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Abstract
Dyskeratosis congenita (DKC) is a paradigmatic telomere disorder characterized by substantial and premature telomere
shortening, bone marrow failure, and a dramatically increased risk of developing myelodysplastic syndrome (MDS) or acute
myeloid leukemia (AML). DKC can occur as a late-onset, so-called cryptic form, with first manifestation in adults. Somatic
MDS-related mutations are found in up to 35% of patients with acquired aplastic anemia (AA), especially in patients with
short telomeres. The aim of our study was to investigate whether cryptic DKC is associated with an increased incidence of
MDS-related somatic mutations, thereby linking the accelerated telomere shortening with the increased risk of MDS/AML.
Samples from 15 adult patients (median age: 42 years, range: 23–60 years) with molecularly confirmed cryptic DKC were
screened using next-generation gene panel sequencing to detect MDS-related somatic variants. Only one of the 15 patients
(7%) demonstrated a clinically relevant MDS-related somatic variant. This incidence was dramatically lower than formerly
described in acquired AA. Based on our data, we conclude that clonal evolution of subclones carrying MDS-related
mutations is not the predominant mechanism for MDS/AML initiation in adult cryptic DKC patients.

Introduction

The telomere length (TL) shortens with each cell division
and reflects the replicative history of a cell or tissue [1, 2].
Telomere shortening (TS) can be slowed down or reversed
by the enzyme telomerase—whereas, impaired telomerase
function leads to accelerated TS [3]. In analogy to double-
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strand breaks, the critically short telomeres trigger DNA
damage checkpoints and as a consequence, the affected
cells undergo replicative senescence as long as these
checkpoints are intact. Further rounds of replication and/or
functional impairment of the respective checkpoints result
in increasing chromosomal instability and eventually, clonal
evolution [1, 2]. Thus, critical shortening of telomeres can
both act as a predisposing factor for malignant transfor-
mation or be a part of a tumor suppressor mechanism [4, 5].

Dyskeratosis congenita (DKC) is a paradigmatic disorder
to study the effects of critically short telomeres. Classical
DKC is characterized clinically by mucocutaneous features,
development of bone marrow failure (BMF) and critically
short telomeres [6]. In addition, DKC patients are faced
with an increased incidence of acute myeloid leukemia
(AML), myelodysplastic syndrome (MDS), and solid
tumors, e.g., head–neck squamous cell carcinoma [7]. In
DKC patients, the risk of developing secondary AML or
MDS is increased 200-fold and 2.500-fold, respectively,
compared to the normal population with both malignancies
typically occurring at a median age of ~35 years [8].
Premature TS is frequently caused by mutations in genes
affecting telomerase or telomerase-related components,
leading to functionally reduced telomerase activity. In
30–40% of all clinical DKC cases with short telomeres, an
underlying genetic defect cannot be identified thereby
complicating the correct diagnosis, especially in BMF
patients without further clinical symptoms [9]. While clas-
sical DKC is typically diagnosed in childhood, a second
late-onset, so-called cryptic subtype of DKC with diverging
non-hematologic stigmata often first manifests itself in early
or middle-aged adulthood [10].

Detection of short telomeres with recurrent somatic
mutations is a hallmark of various acquired clonal disorders,
such as MDS [2, 11, 12], CML [13], or others [2]. In
addition, in otherwise healthy individuals, clonal hemato-
poiesis of indeterminate potential (CHIP) with detection of
gene mutations originally described in myeloid neoplasms
was found to be associated with an increased risk for
hematological cancers [14, 15]. Moreover, somatic muta-
tions are observed in up to 35% of patients with acquired
aplastic anemia (AA), most likely due to a growth advan-
tage of clonal cells with acquired mutations in the context of
an immune escape from the autoimmune-mediated attack
against the hematopoietic stem cell (HSC) compartment
[16]. This concept was also corroborated by the fact that
mutations were preferentially found in patients with pre-
mature TS [17, 18].

In this study, we aimed to investigate whether acceler-
ated TS, due to impaired telomere maintenance in adult
patients with molecularly confirmed cryptic DKC, was
associated with an increased frequency of MDS-related
somatic mutations reflecting the first step of the multi-step

leukemogenesis, explaining the remarkably increased risk
of MDS and/or AML observed in this late-onset hereditary
BMF syndrome.

Methods and patients

Analysis included 15 patients from the “Aachen Telo-
meropathy Registry” (n= 13) and the Freiburg pediatric
bone marrow failure registry (n= 2). Informed consent was
obtained of all patients. All patients had clinical features
typical of DKC. No patient had cytologic signs of MDS.
The median age of the cohort was 42 years (range: 23–60
y). All patients had confirmed mutations in DKC-causing
genes (TERC n= 7, TERT n= 7, DKC1 n= 1, Table 1).
Additional clinical details of two patients with MDS/AML
are shown in Supplementary Table 1. For TL measurement,
flow-FISH was used according to previously described
protocols, and TL is indicated in kilobases (kb) [19–22]. A
self-customized next-generation sequencing (NGS) panel
(“telomere-panel”) for known DKC-causing genes was used
to identify genetic variants [23]. The NGS was carried
out on the gDNA of the peripheral blood samples of all 15
patients due to the hypoplastic/aplastic bone marrow, except
for patient #4, where sufficient bone marrow for additional
analysis was available. In addition, we used a clinically
validated self-customized NGS-panel (“MDS/MPN-panel”)
including genes harboring mutations, which are typically
associated with myeloid neoplasms (ABL, ASXL1, BARD,
CALR, CBL, CEBPA, CHEK2, CSF3R, DNMT3A, ETNK1,
ETV6, EZH2, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NFE2,
NRAS, PDGFRA, PTPN11, RUNX1, SETBP1, SF3A1,
SF3B1, SH3B2 (LNK), SRSF2, TCF12, TET2, TP53,and
U2AF1). For detailed information see Supplementary
Material and Methods.

Results

TL was found to be below the first percentile in peripheral
blood lymphocytes in 12 out 15 patients (Fig. 1a). the
mean TL was 4.78 kb ± 0.63 SD in the lymphocyte and
5.42 kb ± 1.01 SD in the granulocyte (Fig. 1b) subpopula-
tion, respectively. Using the “Telomere-panel”, all detected
mutations showed a 50/50 ratio between the reference and
the mutated allele in line with the anticipated heterozygosity
of the detected mutations (Table 1). The “MDS/MPN-
panel” sequencing revealed a relevant somatic MDS-related
mutation in only 1 out of 15 patients analyzed. This patient
(#7) harbored a mutation in the U2AF1 gene (c.101 C > T,
p.Ser34Phe; allele frequency 16%), which has been
described in MDS [24], in addition to the known DKC-
causing TERT mutation (c.2915 G > A; p.Arg972His)
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(Fig. 1c). In another patient with an inherited TERC muta-
tion (patient #4), an ASXL1 variant (c.3244_3246CTGdel;
freq.: 48% [4708/9347]; p.Leu1082del) (Fig. 1c) was
detected in the peripheral blood. A similar allele frequency
was also observed by analyzing the respective bone-marrow
sample (freq.: 50%). Interestingly, TS in granulocytes was
not further accelerated in the patients carrying the described
variant (patient #4: 5,17 kb) and mutation (patient #7: 5,38
kb), as compared to the remaining 13 patients of the cohort
(5.54 kb, p= 0.84, t-test).

Discussion

This is the first report of a systematic analysis of somatic
mutations in the rare cohort of adult patients with late-onset,
cryptic DKC. Until now, no data existed on the exact
mechanism for tumor development in DKC patients. The
occurrence and potential accumulation of MDS-related
clonal mutations might represent a possible mechanism
underlying secondary MDS and/or subsequent AML
development [25]. However, to our surprise, we observed
characteristic acquired mutations in typical MDS-linked
genes in only 1 out of 15 patients present in our cohort.
The detected ASXL1 variant is most likely a rare germline
variant (allele frequency in the sample about 50%) of
uncertain significance (see clinvar-including bioinformatical

analysis, mean allele frequency /dbsnp150 rs754183801:
0.002%).

Based on our data, clonal hematopoiesis with detection
of MDS-related genes is a rather rare event in adult DKC
patients, compared to other myeloid diseases with short
telomeres, but functional (compared to DKC) telomerase
complex (e.g., typical elderly MDS or acquired AA) [11,
12, 16–18]. Therefore surprisingly, evolution of subclones
of HSC carrying MDS-related clonal mutations does not
seem to be the predominant mechanism for MDS/AML
initiation in cryptic DKC patients.

At this stage, the pathophysiology underlying the
malignant transformation in (cryptic) DKC remains unclear.
Various murine models favor the role of chromosomal
instability due to critically short telomeres as the main
contributing factor for tumor initiation [1]. In line with
this observation, both analyzed patients with MDS or AML
(pat. #10 and #15) show chromosomal aberrations but no
MDS-related mutations.

We hypothesize that significant replicative potential is a
prerequisite of HSCs that can undergo multi-step clonal
evolution from genetically normal HSCs via CHIP and
eventually toward malignant transformation into MDS and/
or AML. In comparison, in patients with DKC, due to the
already accelerated TS, the replicative reserve in the HSC
compartment is typically limited. Therefore, upon a rather
limited number of cell divisions, the DKC stem cells either
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Fig. 1 Telomere analysis and
detailed presentation of the
observed MDS-related
mutations: Lymphocyte (a) and
granulocyte (b) telomere length
of 15 dyskeratosis congenita
patients, 1%, 10%, 50%, 90%,
and 99% percentile are
indicated. Patient #4 with the
detected ASXL1 mutation is
depicted in red. Patient #7 with
the detected U2AF1 mutation is
depicted in green. c Detailed
depiction of the detected in-
frame ASXL1 deletion and
U2AF1 mutation. MDS
myelodysplastic syndrome, kb
kilobases
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undergo replicative senescence/apoptosis, or alternatively
acquire the defined genetic events that allow them to either
bypass the telomere checkpoint, or maintain or (re-)elongate
TL early enough to become clonally selected. The latter is
achieved either by reactivating the telomerase activity or
alternative lengthening of telomeres (ALT, Fig. 2).

U2AF1 mutations lead to increased proliferation of
hematopoietic progenitors [26], thus providing a possible
escape mechanism to allow HSC to circumvent the
telomere-mediated replicative senescence. Genetic mosai-
cism, somatic gene reversion [27, 28], occurrence of
hTERT promotor mutations, or epigenetic factors (e.g.,
genomic imprinting) may be the possible alternative
mechanisms to allow clonal expansion in the presence of
short telomeres in this patient. However, detailed follow-up
studies are needed to further elucidate the mechanism of
how cells carrying the impaired telomerase activity actually
manage to expand to a significant clone size.

Finally, we hypothesize that the absence of typical
somatic mutations in NGS screening might potentially help
to discriminate the clinically overt DKC patients without
DKC-causing mutations from patients with acquired AA
typically carrying MDS-related mutations at high

frequency. Overall, since correct diagnosis of DKC is of
utmost importance for treatment (including donor selection
in the case of stem cell transplantation) and management
of complications [9], significant clinical benefits can be
expected from better identification of particularly late-onset
hereditary BMF syndromes, such as cryptic DKC.

We here provide the first data showing that additional
somatic mutations in DKC are rare events, possibly arguing
against the multi-step clonal evolution based on sequentially
acquired MDS-related mutations as the predominant
mechanism for the development of secondary hematologic
malignancies in adult and late-onset DKC. Due to the
uncertain incidence and probable underdiagnosis of this
disease subgroup in adults, prospective and cross-registry
validation of these results and systematic follow-up of
affected patients need to be initiated to further substantiate
these findings.
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