are two real sequences, an ∼ bn means that the ratio an/bn converges 1
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2.2 Main result

Let us set

Bn = h2
n
βd(1−�)+2

βd(1−�)

1

2

∑

1≤i, j≤d

(
∂2r(x)

∂xi∂x j
+ 2

∂ ln f (x)

∂xi

∂r(x)

∂x j

)∫

Rd
viv j K (v)dv.

The pointwise asymptotic gaussian distribution for our class of nonparametric recursive
regression estimate is given in Theorem 2.1 below, and will be proved in Sect. 3.

Theorem 2.1 When assumptions H.1 − H.4, hold, if for all p > 0, (ln n)
1
θ h p

n → 0, as
n → ∞, then

√
nhd

n

[
r�

n(x) − r(x) − Bn

] L→ N
[

0,
σ 2

� (x)V (x)

f 2(x)

]

, as n → ∞,

for all x such that f (x) > 0, where

σ 2
� (x) = βd(1−2�)

β2
d(1−�)

f (x)

∫

Rd
K 2(x)dx and V (x) = E

[
m2(Y0)|X0 = x

] − r2(x).

One may derive a simpler version of Theorem 2.1 by using an additional assumption that
allows the cancellation of the bias term Bn .

Corollary 1 Under assumptions H.1−H.4 and if nhd+4
n → 0 as n → 0, then

√
nhd

n

[
r�

n(x) − r(x)
] L→ N

[

0,
σ 2

� (x)V (x)

f 2(x)

]

, as n → ∞,

for all x such that f (x) > 0.

Corollary 1 is an extension of the Rousssas and Tran’s (1992) result on Devroye–Wagner
estimate to the general family of recursive estimators r�

n(x) for which the Devroye–Wagner

estimate is a special case. The condition nhd+4
n → 0 as n → 0, implies that (ln n)

1
θ h p

n → 0,

for all p > 0, and satisfied by the choice hn = Cnn−ν , with Cn ↓ c > 0 and 1/(d +4) < ν <

1/(d + 2). Let us mention that H.2(iii) will play a key role in our methodology, in particular
when we prove the negligibility of some covariance terms for 0 ≤ � ≤ (d − 2)+/2, but is
not necessary if � > 1/2. Also if � > 1/2, our results can be established for ρ > 2. So,
we observe that the estimators built with ‘small’ values of � allow some restrictions on the
smooth parameter hn and the strong mixing coefficient. However, as shown in Amiri (2009),
these estimators are preferable than those built with ‘large’ � in terms of small variance
criterion.

In practice, the constants of variance appearing in Theorem 2.1 need to be estimated. To
this end, one may consider using the simple Gaussian kernel and replace f (x) by f �

n (x).
There are many possibilities for constructing a consistent conditional variance estimate. One
may use the functional kernel regression technique.

In order to prove Theorem 2.1, let us consider using the following decomposition.

r�
n(x) − r(x) =

[
r̃�

n(x) − r(x)
]

+
[
r�

n(x) − r̃�
n(x)

]
,
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where r̃�
n(x) = ϕ̃�

n(x)/ f �
n (x), ϕ̃�

n(x) being a truncated version of ϕ�
n(x) defined by

ϕ̃�
n(x) = 1

n∑

i=1
hd(1−�)

i

n∑

i=1

Yi

hd�
i

1{|Yi |≤bn}K

(
x − Xi

hi

)

,

with bn , a sequence of real numbers which goes to +∞ as n → ∞. We then need the
following preliminary lemmas.

Lemma 2.2 When assumptions H.1 and H.2 hold, then for all � ∈ [0, 1]
(a)

h−4
n

[
E f �

n (x) − f (x)
]2 −→

[
βd(1−�)+2

βd(1−�)

]2

b2
f (x) as n → ∞;

(b)

h−4
n

[
Eϕ�

n(x) − ϕ(x)
]2 −→

[
βd(1−�)+2

βd(1−�)

]2

b2
ϕ(x) as n → ∞,

where, if h ∈ C2
d (b), we set

bh(x) := 1

2

∑

1≤i, j≤d

∂2h

∂xi∂x j
(x)

∫

Rd
viv j K (v)dv;

(c) Moreover if H.3 holds, then

nhd
nVar f �

n (x) −→ σ 2
� (x), as n → ∞,

for all x such that f (x) > 0.

Proof The results (a) and (c) of Lemma 2.2 are obtained in Amiri (2009), while (b) can be
established in the same manner as (a) by substituting f with ϕ.

Lemma 2.3 When assumptions H.1−H.4 hold, then for all � ∈ [0, 1]
(a)

nhd
nVarϕ̃�

n(x) −→ σ 2
� (x)

[
r2(x) + V (x)

]
, as n → ∞;

(b)

nhd
nCov

[
f �
n (x), ϕ̃�

n(x)
]

→ σ 2
� (x)r(x) as n → ∞.

Proof (a) Let us set

V ∗
n =

n∑

k=1

EZ∗2
k,n where Z∗

i,n =Wn,i −EWn,i , with Wn,i :=
K

(
x−Xi

hi

)

m (Yi ) 1{|m(Yi )|≤bn}

hd�
i

.

The variance of ϕ̃�
n(x) can be decomposed in variance and covariance terms as

Varϕ̃�
n(x) = 1

n2h2d(1−�)
n B2

n,d(1−�)

⎡

⎣V ∗
n +

n∑

k=1k �=k′

n∑

k′=1

Cov
(
Zk,n, Zk′,n

)
⎤

⎦ .
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Concerning the variance term one may write

V ∗
n

nhd(1−2�)
n Bn,d(1−2�)

= nhd
n

(
n∑

i=1
hd(1−�)

i

)2

n∑

k=1

{

h−2d�
k EK 2

(
x − X0

hk

)

m2(Y0)

− h−2d�
k EK 2

(
x − X0

hk

)

m2(Y0)1{|m(Y0)|>bn}

− E2 K

(
x − X0

hk

)

m(Y0)1{|m(Yi )|≤bn}
}

=: D1 + D2 + D3.

Assumptions H.4(i i), (i i i), the dominated convergence theorem and Bochner’s lemma
imply that
∫

Rd

1

hd
k

K 2
(

x−u

hk

)
[
V (u)+r2(u)

]
f (u)du → f (x)

[
V (x)+r2(x)

] ‖K‖2
2 , as k → ∞.

On account of the above, assumption H.2(i i) and the Toeplitz lemma allow to deduce
that

D1 =
nhd

n

n∑

k=1

[

hd(1−2�)
k

∫
Rd

1
hd

k
K 2

(
x−u
hk

) [
V (u) + r2(u)

]
f (u)du

]

(
n∑

i=1
hd(1−�)

i

)2

→ σ 2
� (x)

[
V (x) + r2(x)

]
,

as n → ∞. Concerning the term D2, if bn = (δ ln n)
1
θ with δ > 2

λ
, then using assump-

tions H.2(ii) and H.4(ii), with the help of Markov’s inequality, we have

|D2| ≤
‖K‖2∞

{
Em4(Y0)P (|m(Y0)| > bn)

} 1
2 nhd

n

n∑

k=1
h−2d�

k

(
n∑

i=1
hd(1−�)

i

)2

≤ ‖K‖2∞
{
Em4(Y0)P (|m(Y0)| > bn)

} 1
2 Bn,−2d�

hd
n B2

n,d(1−�)

= O

⎡

⎢
⎣

exp
(
− λbθ

n
2

)
(ln n)

2
θ Bn,−2d�

hd
n B2

n,d(1−�)

⎤

⎥
⎦ → 0, as n → ∞.

Next for the last term D3, from H.2(i)-(iii) and the logarithmic choice of bn , one may
write

|D3|≤ b2
nnhd

n

n2h2d(1−�)
n B2

n,d(1−�)

n∑

k=1

h−2d�
k

(

EK

(
x−Xi

hi

))2

= O
(
hnb2

n

)→0, as n →+∞.

Therefore

V ∗
n ∼ nhd(1−2�)

n βd(1−2�) f (x)
[
V (x) + r2(x)

]
∫

Rd
K 2(u)du, as n → ∞.
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It follows that

nhd
n V ∗

n

n2h2d(1−�)
n B2

n,d(1−�)

→ βd(1−2�) f (x)
[
V (x) + r2(x)

]

β2
d(1−�)

∫

Rd
K 2(u)du, as n → ∞.

Now, let us show that the covariance term of Var ϕ̃�
n(x) is negligible. To this end, define

a sequence cn of a real numbers tending to infinity as n goes to infinity, and write

n∑

k=1k �=k′

n∑

k′=1
Cov

(
Zk,n, Zk′,n

)

n2h2d(1−�)
n B2

n,d(1−�)

≤
2

(
n∑

i=1i> j

n∑

j=1

∣
∣Ai, j

∣
∣ 1{1≤i− j≤cn} +

n∑

i=1i> j

n∑

j=1

∣
∣Ai, j

∣
∣ 1{cn+1≤i− j≤n−1}

)

(
n∑

i=1
hd(1−�)

i

)2

≤
2

(
cn∑

i=1

n∑

p=1
Ai+p,p +

n−1∑

i=cn+1

n∑

p=1
Ai+p,p

)

(
n∑

i=1
hd(1−�)

i

)2 := L1 + L2,

where

Ai+p,p

=

∣
∣
∣
∣Cov

[

K

(
x−Xi+p

hi+p

)

m
(
Yi+p

)
1{|m(Yi+p)|≤bn}, K

(
x−X p

h p

)

m
(
Yp

)
1{|m(Yp)|≤bn}

]∣
∣
∣
∣

hd�
i+phd�

p

.

On one hand, the Billingsley inequality (see e.g., Bosq and Blanke 2007) implies that

Ai+p,p ≤ 4b2
nαX (k) ‖K‖2∞ h−d�

i+ph−d�
p ,

and then, it follows from assumptions H2(ii) and H.4(iv) that

L2 ≤
8b2

n

n−1∑

k=cn+1

n∑

p=1
αX (k)h−d�

p+kh−d�
p

‖K‖2∞
(

n∑

i=1
hd(1−�)

i

)2 ≤
8b2

nγ ‖K‖2∞
n−1∑

k=cn

n∑

p=1
k−ρh−d�

p+kh−d�
p

(
n∑

i=1
hd(1−�)

i

)2

≤
8b2

nγ ‖K‖2∞
h−2d�

n c−ρ+1
n

ρ − 1

n∑

p=1

(
h p

hn

)−d�

(
n∑

i=1
hd(1−�)

i

)2

≤ 8b2
nγ ‖K‖2∞ c1−ρ

n Bn,−d�

nh2d
n B2

n,d(1−�)(ρ − 1)
.

Hence

nhd
n L2 = O

(
b2

nc1−ρ
n h−d

n

)
.

123

Author's personal copy



Stat Inference Stoch Process

On the other hand, regarding L1, one has

Ai+p,p =
∣
∣
∣
∣

∫

Rd

∫

Rd

∫

Rd′

∫

Rd′ K

(
x − s

hi+p

)

K

(
x − t

h p

)

×m(u)1{|m(u)|≤bn}m(v)1{|m(v)|≤bn}Gi+p,p (s, u, t, v)

(
hi+ph p

)d�
(∑n

i=1 hd(1−�)
i

)2 dsdtdudv

∣
∣
∣
∣
∣
∣
∣

≤
b2

n

(
hk+ph p

)d(1−�) sup
|k−k′|≥1

sup
(s,t)∈R2d

∫
Rd′

∫
Rd′

∣
∣Gk,k′ (s, u, t, v)

∣
∣ dudv

(
n∑

i=1
hd(1−�)

i

)2 .

Then

L1 ≤
2b2

n

cn∑

k=1

n−k∑

p=1
hd(1−�)

p+k hd(1−�)
p sup

|k−k′|≥1
sup

(s,t)∈R2d

∫
Rd′

∫
Rd′

∣
∣Gk,k′ (s, u, t, v)

∣
∣ dudv

(
n∑

i=1
hd(1−�)

i

)2

≤
2b2

ncn

n∑

p=1
h2d(1−�)

p sup
|k−k′|≥1

sup
(s,t)∈R2d

∫
Rd′

∫
Rd′

∣
∣Gk,k′ (s, u, t, v)

∣
∣ dudv

(
n∑

i=1
hd(1−�)

i

)2 . (2)

At this point, two cases can be distinguished according to small and large values of �.

• If � ∈
[( d−2

2d

)+
, 1

]
, then 2d(1 − �) ≤ d + 2 implies Bn,2d(1−�) → β2d(1−�)

< ∞, as n → ∞, because of H.2(i i). It follows that

L1 ≤
2b2

ncn Bn,2d(1−�) sup
|k−k′|≥1

sup
(s,t)∈R2d

∫
Rd′

∫
Rd′

∣
∣Gk,k′ (s, u, t, v)

∣
∣ dudv

nB2
n,d(1−�)

,

which implies that

nhd
n L1 = O

(
b2

ncnhd
n

)
.

Thus, when cn :=
⌊

h
− 2d

ρ
n

⌋

, and bn = (δ ln n)
1
θ with δ > 2

λ
, then

nhd
n

n2h2d(1−�)
n B2

n,d(1−�)

n∑

k=1k �=k′

n∑

k′=1

Cov
(
Zk,n, Zk′,n

) = O

(

b2
nh

− d(2−ρ)
ρ

n

)

→ 0, as

n → ∞,

since ρ > 2.

• If d ≥ 3, � ∈ [
0, d−2

2d

[
, then the term L1 cannot be studied as previously, because

assumption H.2(ii) is not satisfied, since 2d(1 − �) > d + 2. In this case, let us

consider relation (2) and choose a real number ξ such that
1

ρ − 1
< ξ ≤ 2

d
. Let us
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mention that ξ exists only if ρ >
d + 2

2
. Thus, we have the relation d(ξ +1) ≤ d +2,

which implies that Bn,d(ξ+1) → βd(ξ+1) < ∞, as n → ∞, by vertue of H.2(i i).

Also, since hn decreases one has
n∑

i=1
hd(1−�)

i ≥ h−d�
1

n∑

i=1
hd

i . It follows that

cnb2
n

n∑

p=1
h2d(1−�)

p

(∑n
i=1 hd(1−�)

i

)2 ≤ cnb2
nhd(1−ξ−2�)

1 nhd(ξ+1)
n Bn,d(ξ+1)

n2h−2d�
1 h2d

n B2
n,d

≤ cnb2
nhd(1−ξ)

1 hdξ
n Bn,d(ξ+1)

nhd
n B2

n,d

,

because 0 ≤ � < d−2
2d ⇒ 1 − ξ − 2� > 0, as long as ξ ≤ 2

d . Therefore, from (2)
we have

nhd
n L1 = O

(
cnb2

nhdξ
n

)
.

The choices cn :=
⌊

h
− d(ξ+1)

ρ
n

⌋

and bn = (δ ln n)
1
θ with δ > 2

λ
imply the negligibility

of the covariance term.

(b) Let us consider the decomposition

Cov
[

f �
n (x), ϕ̃�

n(x)
]

=
[

n∑

i=1

hd(1−�)
i

]−2
⎡

⎣
n∑

i=1

Aii +
n∑

i=1 i �= j

n∑

j=1

Ai j

⎤

⎦ := F1 + F2.

where, for all integers s, t

As,t := Cov

[
1

hd�
s

K

(
x − Xs

hs

)

,
m(Yt )

hd�
t

1{|m(Yi )≤bn |}K

(
x − Xt

ht

)]

.

Finally, we proceed as in the proof of (a) and find

nhd
n F1 → σ 2

� (x)r(x), and nhd
n F2 → 0, as n → ∞.

3 Proof of main result

Proof To prove the main result, we show that the asymptotic distribution of the principal
term

[
r̃�

n(x) − r(x)
]

is normal, while the residual term
[
r�

n(x) − r̃�
n(x)

]
is negligible. First,

observe that if bn = (δ ln n)
1
θ withδ > 2

λ
, then for all ε > 0, we have

P

(∣
∣
∣ϕ�

n(x) − ϕ̃�
n(x)

∣
∣
∣ > ε/

√
nhd

n

)

≤ P

(
n⋃

i=1

{|Yi | > bn}
)

≤ n P (|Y0| > bn) ≤ Eeλ|m(Y0)|θ n1−λδ.

So, for all ε > 0,
∞∑

n=1
P
(∣
∣ϕ�

n(x) − ϕ̃�
n(x)

∣
∣ > ε/

√
nhd

n

)
< ∞, and the Borel-Cantelli lemma

implies that
√

nhd
n

[
r�

n(x) − r̃�
n(x)

]
→ 0 a.s, as n → ∞.
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One may prove in the same manner that f �
n (x) → f (x) a.s as n → ∞. Next, we need to

show that
√

nhd
n

[
r̃�

n(x) − Bn − r(x)
] L→ N

[

0,
βd(1−2�)‖K‖2

2V (x)

β2
d(1−�) f (x)

]

,

as n → ∞. To this end, we use the following representation

r̃�
n(x) − r(x) − Bn = 1

f �
n (x)E f �

n (x)

[
E f �

n (x)

−Eϕ̃�
n(x)

]T [
ϕ̃�

n(x) − Eϕ̃�
n(x)

f �
n (x) − E f �

n (x)

]

+ o

(
1

√
nhd

n

)

.

Now, applying the Cramer–Wold device and remembering that f �
n (x)

a.s→ f (x), and
E f �

n (x) → f (x), as n → ∞, the proof of Theorem 2.1 is straightforward from the fol-
lowing claim:

√
nhd

n

[
ϕ̃�

n(x) − Eϕ̃�
n(x)

f �
n (x) − E f �

n (x)

]
L→ N2

{

0, σ 2
� (x)

[
V (x) + r2(x) r(x)

r(x) 1

]}

, as n → ∞.

This last convergence is equivalent to
√

nhd
n

{
λ1

[
f �
n (x)−E f �

n (x)
]
+λ2

[
ϕ̃�

n(x)−Eϕ̃�
n(x)

]} L→ N [
0, �2

� (x)
]
, as n → ∞, (3)

for each λ1, λ2 ∈ R such that λ1 + λ2 �= 0, where �2
� (x) := σ 2

� (x)
{
λ2

1 + 2λ1λ2r(x) + λ2
2[

V (x) + r2(x)
]}

.

Hence, the main result will be completely proven if (3) is established. To this end, let us
set

�̃nj := λ1�nj + λ2�
′
nj ,

where �nj :=
[

hd(2�−1)
n

n

] 1
2 h−d�

j
Bn,d(1−�)

(
Vnj −EVnj

)
and � ′

nj :=
[

hd(2�−1)
n

n

] 1
2 h−d�

j
Bn,d(1−�)

(
Wnj

−E.Wnj
)

with

Vnj := K

(
x − X j

h j

)

and Wnj := K

(
x − X j

h j

)

m
(
Y j

)
1{|m(Y j )|≤bn}.

Next, consider the sequences ςn, τn, and rn defined as

τn := �τ0 log n� , ςn :=
⌊

τ0
√

nhd
n

(log n)ς0

⌋

and rn :=
⌊

n

ςn + τn

⌋

, with τ0, ς0 > 0.

To establish (3), we use the classical Doob (1953) methodology, which consists of splitting
the term

√
nhd

n

{
λ1

[
f �
n (x) − f (x)

]
+ λ2

[
ϕ̃�

n(x) − ϕ(x)
]}

into large blocks separated by small blocks defined by

Tnm =
km+ςn−1∑

j=km

�̃nj (large blocks) , T ′
nm =

lm+τn−1∑

j=lm

�̃nj (small blocks) ,

T ′
nrn+1 =

n∑

j=N̄+1

�̃nj (rest of term),
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where N̄ := rn(τn + ςn), and for m = 1, . . . , rn, km := (m − 1)(ςn + τn) + 1, lm :=
(m − 1)(ςn + τn) + ςn + 1.

Next, let us define the partial sums Sn1 =
rn∑

m=1
Tnm, Sn2 =

rn∑

m=1
T ′

nm and Sn3 = T ′
nrn+1.

Thus, we can write

√
nhd

n

{
λ1

[
f �
n (x) − f (x)

]
+ λ2

[
ϕ̃�

n(x) − ϕ(x)
]}

= Sn1 + Sn2 + Sn3.

The goal is to prove that ES2
n2 and ES2

n3 converge to zero, while the asymptotic distribution
of Sn1 is normal. First, observe that

ES2
n2 =

rn∑

m=1

Var(T ′
nm) + 2

∑

1≤i< j≤rn

Cov(T ′
ni , T ′

nj )

=
rn∑

m=1

lm+τn−1∑

i=lm

Var�̃ni + 2
rn∑

m=1

∑

lm≤i< j≤lm+τn−1

Cov
(
�̃ni , �̃nj

)

+ 2
∑

1≤i< j≤rn

li +τn−1∑

s=li

l j +τn−1∑

t=l j

Cov
(
�̃ns, �̃nt

)
:= �1 + �2 + �3. (4)

The first term in (4), is decomposed as

�1 =
rn∑

m=1

lm+τn−1∑

i=lm

[
λ2

1Var�ni + λ2
2Var� ′

ni + 2λ1λ2Cov
(
�ni , �

′
ni

)] := �11 + �12 + �13.

Since hn decreases, the choice of bn = (δ ln n)
1
θ with δ > 2

λ
, and θ > 1/ς0 with the help of

H2(iii) implies that

�11 + �12 = hd(2�−1)
n

nB2
n,d(1−�)

rn∑

m=1

lm+τn−1∑

j=lm

h−2d�
j

[

λ2
1VarK

(
x − X j

h j

)

+λ2
2VarK

(
x − X j

h j

)

Y j 1{|m(Y j )|≤bn}
]

≤ rnτn
(
1 + b2

n

) ‖K‖2∞ max(λ2
1, λ

2
2)

nhd
n B2

n,d(1−�)

→ 0, as n → ∞.

Similarly, we have �13 ≤ 2λ1λ2bnrnτn‖K‖2∞
nhd

n B2
n,d(1−�)

→ 0, as n → ∞. In the same manner, and

by also using the Cauchy-Schwartz’s inequality, we get �2 ≤ rnτ 2
n (1+bn)2‖K‖2∞ max(λ2

1,λ2
2)

nhd
n B2

n,d(1−�)

→
0, as n → ∞. The last term in (4) is bounded by Billingsley inequality with the help of
assumptions H2(iii) and H.3(i), as follows.
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�3 = 2
∑

1≤i< j≤rn

li +τn−1∑

s=li

l j +τn−1∑

t=l j

{
λ2

1Cov (�ns , �nt ) +λ2
2Cov

(
� ′

ns , �
′
nt

)

+ λ1λ2
[
Cov

(
�ns , �

′
nt

)+Cov
(
�nt , �

′
ns

)]}

≤ 2 (1+bn)2 ‖K‖2∞ max(λ2
1, λ

2
2)h

d(2�−1)
n

nB2
n,d(1−�)

rn−1∑

k=1

rn∑

j=1

l j +τn−1∑

s=l j

l j +τn−1∑

t=l j

(hsht )
−d�αX [k (ςn +τn)]

≤ 2γ (1+bn)2 ‖K‖2∞ max(λ2
1, λ

2
2)rnτ 2

n

nhd
n B2

n,d(1−�)

rn−1∑

k=1

e−ρkτn .

Therefore,

�3 = O

{
b2

nrnτ 2
n e−ρτn

nhd
n B2

n,d(1−�)

[
1 − e−ρτn(rn−1)

]
}

→ 0, as n → ∞,

as long as bn = (δ ln n)
1
θ with δ > 2

λ
, and θ > 1/ς0. Now, let us prove that ES2

n3 → 0 as
n → 0. One has

ES2
n3 =

n∑

j=N̄+1

Var�̃nj + 2
∑

N̄+1≤i< j≤n

Cov(�̃ni , �̃nj ) := �n1 + �n2. (5)

The variance term �n1 may be written as

�n1 =
n∑

j=N̄+1

[
λ2

1Var�nj +λ2
2Var� ′

nj +2λ1λ2Cov
(
�nj , �

′
nj

)]
:=λ2

1�n11+λ2
2�n12

+2λ1λ2�n13.

The first term on the right hand side of the preview decomposition satisfies the relation

nhd
nVar f �

n (x) ∼
n∑

j=1

Var(�nj ) =
N̄∑

j=1

Var(�nj ) + �n11.

However, one may write

N̄∑

j=1

Var(�nj ) =
(

nhd
n

N̄hd
N̄

)

N̄hd
N̄

Var f �

N̄
(x).

Since N̄ ∼ n, the condition un ∼ vn implies hun ∼ hvn , which leads to nhd
n ∼ N̄hd

N̄
, and this

together with Lemma 2.2(c) imply that
N̄∑

j=1
Var(�nj ) → σ 2

� (x), as n → ∞. It follows that

�n11 = o(1), because
n∑

j=1
Var(�nj ) → σ 2

� (x), as n → ∞. Let us mention that if � ≥ 1/2,

then the condition un ∼ vn implies hun ∼ hvn , is not necessary. Indeed, the variance term
�n1 can be written as

�n1 = B−2
n,d(1−�)

n

n∑

i=N̄+1

(
hi

hn

)d(1−2�)

h−d
i Var

{

K

(
x − Xi

hi

)
(
1 + m(Yi )1|m(Yi )|≤bn

)
}

.
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Since hn is decreasing and � ≥ 1
2 , then the Toeplitz lemma, with the help of assumption

H.2(ii) and the convergence h−d
i VarK

(
x−Xi

hi

)
→ f (x)

∫
Rd K 2(x)dx, as i → ∞ imply

that �n1 ≤ Cste(n−N̄)(1+bn)2

nB2
n,d(1−�)

. Because of n − N̄ ≤ ςn + τn, it follows that �n1 → 0 as

n → ∞, provided bn = (δ ln n)
1
θ with δ > 2

λ
, and θ > 1/ς0.

Also, in the same manner, and by replacing f �
n by ϕ̃�

n , we can deduce from Lemma 2.3(a)
that �n12 = o(1). Finally, the last term �n13 is bounded similarly to the first term by using
Lemma 2.3(b).

Therefore, from �n13 = o(1), it follows that �n1 → 0 as n → ∞. Now, let us study the
term �n2 in (5). This can be decomposed as

�n2 = 2
∑

N̄+1≤i< j≤n

[
λ2

1Cov
(
�ni , �nj

) + λ2
2Cov

(
� ′

ni , �
′
nj

)
+ 2λ1λ2Cov

(
�ni , �

′
nj

)]
.

As in the proof of Lemma 2.3, one may show that

∑

N̄+1≤i< j≤n

[
λ2

1Cov
(
�ni , �nj

) + λ2
2Cov

(
� ′

ni , �
′
nj

)]
→ 0, as → 0

and
∑

N̄+≤i< j≤n

Cov
(
�ni , �

′
nj

)
≤

∑

1≤i< j≤n

Cov
(
�ni , �

′
nj

)
→ 0, as → 0.

Hence, �n2 → 0, as → 0. To complete the proof we must show that the asymptotic
distribution of Sn1 is normal. To this end let us check the Lindeberg-Feller conditions for
Sn1. First, we consider a sequence of iid random variables Zn1, . . . , Znrn , having the same
distribution as Tnm . Then, EZn1 = 0 and if �Tnm is the characteristic function (ch.f.) of Tnm ,

then �
rn
Tnm

is the ch.f. of the random variable
rn∑

m=1
Znm . To establish the asymptotic normality

of Sn1, it suffices to prove that the variables
rn∑

m=1
Znm and

rn∑

m=1
Tnm have the same distribution,

and that this latter is Gaussian. By the Volkonskii and Rozanov (1959) lemma, one has

∣
∣
∣
∣
∣
E

rn∏

m=1

eitTnm −
rn∏

m=1

EeitTnm

∣
∣
∣
∣
∣
≤ 8(rn − 1)α(τn) ≤ ρ0rne−ρ1τn → 0, as n → ∞.

It follows that
∣
∣
∣E

∏rn
m=1 eitTnm −�

rn
Tn

∣
∣
∣ → 0, as n → ∞. Then, it suffices to prove that

�
rn
Tnm

converges to the characteristic function of a Gaussian random variable. To this

end, we proceed as follows. Set Z ′
nm := Znm

sn
, where s2

n := ∑rn
m=1 VarZnm . One has

s2
n → �2

� (x), as n → ∞. Indeed, s2
n =

rn∑

m=1
VarTnm → �2

� (x), as n → ∞, because on

one hand we have from Lemmas 2.2 and 2.3:

VarSn1 ∼ nhd
n

{
λ2

1Var f �
n (x)+λ2

2Varϕ̃�
n(x)+2λ1λ2Cov

[
f �
n (x), ϕ̃�

n(x)
]}

→ �2
� (x), as n → ∞,

123

Author's personal copy



Stat Inference Stoch Process

and one may show, on the other hand, as for �2, that
∑

1≤i< j≤rn

Cov(Tni , Tnj ) → 0, as n →

∞. Hence, the variables Z ′
nm are iid, EZ ′

n1 = 0 and
rn∑

m=1
VarZ ′

nm = 1. By virtue

of the Lindeberg conditions (c.f. Loève 1963), we have to show that for all ε > 0,
rn∑

m=1
E
(

Z ′2
nm1{|Z ′

nm |>ε}
)

→ 0, as n → ∞. Noting that |Tnm | ≤ ςn‖K‖∞(1+bn)√
nhd

n Bn,d(1−�)

, and applying

Markov’s inequality, one has
rn∑

m=1

E
(

Z ′2
nm1{|Z ′

nm |>ε}
)

=
rn∑

m=1

E

(
T 2

nm

s2
n

1{|Tnm |>εsn}
)

≤ ς2
n (1+bn)2 ‖K‖2∞
nhd

n B2
n,d(1−�)s

2
n

rn∑

m=1

P (|Tnm |>εsn)

≤
[

ςn (1 + bn)
√

nhd
n

· ‖K‖∞ ε−1

sn Bn,d(1−�)

]2

→ 0, as n → ∞,

if bn = (δ ln n)
1
θ with δ > 2

λ
, and θ > 1/ς0.
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