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Abstract

The simulation of mechanical systems subjected to impacts and friction requires to
solve highly non-linear systems of equations stemming from the Signorini’s con-
ditions and the Coulomb friction’s law, which present several practical difficulties,
which are not yet completely solved.

For systems involving nonsmooth phenomena the common methods used to
study the dynamics of structures with a finite element spatial discretization, such as
the Newmark method, the Hilbert-Hughes-Taylor method (HHT) and the standard
generalized-α method, can no longer be applied. These implicit integrators assume
that the kinematic variables are smooth. However, in the presence of instantaneous
changes of the velocity, which occurs due to the impact effects, these methods may
produce numerical solutions with notable precision losses, non physical behaviors
and the generation of fictitious energy at the contact instant. Thus, nonsmooth time
integration methods able to deal with nonsmooth motion equations are needed.

This work presents the development of a robust and accurate time integrator.
The integrator is built upon a previously developed nonsmooth generalized-α scheme
time integrator which was able to deal well with nonsmooth dynamical problems
avoiding any constraint drift phenomena and capturing vibration effects without
introducing too much numerical dissipation. However, when dealing with prob-
lems involving nonlinear bilateral constraints and/or flexible elements, it is nec-
essary to adopt small time-step sizes to ensure the convergence of the numerical
scheme. In order to tackle these problems more efficiently, a fully decoupled version
of the nonsmooth generalized-α method is proposed in this work, avoiding these
inconveniences.

To account for friction, a new node-to-face contact element compatible with the
proposed nonsmooth generalized-α solver has been developed. The node and face
can be attached, each one, to either flexible or rigid bodies. For the sake of robust-
ness and numerical performance, the frictional contact problem is treated using an
augmented Lagrangian technique inspired by the work of Alart and Curnier for
quasi-static problems.

Finally, this methodology has been implemented in the general purpose finite
element software Oofelie. The algorithm and the frictional contact element have
been coded using the existing data structure and in a non intrusive manner, in or-
der to preserve the compatibility with the existing utilities and the wide element
library. Using this implementation several numerical experiments have been done.
The results of these examples have been compared to analytical solutions or pre-
vious numerical solutions obtained by other authors showing good agreement and
convergence rate.
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Chapter 1

Introduction

1.1 Motivation

Since the first rudimentary mechanisms were built with wood and ropes, they have
been evolving constantly until the complex mechanisms that we have nowadays.
Lately, the automotive, robotic and aerospace industries have pushed the develop-
ment of more efficient and complex mechanisms, involving e.g. light materials, ir-
regular shape cams, spring-dampers, gears, belts and cables. In the design phase of
such mechanism, it is important to calculate the forces acting on the different parts in
order to optimize them. Also in robotics or automation process, developing a proper
control system is important to accurately predict the dynamic behavior of the sys-
tem. In consequence, the field of multibody system (MBS) dynamics developed itself
encouraged by the industry demands.

The study of MBS consists in the analysis of the behavior along time of differ-
ent interconnected mechanical elements under the action of external loads for some
given initial conditions. The first analysis of interconnected solids was done in the
eighteenth century by Lagrange where he introduced the systems of differential al-
gebraic equations (DAE) and ordinary differential equations (ODE) that describe the
movements of the mechanical systems. Although MBS simulations represent a con-
siderable cost reduction with respect to the experimental tests [1] it was not until the
last decades with the improvement in the computational hardware, that MBS simu-
lations have become a computer-aided engineering tool widely used in the product
design.

In the robotic field, to accurately control the most advanced grasping devices,
modeling systems with rigid and/or flexible bodies and frictional contact is essen-
tial [2]. Also many mechanical engineering applications are subjected to high fre-
quency vibrations produced by impacts between components that can reduce the
service life of the entire system, for example: gearboxes [3] and electrical circuit
breakers [4]. Thus, to face these problems and improve the design, it is important
to have an accurate prediction of the velocities, accelerations and forces that occur
within the mechanism. Therefore, it is necessary to have a MBS methodology able
to take in account the frictional impact effects as well as the flexibility of bodies to
capture the influence of vibrations.
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1.2 Multibody systems

In this section an overview of the key consideration about the modeling of MBS
dynamics and the main different approaches are explained, also some key references
are given. In MBS the bodies involved can be simulated as rigid bodies or flexible
bodies. They can translate and rotate, but the main difference is that the flexible
bodies undergo deformations under the actions of forces, and the rigid bodies do
not. This rigidity assumption is a relevant approximation for stiff rigid bodies that
do not have relevant deformations, and it leads to simple and compact equations
of motion. This thesis aims at modeling systems which may include both rigid and
flexible structural components. The book of Géradin and Cardona [5] addresses the
main aspects to model flexible bodies systems used in this work. Also, the book
of Bauchau [6] is a useful reference to introduce the reader in the field of flexible
multibody dynamics since it starts with a review of the basic mathematical tools and
present the concepts gradually. A global review about the different computational
strategies for flexible multibody systems can be found in [7].

The methodologies to study the time evolution of MBS composed by flexible
bodies depending on the type of reference frame used can be classified in three
main groups: floating frame, corotational frame and inertial frame approaches. A
description and literature review of the three methods can be found in [7]. In the
first two groups, in addition to the inertial frame, understood as a global reference
frame to describe the motion, other intermediate reference frames are considered.
These intermediate frames are attached to the flexible components and follow the
average local rigid body motion. Then the flexibility contribution is computed with
respect to these local frames. An important difference between the two methods is
that in the floating frame approach the intermediate frame follows an average rigid
body motion of the entire flexible component, whilst in the corotational approach
it follows an average rigid body motion of an individual finite element within the
flexible component. In the inertial frame approach no intermediate frame is used
and the deformations are computed directly with respect the global reference frame.
The difference between these three approaches can be better understood with the
help of the Fig. 1.1. The inertial frame method was developed to deal with nonlinear
finite element discretization of flexible bodies, and it was applied to consider large
rotations and deformations in the analysis of continuum mechanics, including also
large strains and large deflections [7]. Since the objective is to study MBS within a
finite element framework, the inertial frame approach is used in this work.

1.3 Impacts

In this section, the key physical aspects of an impact are reviewed. In the case of
impacts between rigid bodies, nonsmooth phenomena arise which require a specific
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FIGURE 1.1: Reference frames approaches: (a) Floating frame. (b)
Corotational frame (c) Inertial frame

modeling framework. The theory background of nonsmooth modeling techniques
can be found in the books of Pfeiffer and Glocker [3] and Wriggers [8].

In physics an impact between two bodies is a complex phenomenon which has
a very short duration (order of miliseconds [9]), high forces levels, rapid energy
dissipation, local elastic or plastic deformations, large changes in the velocities and
vibration effects [10].

A fully elastic model of objects impacting each other would capture not only the
global behavior during the impact contact but also the local deformation pattern at
the contact point and the elastic vibrations after the impact. However, the motion
details due to the body elasticity are not relevant in all applications depending on
the time scale of interest. Therefore, it is not always appropriate to develop a model
that captures the vibrations, it depends on the analyzed system and the studied phe-
nomena.

When the assumption of rigid bodies is done, the system state variables have
instantaneous changes in the contact instant, transforming the position into a non
differentiable function, the velocity into a discontinuous function and the accelera-
tion into a Dirac measure. To clarify this phenomenon, let us imagine a rigid ball
falling and bouncing against a rigid surface. Before and after the impact, the ball has
a momentum in opposite direction which means that the velocity has a jump and the
contact reaction forces must be impulsive. Notice that when flexible bodies enter in
contact, the velocity field of the bodies at the contact point or at the contact surface
is also discontinuous in time. Nevertheless, the contact reaction forces or the contact
reaction pressure remains finite in this case.

A rough classification of the contact modeling techniques leads to two main
groups: contact force based methods, also called compliant methods, and methods
based on geometrical constraints.

The contact force based methods consider the contact as a smooth phenomenon
with a short, but finite, duration. In this case, the bodies are considered globally
rigid, but locally flexible in the contact region. This local elastic/plastic deformations
in the contact area can be modeled with some spring-damper elements scattered
over its surface. Therefore, the contact force is a smooth function which depends on
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the bodies penetration, as shown in Fig. 1.3(a)
The methods based on geometrical constraints assume the impact as an instan-

taneous phenomenon, with a time duration equal to zero, which is represented as
a complementarity condition (represented by the symbol ⊥) between the unilateral
constraint and the impulse reaction force. The impulse reaction force is computed
such that the penetration constraint is avoided. The idea of the complementarity
constraint is to impose that the unilateral constraint or the impulse reaction force are
both positive and that one of them is equal to zero, as it can be observed in Fig. 1.3(a).
Therefore, their product is always zero. This complementarity condition to describe
impact contacts in the MBS with unilateral contacts is also called the Signorini con-
dition [11].

1.4 Friction

In real systems friction appears in all the contacts and it occurs in the interface be-
tween bodies. Friction has been deeply studied, nevertheless it is a complex phe-
nomenon which involves several physical processes and overall it is not completely
understood [12, 13, 14]. The first mathematical formulation for frictional contact
problems was proposed more than 200 years ago by Coulomb and then followed
by Hertz [15]. Although the Coulomb law is very simple, it allows one to represent
important effects in a wide range of applications. However, this model is not able
to account for several phenomena that occur during the friction process, e.g. the
pre-sliding friction [16], the Stribeck effect [17], the difference between static and dy-
namic friction [18] or the viscous friction [19]. A review of these frictional phenom-
ena can be found in Armstrong et al. [20], and their influence on the velocity/force
characteristics is represented in Fig. 1.2. Therefore, since this seminal work, great
efforts were made to better represent the friction process by including tribological
properties, such as the lubrication conditions, the plastic deformations and the ge-
ometric changes of the contact surfaces, at the cost of an increased difficulty of the
analysis. A lot of empirical models have also been proposed in order to describe
frictional behavior based on experimental observations. Several authors have pre-
sented a broad review of the different frictional laws, and studied their viability to
be implemented with numerical methods [21, 22, 23, 24, 25, 12, 26].

Frictional models can be split in two different groups, viscous friction and dry
friction [3]. In the first one, the forces are determined by the local tribological effects
at the contact. In the second one, the force opposes itself to the relative motion be-
tween the two bodies in contact, with two possible states: the static friction for non
existing relative displacements and the kinetic friction for sliding between the parts.
The Coulomb’s friction law is a dry friction model, in which only one macroscopic
parameter is considered in the formulation: the friction coefficient µ, which propor-
tionally relates the normal force with the friction force. The friction force always
acts in the opposite direction of the relative velocity, vrel , between the contact points,
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which is expressed as F f = −µ‖FN‖vrel/‖vrel‖ for the sliding condition, where F f

is the friction force and FN is the normal force. On the other hand, if the relative ve-
locity is zero the contact is in sticking condition, and the friction force is not known
beforehand but satisfies the condition ‖F f ‖ < µ‖FN‖. In the Coulomb’s law, the
friction force is not a mere function of the relative velocity because of the infinite
slope at the origin, as it can be seen in Fig. 1.3(b). This model is not differentiable at
the origin, which increases the models complexity and, therefore, the computation
of its solution. As for the normal force, some regularization techniques have been
developed to obtain a smooth frictional force function, as depicted in Fig. 1.3(b).
Nevertheless, these regularization techniques show other limitations and inconve-
niences, for example the impossibility to represent a block resting in an inclined
plane. This limitation occurs because with the regularization techniques zero veloc-
ity implies no frictional forces acting. Therefore, the block will start to slide down
the plane with an increasing velocity until the frictional force is enough to balance
the gravity force. The slope of the friction law function has a great influence on the
results, an infinity slope is needed to reproduce a true sticking behavior, which is not
feasible based on a regularized contact model. This motivates the use of nonsmooth
techniques to model frictional contacts.

Hence, the Coulomb friction law is commonly used for system-level simulation,
due to its simplicity and its ability to capture the basic aspects of the dry friction pro-
cess, as the capability to properly represent the slip and stick behavior. Therefore, it
will be the one used in this work. A deep review and explanation of the Coulomb’s
friction laws can be found in Brogliato [24]. In the field of frictional contact me-
chanics and nonsmooth techniques, which are the core of this thesis, Pfeiffer and
Glocker [3], Acary and Brogliato [27] and Leine and Wouw [28] present numerical
methods for nonsmooth dynamical systems involving frictional contacts, including
the necessary mathematical tools, such as, differential measures, set-valued func-
tions, differential inclusions, functions of bounded variations and the Coulomb cone,
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which will be explained in Chapter 2.

1.5 Regularization techniques vs complementarity problems
solver

Despite the effort done over the last decades for the development of numerical meth-
ods for mechanical systems involving frictional contacts, many open questions re-
main, which stimulates intense research on this subject in the computational me-
chanics and applied mathematics communities. The enforcement of the unilateral
constraint of the contact/impact problem takes the form of a complementarity prob-
lem (CP). A CP can be solved using different approaches, such as iterative solvers,
optimization methods and variational inequalities, or relaxing the complementarity
condition with regularization techniques.

A commonly used iterative method in contact mechanics is the projected Gauss-
Seidel method. This method partitions the system in different subdomains to com-
pute them as independent entities, solving in a sequential manner each one of the
CP. The main drawbacks of Gauss-Seidel methods are the slow convergence and the
loss of symmetry of the solution for symmetric problems. It is inherently a sequen-
tial algorithm, which is not easily parallelized. Nevertheless, it is a popular method
in the fields of computer graphics [29] and granular materials [30]. Different varia-
tions of this method have been proposed in order to improve different aspects of the
method, for example [31, 32, 33, 34].

The fact that frictional contact problem can be posed as an optimization problem
allows one to apply techniques well posed in the mathematical programming com-
munity, resulting in new numerical methods, such as the formulation of the prob-
lem as variational inequalities, generalized or semi–smooth equations, second–order
cone complementarity problems, or as optimization problems such as quadratic pro-
gramming problems over second-order cones. In a recent work [21], a review of the
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main numerical techniques that arise from these approaches was made, leading to
the conclusion that there is no universal solver to fix all problems. Nevertheless, this
paper gives some hints to choose the appropriate solver depending on the problem
under study.

Regularization techniques relax the CP by allowing a certain amount of penetra-
tion, as illustrated in Fig. 1.3(a), the reaction force is not instantaneous anymore, but
it increases progressively with the penetration amplitude. The slope of this model
is the so called penalty coefficient. A smooth evolution of the displacement and ve-
locity field is then observed, which permits the use of standard dynamics solvers.
Also, the displacement is the only primary variable in the formulation, leading to
a relatively easy numerical implementation. Therefore, this method can be easily
introduced in an existing software. The main drawback is that the exact solution
is only recovered for an infinite value of the penalty coefficient [35, 36, 8, 37, 38],
and high penalty values lead to a set of stiff differential equations that produce ill-
conditioned matrices and severe precision losses [39]. It is important to make a re-
mark on the difference between the compliance models explained in a previous sec-
tion and the regularization solvers presented here. Despite the similitude between
the resulting equations of motion, here, the smoothness of the problem comes from
a purely numerical strategy to smooth the CP without any relation to the physics of
the problem, while in the compliance model the spring-damper parameters repre-
sent localized phenomena at the contact point, which sometimes can receive a real
physical meaning. In contrast, in regularization techniques, the choice of the pe-
nalty factor is made by the user in order to obtain acceptable solutions that limit
the unavoidable penetration between contacting bodies, but this choice bears some
arbitrariness.

Lagrange multipliers method guarantee the exact fulfillment of the constraints
overcoming the ill-conditioning inconvenience of regularization methods at the ex-
pense of an increase in the size of the system of equations [40, 4]. A combination of
the penalty and the Lagrange multiplier techniques leads to the so-called augmented
Lagrangian method. This method was proposed first by Hestenes [41] and Pow-
ell [42] to solve optimization problems with equality constraints and after applied
to frictional contacts by several authors [43, 44, 45]. The augmented Lagrangian and
the regularization methods, both involve an arbitrary penalty parameter. However,
this penalty factor in the augmented Lagrangian method only affects the conver-
gence rate, without causing any effect in the solution after reaching the convergence,
whilst in the regularization method this factor directly influences the accuracy of the
solution. For the Lagrange multiplier and augmented Lagrangian methods, the time
evolution of the velocity is generally nonsmooth and the jumps are represented by
an impact law, such as the Poisson or Newton impact laws [3], a revision of different
impact laws can be found in [9]. In this work the augmented Lagrangian approach
and the Newton impact law are used.
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1.6 Nonsmooth time integrators

For systems involving nonsmooth phenomena, the common time integration meth-
ods used to study the finite element structural dynamics models, such as the New-
mark method [46], the Hilbert-Hughes-Taylor method (HHT) [47] and the generali-
zed-α method [48], can no longer be applied. The damped Newmark method is a
first order method, while the HHT and the generalized-α methods are second order
precision methods. These solvers can deal with stiff problems in structural dynam-
ics with a broad frequency content [5]. These implicit integrators assume that the
kinematic variables are smooth [49, 8]. However, in the presence of instantaneous
changes of the velocity in case of impacts, these methods may produce numerical
solutions with notable precision losses, a non physical behavior and the generation
of fictitious energy at the contact instant [50]. Thus, nonsmooth time integration
methods able to deal with nonsmooth motion equations are needed. Moreau was a
pioneer in the development of a theoretical background for this class of problems [51,
52].

In nonsmooth dynamics, depending on the step size definition strategy, time in-
tegrators can be classified into two main groups: event-driven and time-stepping
integrators [3, 27, 53, 54]. The former is based on the exact impact detection and the
adaptation of the time step in order to capture the impact moment and restart the in-
tegration afterwards. Event-driven methods achieve an accurate solution, however,
they become inefficient in situations involving a large number of impact events in
short periods of time. Hence, a different strategy is adopted in this work, which falls
under the category of time-stepping integrators. These techniques share the com-
mon feature that the time step is not adapted to impacts events, but that they are
able to capture the effects of one or several impacts occurring during the time step.
They are even able to capture the accumulation of an infinite number of impacts
in a finite time interval. The most widespread time-stepping integrators for non-
smooth dynamical systems are the Schatzman–Paoli scheme [55, 56], which is based
on a central difference scheme, and the Moreau–Jean scheme [57, 58, 59], which is
based on a θ-method. Despite their robustness in dealing with problems involving
a large number of impacts, the Schatzman–Paoli scheme and the Moreau–Jean lead
to a first-order approximation of motion, and suffer from high levels of numerical
dissipation which generally leads to poor approximations of vibration phenomena
in flexible components. Indeed, when using a first-order method, a very small time
step is required to get adequate results. Additionally, in the Moreau–Jean scheme,
the constraints are only imposed at velocity level, which results in the violation of the
constraints at position level and as a consequence, a drift phenomenon is observed.

Another alternative for simulating nonsmooth dynamic mechanical systems was
proposed by Chen et al. [60], where some contributions, such as external, damping
and internal forces are considered smooth and are integrated using a second-order
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scheme, i.e. the generalized-α method. However, the reaction forces of the bilat-
eral constraints and the unilateral constraints are still integrated using a first order
scheme, in a fully implicit approach. In comparison with the Moreau-Jean method
the drift phenomenon for the bilateral constraints is reduced and the energy be-
havior is improved in the low-frequency range, allowing to use larger time steps.
Nevertheless, globally the order of convergence of this algorithm is one and the drift
phenomena for bilateral constraints are not completely eliminated.

More recently, in order to reduce the numerical dissipation and improve the en-
ergy behavior, especially for flexible system with impacts and vibrational effects,
Brüls et al. in [50] extended the idea of Chen et al. and proposed the nonsmooth
generalized-α scheme (NSGA) for frictionless contact problems. The main idea of
this method is to artificially split the system into two parts. The smooth part (with-
out consideration of the impact contributions) and the impulsive part (with impact
contributions). This allows one to integrate the impulsive terms of the equations
of motion with first-order accuracy, meanwhile the smooth contributions are inte-
grated with second-order accuracy, even the reaction forces of the constraints. The
generalized-α method was used to integrate the smooth motion, but other methods
could be also possible. Thus, the vibration phenomena corresponding to the smooth
parts of the motion can be computed with a smaller numerical dissipation than the
Moreau scheme, improving the energy behaviour of the dynamic response of the
flexible terms, as shown in [61].

Another advantage of this method is that the constraints are imposed at position
and velocity levels, following a similar method as proposed by Gear, Gupta and
Leimkuhler [62]. In this way no drift of the constraints is allowed, i.e., no unphysical
penetration is observed.

Due to the splitting strategy and the imposition of constraints at position and
velocity levels, the resulting equations of motion have a structure with three dis-
tinguishable subproblems. The first represents the smooth part which is integrated
using the generalized-α scheme, the second represents a correction of the position
variables which is computed to satisfy the constraints at position level due to the
contact conditions and the third represents the velocity jump whose evaluation is
based on the constraints at velocity level. These three parts are coupled with each
other, therefore, it is not possible to solve them sequentially one after the other, and
the system has to be solved at each time step using a monolithic semi-smooth New-
ton method, which has a high computational cost. To avoid the coupling, Brüls et
al. [50] propose to neglect some coupling terms in the tangent matrix. The advan-
tage of this procedure is that the algorithm can be described as a sequence of three
sub-problems, instead of having to solve the complete set of equations monolithi-
cally. This approximation does not affect the final results, only the convergence of
the method. It is fully justified as the adopted step size tends to zero. However,
for problems with flexible bodies and nonlinear bilateral constraints, this approxi-
mation leads to a slow convergence of the global scheme, or even to the divergence
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of the scheme if a small step size is not small enough, which motivates further im-
provements of this solver in the context of this thesis.

1.7 Software review

Several software packages are available to model the dynamics of rigid and flexible
multibody systems, like Adams, Simpack, Mecano or RecurDyn, that are commonly
used in the industry. Some of them also include frictional contact models but are
based on the regularization of the nonsmooth phenomena related to contact and
friction. These techniques are easy to implement in an existing software but they also
have important drawbacks, as discussed in the previous section. Therefore other
possibilities are studied in this work.

Other software, such as, Siconos [63], LMGC90 [30], and Chrono Project [64],
are scientific software packages which address contact problems using nonsmooth
techniques. Siconos provides a general tool to face nonsmooth problems in various
scientific fields in applied mathematics, e.g. mechanics, robotics or electrical cir-
cuits. LMGC90 is a multi-physics software which aims at modeling the interactions
between objects of any shape with complex laws. It also allows to couple other ef-
fects, like thermal effects and fluid interaction. The Chrono project focuses on the
simulation of the interaction between a large number of rigid bodies, using either
nonsmooth or regularization techniques. These software packages mostly address
the contacts between rigid bodies, except for the Chrono Project; which has been
recently extended to model the contact between flexible beams using isogeometric
analysis and nonsmooth techniques [65].

The simulation of MBS involving frictional contacts is not yet a mature and
closed field, and nonsmooth methods arise as a relevant approach to solve these
problems. Therefore, the idea of this work is to combine the finite element method
(FEM) with the nonsmooth techniques to simulate frictional impact contacts be-
tween rigid and flexible bodies. The formulation presented in this thesis is imple-
mented in the software Oofelie (Object Oriented Finite Elements Led by Interactive
Executor). Oofelie is a multiphysics finite element software able to combine ther-
mal, mechanic, acoustic and electric field problems [66], and it is integrated into the
graphical environment Siemens NX.

1.8 Objective of the thesis

As presented in this introduction, reliable numerical methods are available to study
smooth multibody dynamic systems. These techniques can model the behavior of
flexible and rigid bodies, e.g. using a finite element approach, and they are well
established in the literature and in commercial software packages.



1.8. Objective of the thesis 11

When contact between rigid bodies occurs, the contact is an instantaneous phe-
nomenon and the velocity field is no longer smooth, producing jumps in the veloc-
ity. In order to properly account for jumps in the velocity, nonsmooth techniques
are needed. Existing nonsmooth techniques like the Moreau scheme, have limita-
tions and drawbacks when applied to flexible systems. For example, this method
induces high numerical dissipation, especially for the vibrating motion of flexible
bodies. Also, the constraints are not imposed at position level yielding a drift of the
constraints.

The nonsmooth generalized-α method reduces the numerical damping and im-
poses hard kinematic constraints removing the constraint drift. In [50] a nonsmooth
version of this method was applied to problems involving rigid and flexible bodies
with contacts, but only for frictionless problems. This solver suffers from a slow
convergence when applied to stiff mechanical systems. Therefore, we can say, that
a completely robust and systematic algorithm able to simulate MBS involving rigid
and flexible bodies with nonsmooth frictional contacts, does not exist to date.

The general objective of this thesis is to propose a new methodology that com-
bines the flexibility of the finite element approach and the nonsmooth techniques.
This methodology should be able to deal systematically with frictional impacts in-
volving rigid and flexible bodies. Specifically, this work focuses on the nonsmooth
phenomenona caused by the frictional impacts. For that purpose, the nonlinear fi-
nite element approach for flexible MBS [5] is extended to contact problems involving
friction and impacts. Some improvements of the nonsmooth generalized-α solver are
proposed and are implemented in the general finite element software Oofelie.

The originality of the methodology introduced in this thesis lies in three essential
aspects:

• A new formulation of the nonsmooth generelized-α method is proposed, where
the splitting strategy has been modified so as to completely isolate the impul-
sive terms (created by impacts) from the smooth ones. Consequently, the three
sub-problems that need to be solved at every time step are fully decoupled; a
feature which improves considerably the robustness of the integrator for prob-
lems involving nonlinear bilateral constraints and flexible elements.

• Frictional effects are considered. This contribution is considered at the element
level of the finite element code, without the necessity to modify the solver
scheme. Therefore, a new frictional contact element is developed. For the
sake of robustness and numerical performance, the frictional contact problem
is treated using an augmented Lagrangian technique inspired by the work of
Alart and Curnier [43] for quasi static problems.

• This formulation is developed using a finite element approach, and is imple-
mented in the Oofelie software. This software has the advantage of providing
a wide library of readily available elements like rigid bodies, flexible beams,
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springs, hinges and so on, so that a wide range of applications can then be
addressed.

1.9 Overall structure of the thesis

The manuscript is structured as follows:

• Chapter 2: The key aspects of MBS dynamics are reviewed and the equations
of motion of MBS involving frictional contacts are introduced. Also the origin
of the nonsmoothness coming from frictional contacts and the formulation in
terms of measures and inclusions are presented.

• Chapter 3: The time integration method used in this thesis is presented. It
results in a new formulation for the nonsmooth generalized-α method with a
different splitting strategy. This formulation accounts for the unilateral cons-
traints dealing with friction both at position and velocity levels in order to
avoid any drift. Additionally, the conceived numerical scheme should ensure
that the convergence to the numerical solution is achieved with at least first-
order global accuracy, which is tested in some numerical experiments.

• Chapter 4: The dynamic formulation of a frictional contact element is pre-
sented. An augmented Lagrangian technique is used following the method-
ology presented by Alart and Curnier [43]. Some numerical experiments are
carried out and the results are compared with the analytical solution or some
results found in the literature.

• Chapter 5: This chapter makes a short overview of the finite element software
Oofelie, explaining in detail the implementation of the solver and the frictional
contact element presented in Chapters 3 and 4, respectively. The case of the
woodpecker toy is used to illustrate the use of the element library applied to
MBS.

• Chapter 6: Finally, the conclusions of this work are presented, and possible
ideas for further research are discussed.

1.10 Publications and conferences

This manuscript not only reflects the work done by the author, but also the work
done in collaboration with Alberto Cardona, Alejandro Cosimo and Federico Cav-
alieri from the Centro de Investigación de Métodos Computacionales in Argentina,
and the supervisor of the thesis Olivier Brüls from the Université de Liège. This
collaboration gave as result the following publications.

• Chapter 3 is a reproduction of the journal paper:
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– Cosimo, A., Galvez, J., Cavalieri, F. J., Cardona, A., and Brüls, O., “A ro-
bust nonsmooth generalized-α scheme for flexible systems with impacts”.
Multibody System Dynamics, 48, 127–149, 2020.

• Chapter 4 is an extension of the journal paper:

– Galvez, J., Cosimo, A., Cavalieri, F. J., Brüls, O. and Cardona, A., “A
nonsmooth frictional contact formulation for multibody system dynam-
ics”. International Journal for Numerical Methods in Engineering, online since
April 7, 2020.

• Chapter 5 is an extension of the conference publication:

– Galvez, J., Cosimo, A., Cavalieri, F. J., Cardona, A. and Brüls, O., "A gen-
eral purpose formulation for nonsmooth dynamics including large rota-
tions: application to the woodpecker toy". International Design Engineering
Technical Conferences and Computers and Information in Engineering Confer-
ence, Anaheim, United States, 18-21 August, 2019.

• Finally, a list of the presentation in conferences is given below:

– Galvez, J., Cavalieri, F. J., Cosimo, A., Brüls, O. and Cardona, A., "Non-
smooth numerical solution of frictional contact problems in multibody
systems". ECCOMAS Multibody Dynamics Conference, Duisburg, Germany,
15-18 July 2019

– Galvez, J., Cardona, A., Cavalieri, F. J. and Brüls, O., "Nonsmooth-α time
integration for frictional contact problems", 6th European Conference on
Computational Mechanics, Glasgow, United Kingdom, 11-15 June, 2018

– Galvez J., Cardona A, Cavalieri F. and Brüls O., "An augmented Lagrangian
frictional contact formulation for nonsmooth multibody systems", Euro-
pean NonLinear Dynamics Conference, Budapest, Hungary, 25-30 June 2017.

– Cavalieri, F. J., Galvez, J., Brüls, O. and Cardona, A., "A spatial revolute
joint model with clearance in mechanisms dynamics", ECCOMAS The-
matic Conference on Multibody Dynamics, Prague, Czech Republic, 19-22
June, 2017.
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Chapter 2

Multibody systems with contacts
and impacts

In this chapter the key aspects of MBS dynamics are reviewed in order to introduce
the equations of motion for multibody systems involving frictionless and frictional
contacts. The developments of this chapter contain the main ideas that will be used
for the original developments presented in Chapters 3 and 4.

This chapter is structured as follows. It starts reviewing the different possible co-
ordinates systems and choosing the finite element coordinates for the development
of this thesis. Then the equations of motion for constrained systems are presented
following the principle of virtual work and contact models are introduced using set-
value force laws. Then the non-smooth behavior of impacts between rigid bodies
is explained, the decomposition of velocities and reaction forces in smooth and im-
pulsive terms is introduced, and the equations of motion of MBS involving contacts
are rewritten as differential measure inclusions. The extension to frictional contacts
involves some concepts of convex analysis so that the frictional Coulomb law can be
expressed as a differential inclusion. The equations of motion are formulated in a
Lie group framework, therefore the structure of the R3 × S0(3) group is introduced
and illustrated with the spinning top example. Finally the generalized-α scheme in
a Lie group formulation is presented.

2.1 Coordinates system

The number of degrees of freedom (DOF) is the minimum necessary number of in-
dependent variables that fully describes the state of a system. The generalized co-
ordinates are a set of variables that allows to completely describe the configuration
of a system. In multibody dynamics, the configuration is the location and orienta-
tion of each element. The number of coordinates depends on the methodology used
to describe the system, and is at least equal to the number of DOF. The main four
techniques are: (1) minimal coordinates, (2) relative coordinates, (3) cartesian coor-
dinates and (4) finite element coordinates. The minimal coordinates technique con-
sists in choosing the minimum number of coordinates that are sufficient to describe
the system. Using a model with a minimal set of coordinates has the advantage
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that the resulting equations of motion are compact and only unilateral constraints
are involved. The drawbacks of this methodology are the lack of generality and
the complexity of the kinematic description. Relative coordinates, also known as
Lagrangian coordinates, describe the position and orientation of each element with
respect to the previous link, which is particularly suitable for open kinematic chains,
such as robotic arms. For open chains, this choice leads to a minimal set of coordi-
nates but some kinematic constraints appear for systems with closed loops. Based
on relative coordinates, the equations of motion can be derived according to a re-
cursive Newton-Euler method. The cartesian coordinates technique relies on the
position and orientation of the center of mass (COM) for each component. With this
technique, the joints are modeled by constraints between the coordinates of the two
connected bodies. This results in a large number of equations with a DAEs structure,
which can be formulated in a systematic way. These three methods have the incon-
venience that the extension to flexible bodies is not trivial. The global motion has to
be split into rigid body motion and relative elastic deformation, resulting in a com-
plex expressions of the kinetic energy [67]. Finally, the finite element coordinates is
the most suitable method to model flexible bodies. According to this method, the
coordinates are defined in a systematic way for each element and the redundant co-
ordinates in the joints are eliminated by boolean identification. It is also quite easy to
add nodes in any point of interest. This method uses a large number of coordinates
and constraints, however, the equations of motion are sparse so that it is possible to
use sparse numerical solvers to solve the problem efficiently.

The most appropriate coordinate system depends on the problem at hand, but
when the objective is to develop a general tool able to deal with flexible and rigid
bodies, the finite element coordinates appears as good choice. They also have the
advantage that it can be embedded in a finite element code allowing to reuse the
existing library of elements. Therefore, this method is selected in this work.

2.2 Equations of motion for constrained systems

The d’Alembert principle reformulates the second Newton’s law introducing the
definition of the so called inertial forces as the negative product of mass times ac-
celeration. These forces are defined negative because they are in the opposite di-
rection of the motion. Then, the dynamic equilibrium is expressed by the sum of
the impressed forces and the inertial forces, F + F inert = 0. The expression of the
Newton’s second law as an equilibrium of forces is relevant because it permits the
application of the principle of virtual work as in the static case [68].

Let us study an unconstrained system. The virtual work is the total work done
by all the forces acting on a mechanical system for a set of virtual displacements.
The virtual work of a multibody system can be defined as:

δW = δW inert + δW ext − δW int − δWdamp (2.1)
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FIGURE 2.1: Example of a multibody system

where δW inert, δW ext, δW int and δWdamp are the virtual works of the inertial, exter-
nal, internal and damping forces, respectively. Assuming that the system is repre-
sented by the generalized coordinates q, these virtual works are defined as:

δW inert = −δqT(M (q)q̈ + f gyr(q, q̇)) (2.2a)

δW ext = δqTf ext(q, t) (2.2b)

δW int = δqTf int(q) (2.2c)

δWdamp = δqTf damp(q, q̇) (2.2d)

where δq are virtual displacements, i.e., infinitesimal displacements which do not
modify the forces in the system, M is the mass matrix, q̇ is the derivative of q with
respect to time, q̈ are the accelerations of the system, and f gyr, f ext, f int, f damp are
the gyroscopic, external, internal and damping forces of the system.

Then, replacing Eq. (2.2) in (2.1) the total virtual work can be expressed as:

δW = δqT(−M (q)q̈ + f (q, q̇, t)) (2.3)

where f (q, q̇, t) = f ext(t)− f damp(q, q̇)− f int(q)− f gyr(q, q̇) is the sum of the ex-
ternal, damping, internal and gyroscopic forces.

The d’Alembert principle states that an unconstrained system is in dynamic equi-
librium if and only if the virtual work vanishes for any arbitrary virtual displace-
ments δq:

δW = 0 ∀ δq (2.4)
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Therefore, the equations of motion for an unconstrained system has the form:

M (q)q̈ = f (q, q̇, t) (2.5)

For constrained systems the constraint force f c term appears. A bilateral constraint
gU (q) = 0 is ideal if, for any virtual displacement compatible with the constraints,
the virtual work of the constraint forces vanishes. Therefore, the virtual work of the
constraints forces satisfies

δW c = δqTf c = 0 ∀ δq satisfying gUq δq = 0 (2.6)

where gUq is the constraint gradient matrix. Since the constraint forces do no make
any virtual work, they do not appear in the d’Alembert principle.

For systems with workless constraints, using the Lagrangian multiplier methods,
the equations of motion can be expressed as:

q̇ = v (2.7a)

M (q) v̇ − gUq (q)TλU = f (q,v, t) (2.7b)

gU (q) = 0 (2.7c)

where v is the velocity vector and λU is the vector of Lagrange multipliers associ-
ated with constraints, which represents the reaction forces of the constraints. As the
bilateral constraints are algebraic equations Eq. (2.7) is a DAE.

2.3 Multibody systems with contacts

The bilateral constraints are permanently active, and can be used to represent the
restrictions imposed by a kinematic joint that connects different bodies. On the other
hand, unilateral constraints can be active or inactive depending on the system state.
For example, they may represent a non-penetration condition of a contact between
bodies.

In a first approach, the unilateral constraints for a contact condition gU (q) ≥ 0
are presented assuming that no impact occurs in the system. It means that detach-
ment phenomena may occur during the motion or the velocities are small enough to
neglect any impact contribution. Under this assumption the equations of motion are
expressed as:

q̇ = v (2.8a)

M (q) v̇ − gq(q)Tλ = f (q,v, t) (2.8b)

gU (q) = 0 (2.8c)

0 ≤ gU (q) ⊥ λU ≥ 0 (2.8d)
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where Eq. (2.8d) represents the complementarity condition between the two terms,
gU (q) and λU . The unilateral constraints are also ideal in that case [69].

The total set of constraints includes two sets, the set of unilateral constraints U ,
and its complementary set U which is the set of bilateral constraints. In that way we
have:

g =

[
gU

gU

]
, λ =

[
λU

λU

]
(2.9)

A complementarity condition for two positive variables a and b is represented
by the symbol 0 ≤ a ⊥ b ≥ 0 and it imposes a ≥ 0, b ≥ 0 and ab = 0. In the
field of contact mechanics the complementarity condition in Eq. (2.8d) is known as
Hertz - Signorini - Moreau condition [8], and is illustrated in Fig. 2.2. It models
the physical behavior of a frictionless contact, ensuring that interacting bodies do
not penetrate and allowing only repulsive forces between them. The first concept is
represented by gj(q) ≥ 0 meaning that the gap between the bodies is always greater
than zero, and the second one by λj ≥ 0, where the super index j indicates each one
of the contacts of the system and λj is the reaction force between the bodies, which
should be positive if we assume that the contact force is always repulsive. Finally,
the contact law relating the gap gj and the reaction forces λj is not represented by
a function allowing to compute the force from the gap in an unidirectional way. In
contrast, it is a set-valued law, in which one value of gj can map to several values
of λj depending on the state of the system, and both variables should always satisfy
gj(q)λj = 0. As can be seen in Fig. 2.2, when the contact is active gj = 0 and the
reaction force can take any value between zero and infinite. A deeper explanation
about set-valued functions can be found in the book of Leine and van de Wouw [28].

gj

λj

FIGURE 2.2: Contact complementarity condition

If the constraints are satisfied at position level for a finite interval of time, their
first and second derivative are also zero. The derivative of the bilateral constraints
at position level in Eq. (2.8c) has the expression:

dgU (q(t))
dt

= gUq (q)v (2.10)
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The equations of motion in Eq. (2.8) can be written with the constraints formulated
at velocity level as:

q̇ = v (2.11a)

M (q) v̇ − gq(q)Tλ = f (q,v, t) (2.11b)

gUq (q)v = 0 (2.11c)

if gj(q) ≤ 0; then 0 ≤ g j
q(q)v ⊥ λj ≥ 0, ∀j ∈ U (2.11d)

Equation (2.11d) reflects that the unilateral constraint at velocity level should
only be considered when the contact is closed at position level, i.e., when g j(q) ≤ 0.
For the case of systems without impact it is possible to formulate the equations of
motion imposing the constraints at acceleration level, see e.g., Brüls et al. [10]. But in
the cases of nonsmooth systems with impacts it is not possible to express the equa-
tions of motion with the constraints at acceleration level because the acceleration is
not defined at the impact instants.

2.4 Impacts between rigid bodies

In Fig. 2.3 the collision of two rigid bodies is represented, where g is the gap distance
between the two bodies and vA and vB are the velocities of the bodies A and B,
respectively. When the two bodies collide the impact occurs instantaneously, which
means that it occurs in an infinitesimal amount of time. At the impact instant ti, the
gap g becomes zero and a reaction impulse pi appears which modifies the velocities
in order to prevent any penetration. The impulse of the reaction force due to the
impact at the impact time ti is defined as:

pi = lim
∆t→0

∫
[ti ,ti+∆t)

λ(τ)dτ (2.12)

where λ(τ) represents the force during the collision, which is zero outside the time
interval [ti, ti +∆t), and ∆t is the impact duration. Since the duration of the collision
is infinitesimal, it means that ∆t → 0. The Lebesgue integral of Eq. (2.12) should be
zero, unless λ(τ) takes infinite values. It follows that λ(·) is not a classical function
of time, but that the theory of distributions or measures should be used. For exam-
ple, the Dirac measure at time ti, denoted as δti , satisfies

∫
[ti ,ti+∆t) δti = 1. We can

then define pi =
∫
[ti ,ti+∆t) piδti [24]. A consequence of this approach is that the im-

pacts imply a discontinuity in the velocity. These discontinuities are modeled with
an impact law, which relates the pre- and post- system state with a coefficient of
restitution (COR). The most common are the Newton and Poisson impact laws. The
first is a kinematic law since its COR relates the velocities before and after the con-
tact, while the second is a kinetic law because its COR relates the impulses [24]. In
literature, one also refers to an energetic COR that relates the kinetic energies, before
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and after the contact. However, Pérès [70] proved for the frictionless case that the
kinetic and energetic CORs are equal.

In this thesis, the Newton’s impact law [24] is used to describe frictionless im-
pacts between rigid bodies. It is written as:

◦gj = gj
q(q(ti))v(ti) + ejgj

q(q(ti))v
−(ti) = 0 ∀j ∈ U (2.13)

where ej ∈ [0, 1] is the coefficient of restitution, v−(ti) is the pre-impact velocity
and v(ti) is the post-impact velocity. This coefficient is the ratio between the post-
impact and the pre-impact velocity for a given contact. It can not be greater than
1 because no energy can be generated during the impact. In the case of a collision
between rigid bodies this coefficient represents the dissipated energy during the im-
pact. To formulate a dynamic contact problem for flexible bodies, an impact law
is not needed. In this case, the duration of the contact is finite. After space and
time discretization, a coefficient of restitution is sometimes introduced to control the
numerical response. The physical meaning of the COR in this context is a delicate
question, and the common approach is to use ej = 0 to impose the constraints at
velocity level g j

q(q(ti))v(ti) = 0 when the constraint is active [71]. When the bod-
ies enter in contact the kinetic energy of the elements of the meshes at the contact
surface is dissipated. This means that the amount of dissipated energy is propor-
tional to the size of the elements and will converge to zero with mesh refinement.
The restitution coefficient is an experimental coefficient which depends on several
variables, and not only the material. For example two rigid spheres colliding will
have different restitution coefficient than a cube colliding a surface even if they have
the same material. The most influent variables are the bodies shapes, the size, the
masses, the elastic modulus and the material dissipation parameters [24].

g

vA

vB

(a)

λ

−λ

(b)

FIGURE 2.3: Contact between two rigid bodies: (a) Before the contact.
(b) Instant of the contact.

This velocity discontinuity can be illustrated in the simple example of the bounc-
ing ball. It consists of a rigid ball of mass m falling vertically due to the gravity
ag and bouncing against a rigid surface. The impact process is modeled using the
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Newton’s impact law with a COR e = 0.8. If the velocity is analyzed in an infinites-
imal amount of time, ∆t → 0, which captures the collision instant, it is observed
that the direction of the velocity has been inverted. The difference between the pre-
and post- impact velocities is the aforementioned discontinuity called velocity jump.
The position and velocity of the bouncing ball are shown in Fig. 2.4. The position
is continuous but not differentiable at the instants where the contact occurs, unlike
the velocity, which shows instantaneous jumps in these instants. Then the reaction
force at these points, to be compatible with the representation of the velocity jumps,
is an impulse which is described as a Dirac measure. In this example, the ball stabi-
lizes itself in the closed contact state after a finite duration, but an infinite number of
impacts events occurs. This phenomenon is an impact accumulation phenomenon.
The equations of motion for this one degree-of-freedom example are expressed as
follows. If there is no impact, they take the form

q̇ = v (2.14a)

mv̇ + λ = −mag (2.14b)

0 ≤ q ⊥ λ ≥ 0 (2.14c)

and at the impact time ti, they become

m(v+i − v−i ) + pi = 0 (2.15a)

if q ≤ 0; then 0 ≤ v+i + ev−i ⊥ pi ≥ 0 (2.15b)

where q is the position of the ball in the vertical axis, v the vertical velocity of the ball,
ag the gravity acceleration and the subindex i identify the impact instants. Equa-
tions (2.14a-2.14c) represent the smooth part of motion and Eqs. (2.15a, 2.15b) the
impact motion, where Eq. (2.15a) is the balance of impulses and Eq. (2.15b) is the
Newton’s impact law.

2.5 Multibody systems with impacts

In this section the formulation of the equations of motion of a multibody system is
extended to deal with impact phenomena. In the impact instants the velocity field
undergoes instantaneous changes, which means that it is no longer continuous and
differentiable and it presents some jumps. Therefore, it makes sense to split the
equations of motion in two sets of equations. The first one accounts for the motion
for almost every time t,

M (q)v̇ − gT
q λ = f (q,v, t) (2.16a)

gU (q) = 0 (2.16b)

0 ≤ gU (q) ⊥ λU ≥ 0 (2.16c)
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FIGURE 2.4: Bouncing ball example. Initial height h = 0.8 m, mass
m = 1 kg, COR e = 0.8 and ag = 9.8 m/s2.

and the second represents the contribution due to impacts at time ti

M (q) (v(ti)− v−(ti))− gT
q pi = 0 (2.16d)

gUq v(ti) = 0 (2.16e)

if gj(q(ti)) ≤ 0 then 0 ≤ gj
q v(ti) + ej gj

q v
−(ti) ⊥ pj

i ≥ 0, ∀j ∈ U (2.16f)

Due to the non differentiability of the velocity field, the acceleration is not well
defined in the usual sense and the dynamics can no longer be represented by ODE
or DAE. Instead formulations in terms of measures can be used as suggested by
Moreau [58]. The main advantage of formulations in measures is that they can ac-
count for jumps in the state evolution. A detailed explanation of the mathematical
background behind the theory of measures and its application to contact dynam-
ics can be found in [24, 28, 72], nevertheless a review of the concepts of absolutely
continuous function, step function and function of locally bounded variation are re-
viewed to ease the understanding of the next section.
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Definition 1. (Absolutely continuous function).

A function f : I → Rn is said to be absolutely continuous on a real interval I if,
for every ε > 0, there exists δ > 0 such that,

m

∑
i=1
‖f (bi)− f (ai)‖ < ε (2.17)

for any m and every finite collection of pairwise disjoint intervals [ai, bi] ∈ I satisfy-
ing

m

∑
i=1

(bi − ai) < δ (2.18)

These functions have the property that they can be obtained from integration of their
derivative, which exists almost everywhere [28]. The absolute continuity property
is easier to understand showing a counter example. Figure 2.5(a) shows f = 1/2x
on I = [0, xmax]. For a given ε and m = 1, it is not possible to find a δ such that
Eq. (2.17) is satisfied on any subinterval satisfying Eq. (2.18)

x

f (x)

δ2

ε

δ1

ε

(a)

x

f (x)

Z1 Z2 Z3 Z4

(b)

FIGURE 2.5: (a) Example of non absolutely continuous function.
(b) Example of step function.

Definition 2. (Step function).

A step function is constant in almost its full domain, and is composed of different
constant functions as seen in Fig. 2.5(b). More formally, a function f : I → R, which
takes a finite number of values on the domain I is called a step function, such that

f (x) =
m

∑
i=1

αiΨZi(x) (2.19)
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where m ∈ N, αi ∈ R and the indicator function ΨZi : I → R, of a set Zi ∈ R is
defined as:

ψZi(x) =

{
1 if x ∈ Zi

0 otherwise
(2.20)

x

f (x)

4

f (x) = x cos(15/x) for x ∈ (0, 4]

FIGURE 2.6: Example of a function which is not of locally bounded
variation

Definition 3. (Function of locally bounded variation).

A function f : I → X is of locally bounded variation if and only if

sup
n

∑
i=1
‖f (xi)− f (xi−1)‖ < ∞ (2.21)

for every compact subinterval [a,b], where the supremum is taken over all strictly
increasing finite sequences x1 < x2 < ... < xn of points on [a,b]. In the case of a
function with one variable, being of locally bounded variation can be visualized as
the fact that the distance in the vertical axis direction traveled by a point that follows
the graph takes a finite value. In Fig. 2.6 a counter example of locally bounded
variation function is presented.

Every function of locally bounded variation f can be decomposed as the sum of
three different functions of locally bounded variation as:

f = fabs + fstep + fsing (2.22)

where:

• fabs is absolutely continuous.
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• fstep is a step function which is constant almost everywhere.

• fsing is singular, which means it is a nonconstant continuous function with a
derivative which is zero almost everywhere [28].

As seen in Section 2.4 the impact between rigid bodies creates jumps in the ve-
locity field. Due to these jumps, the accelerations and forces are not defined at the
instant of the impacts. This problem can be illustrated by checking the step function
s shown in Fig. 2.7(c), which has a unit jump for t = 0. Its derivative is zero for al-
most all time except at the instant t = 0, where it is infinite as in Fig. 2.7(d). Fig. 2.7(a)
shows the function sε(t) which approximates s(t) when ε→ 0 and Fig. 2.7(b) shows
its derivative dsε/dt. Therefore, the derivative of the step function s is defined as
the Dirac function δ0 defined as:

δ0 =

{
+∞ if x = 0

0 if x 6= 0
,

∫ ∞

−∞
δ0(t)dt = 1 (2.23)
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t

δ0

ε
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FIGURE 2.7: (a) sε(t) function, ε ≥ 0. (b) Derivative of sε(t) function,
ε ≥ 0. (c) Step function s(t). (d) Derivative of s(t), Dirac function.

Assuming that the velocity is a function of bounded variation, analogously to
Eq. (2.22) it can be decomposed as:

v = vcont + vstep + vsingular (2.24)

where vcont represent the smooth part of the motion and vstep is the nonsmooth part
which represents the impacts effects. Finally, vsingular is considered as zero, as it is
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usually done when mechanical systems are studied [28, 72]. This decomposition is
illustrated in Fig. 2.8.

t

v(t)

(a)

t

vcont(t)

(b)

t

vstep(t)

(c)

FIGURE 2.8: Velocity decomposition

As the accelerations and forces are not defined in the case of an impact, their
description is replaced by the measures dv and di, respectively. First, it is necessary
to introduce the right and left limits, which always exist for a bounded variation
function:

q̇+(t) = lim
τ→t,τ>t

q̇(τ), q̇−(t) = lim
τ→t,τ<t

q̇(τ) (2.25)

v+(t) = lim
τ→t,τ>t

v(τ), v−(t) = lim
τ→t,τ<t

v(τ) (2.26)

For simplicity v(t) and q̇(t) will be used to denote v+(t) and q̇+(t), respectively.
The measure dv admits the decomposition

dv = dvcont + dvstep = v̇ dt + ∑
i
(v(ti)− v−(ti)) δti (2.27)

where dt is the Lebesgue measure, i represents the index of a specific impact, δti is the
Dirac delta supported at ti and since vsingular is assumed to be zero also its measure
dvsingular = 0. In the same way the measure di which represents the impulse of the
reaction forces is decomposed as

di = λ dt + ∑
i
pi δti (2.28)

where λ is the Lagrange multiplier vector which is associated to the smooth motion
and pi is the impulse of the reaction force produced due to the impact at time ti. The
equations of motion can be written in terms of these measures with the constraints
imposed at position level:

q̇ = v (2.29a)

M (q)dv − gq(q)Tdi = f (q,v, t)dt (2.29b)

gU (q) = 0 (2.29c)

0 ≤ gU (q) ⊥ diU ≥ 0 (2.29d)
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Finally, to complete the equations of motion, an impact law is needed to specify
the post-impact velocity. In this work the aforementioned Newton’s impact law is
used. As proposed by Moreau [73], this impact law can be embedded in the equa-
tions of motion imposing the constraints at velocity level, which results in the final
equations of motion used to represent the multibody system involving contacts and
impacts as:

q̇ = v (2.30a)

M (q)dv − gq(q)Tdi = f (q,v, t)dt (2.30b)

−gU (q)v = 0 (2.30c)

if gj(q) ≤ 0; then 0 ≤ gj
q(q)v + ejgj

q(q)v
− ⊥ dij ≥ 0, ∀j ∈ U (2.30d)

The Moreau’s viability lemma ensures that the solution to Eq. (2.30) with the
constraints at velocity level also satisfies the constraints at position level, in Eq. (2.29c,
2.29d). A more detailed explanation of this lemma can be found in [24, 27].

The sign of the bilateral constraints is an arbitrary choice, and the minus sign is
introduced in Eq. (2.30c) because in that way, for the frictionless cases, the tangent
matrix is symmetric as will be seen later.

2.6 Differential inclusions

Convex analysis provides a series of useful tools to deal with set-valued functions
and express them as differential inclusions. In what follows, a brief explanation of
the key concepts used in this thesis is presented.

The indicator function, normally symbolized by ψC denotes the membership of
an element to a set C. For a value x1 belonging to the set, x1 ∈ C, the indicator
function is zero, ψC(x1) = 0. If the value x1 does not belong to the set, x1 /∈ C, the
indicator function is infinity, ψC(x1) = ∞, as shown in Fig. 2.9. The contact comple-
mentarity condition, Fig. 2.2, can be defined using the indicator function of the real
half line R+, denoted by ψ+

R , and its subdifferential function ∂ψR+ , represented in
Fig. 2.10. The function ψR+ takes the following form:

ψR+(x) =

{
0 if x ≥ 0
∞ if x < 0

(2.31)
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which means that only real positive values belong to the set R+. Its subdifferential
has the expression of the following set-valued function:

∂ψR+(x) =


0 if x > 0

(−∞, 0] if x = 0
∅ if x < 0

(2.32)

ψS (x1) = 0

ψS (x2) = +∞

S

FIGURE 2.9: Example of indicator function values of two points for a
set S ∈ R2.

x

ψR+

∞ ∞

(a)

x

∂ψR+

(b)

FIGURE 2.10: (a) Indicator function ψ+
R . (b) Subdifferential ∂ψ+

R .

This set-valued function can be used to define the contact behavior in the normal
direction. Indeed, the set-valued function in Fig. 2.2 can be written as an inclusion
−λj ∈ ∂ΨR+(gj) or −gj ∈ ∂ΨR+(λj). Similarly, the complementarity condition in
Eq. (2.30d) can be written as measure differential inclusion [58]−dij

N ∈ ∂ΨR+(
◦gj

N) if
gj ≤ 0. If the gap in the normal direction is zero gj

N = 0 and ◦gj
N > 0, the reaction

impulse should be zero dij
N = 0. If gj = 0 and ◦gj

N = 0, the reaction impulse should
be positive dij

N ≥ 0. The case ◦gj
N < 0 is not allowed because ∂ΨR+(

◦gj
N) is the empty

set.

2.7 Friction

As mentioned in Section 1.4, the Coulomb’s friction law is commonly adopted to
model multibody systems involving dry frictional contacts due to its simplicity and



30 Chapter 2. Multibody systems with contacts and impacts

the capability to represent the macroscopic behavior of the system, accounting both
for slip and stick phenomena. In this section, impacts are not considered and the
equations of motion (2.30) are adapted to non-impulsive frictional contact problems
adopting the Coulomb’s law. In what follows, a brief explanation of the key concepts
to express the Coulomb’s friction law as an inclusion is presented, a more detailed
mathematical presentation can be found in Glocker [54] , Pfeiffer and Glocker [3],
Leine and van de Wouw [28] and Studer [72].

As introduced in Section 1.4 the Coulomb friction law defines the frictional force
in terms of the normal force and the friction coefficient. In this law the frictional force
is a nonsmooth function represented by the set-valued function shown in Fig. 2.11(a).
To model the frictional contact phenomenon, the frictional force behavior is split
in two different cases, stick and slip. The stick condition occurs when there is
no relative displacement between the two bodies in contact and therefore the fric-
tional force is bounded between zero and the maximum frictional force, which is
‖λTmax‖ = µ‖λN‖. One the other hand the slip phenomenon occurs when sliding
exists between the two surfaces and in this case the frictional force is maximum,
µ‖λN‖.

Relative
velocity

Frictional force

Slip

Stick

(a)

Normal
Force

Tangential force

θµ

Slip

Stick

‖λTmax‖ = µ‖λN‖

(b)

FIGURE 2.11: (a) Coulomb’s frictional law (b) Maximum frictional
force

Fig. 2.11(b) shows the representation of the Coulomb law to discriminate be-
tween stick and slip contact status for the two dimensional case, where the angle of
the maximum frictional force θµ is defined as µ = tanθµ. In spatial cases, Coulomb
law is represented in the 3-dimensional Euclidean space by the so called frictional
cone, consisting of an inverted cone at the origin, as depicted in Fig. 2.12(a).As in
the two dimensional case the tangent of the cone angle θµ is the friction coefficient
µ. The frictional cone surface denoted by C and the sticking condition is written
‖λT‖ < µλN . Then, if the contact reaction is on the cone surface, the contact is in
slip mode and the sliding velocity is in the opposite direction of the frictional force.
The possibility that the reaction force lays outside the cone is non-physical.

For an isotropic Coulomb law the set C(λN) is defined as a disc centered at origin
with a radius equal to µλN , as shown in Fig. 2.12(b). In this figure, the tangential
sliding velocity ġT is represented and is aligned with the frictional force but in the
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opposite direction. The indicator function ψC(λN )
(λT) indicates if λT belongs or not

to the disc C(λN), and since C(λN) is a disc belonging to the Coulomb cone C, it also de-
notes if λ belongs or not to the cone C. The graphical representation of the indicator
function ψC(λN )

(λT) and its subdifferential are depicted in Fig. 2.13. Since λT is a vec-
tor, Fig. 2.13 shows the plot of the norm of the subdiffential function ‖∂ψC(λN )

(λT)‖.
This subdifferential is a vector, and its direction is perpendicular to the disc C(λN) and
points outward the cone. Since the direction of the frictional force is in the opposite
direction of the relative velocity, the relative velocity belongs to −∂ψC(λN )

(λT).

λT1

λT2

λN
C(λN)θµ

(a)

λT1

λT2

µ‖λN‖
ġT

ψC(λN)(λT) = 0

ψC(λN)(λT) = +∞

(b)

FIGURE 2.12: (a) Coulomb cone C. (b) Disc C(λN) of radius equal to
µλN .

‖λT‖

ψC(λN)(λT)

µ‖λN‖

∞ ∞

(a)

‖λT‖

‖∂ψC(λN)(λT)‖

µ‖λN‖
(b)

FIGURE 2.13: (a) Indicator function ψC(λN). (b) Norm of the subdif-
ferential indicator function ∂ψC(λN).

Following this approach the equations of motion of a multibody system with
non-impulsive frictional contact conditions imposing the constraints at velocity level
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can be written as:

q̇ = v (2.33a)

M (q) v̇ − gT
q λ = f (q,v, t) (2.33b)

−gUq v+ = 0 (2.33c)

−g j
Nqv ∈ ∂ψR+(λ

j
N), if gj

N(q) ≤ 0, ∀ j ∈ U (2.33d)

−g j
Tqv ∈ ∂ψC(λj

N)
(λ

j
T), if gj

N(q) ≤ 0, ∀ j ∈ U (2.33e)

2.8 Finite element formulation

The finite element method is based on the idea to decompose a large system into
small but finite elements. Therefore, the contribution of each finite element is com-
puted independently and assembled automatically with the other elements to model
the whole system. The geometrical description is done by nodes and the elements
describe the relation between them.

In multibody systems a node can be used to represent a rigid body, a beam cross-
section or a shell normal direction. Therefore, we assume that each node has six de-
grees of freedom, three translation and three rotations. The configuration of a node
A can be represented by xA andRA, where the translation xA belongs to R3 and the
rotationRA belongs to the group of orthogonal linear transformations SO(3). These
rotation variables evolve on a non-linear space, and in order to solve numerically
the equations of motion a spatial representation is needed. The classical approach
is to introduce a global parametrization of the motion, expressing the rotation trans-
formation with respect to the inertial frame in terms of a chosen set of parameters as
R = R(α1, α2, α3). The minimum number of parameters is indeed three and several
choices are possible, e.g. the Euler angles, the Cartesian rotation vector or the Con-
formal Rotation Vector, see e.g. [5, 74]. This methodology presents some drawbacks,
as the existence of singularities for any of these parametrization. Alternatively, so-
called geometric methods rely on the Lie group structure of the configuration space
and can be used to solve the equations of motion without any global rotation para-
metrization [75, 76]. These methods also naturally preserve the structure of problem.

The configuration of a node qA = (xA,RA) evolves in a Lie group. The formula-
tion of the equations of motion can be done with two different structures. In the first
one, the equation of motions are described on the group of Euclidean transformation
SE(3), while in the second one they are described on the group of R3 × SO(3).

Brüls et al [50] compared the results obtained with the two formulations for the
example of an spinning top. For fast spinning speeds the accuracy is better for the
R3 × SO(3) formulation, whereas the formulation of SE(3) leads to more accurate
results for low spinning speeds. The R3 × SO(3) formulation is closer to standard
approaches modeling of MBS. On the other hand, SE(3) is the proper Lie group of
rigid body motions, which implies better numerical properties for specific MBS [77].



2.8. Finite element formulation 33

In MBS there are several types of elements to represent different mechanical com-
ponents or material behaviors. Some common elements are rigid bodies, flexible
bodies, beams, springs, dampers, hinges and spherical joints. In this work the soft-
ware Oofelie has been used to exploit all the existing element library. Therefore, for
legacy reasons and to ensure the compatibility between the proposed methodology
and all the existing elements in Oofelie, the Lie group formulation R3 × SO(3) has
been chosen.

2.8.1 Lie group formulation

The use of a Lie group formulation allows us to formulate the equations of motion
taking into account the rotation variables without the need of introducing any global
parametrization. This is an advantage since the parametrization of rotation variables
brings strong non-linearities and singularities. In this work, a Lie group formalism
to deal with translation and rotation variables as in [78, 75] has been adopted.

From a geometrical point of view a Lie group is a differentiable manifold G with
a Lie group structure. The composition rule and the inverse are smooth.

By definition a Lie group satisfies the four group axioms:

q1 ◦ q2 ∈ G ∀ q1, q2 ∈ G (2.34a)

(q1 ◦ q2) ◦ q3 = q1 ◦ (q2 ◦ q3) ∀ q1, q2, q3 ∈ G (2.34b)

q1 ◦ E = E ◦ q1 = q1 ∀ q1 ∈ G (2.34c)

∀q1 ∈ G, ∃q−1
1 ∈ G : q−1

1 ◦ q1 = E (2.34d)

where E is the neutral element.
As mentioned before we are interested in the representation of nodal translations

and rotations (x, R) defined on the Lie group R3 × SO(3) formed by the Cartesian
product of R3 and SO(3). An element of this group represents the configuration of
a frame attached to the node by the pair q = (x,R), where x ∈ R3 is the translation
vector and R ∈ SO(3) is the rotation matrix. The set R3 × SO(3) is a 6-dimensional
Lie group with the composition operation defined as (x1,R1) ◦ (x2,R2) = (x1 +

x2,R1R2). The neutral element of R3 × SO(3) is (0, I3×3) and the inverse of q =

(x,R) is q−1 = (−x,RT).
The Lie algebra R3 × so(3) is defined as the tangent space at the neutral element

(0, I3×3). It is a vector space, which is isomorphic to R6 by an invertible linear map-
ping

SR3×SO(3)(·) : R6 → R3 × so(3), v 7→ SR3×SO(3)(v) (2.35)

At any configuration the velocity field v ∈ R6 is related with the time derivative
q̇ by the kinematic compatibility equation

q̇ = q ◦SR3×SO(3)(v) (2.36)
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Actually, the velocity vector is vT = [uTΩT], with u the vector of translational
velocities in the inertial frame and Ω the vector of angular velocities in the body-
attached frame. The operator SR3×SO(3) maps a 6-dimensional velocity vector to
velocity representation in the Lie algebra

SR3×SO(3)(v) = (u,S(Ω)) (2.37)

where the operator S : R3 → R3 ⊗R3 returns a 3× 3 skew-symmetric matrix in the
Lie algebra of SO(3). Therefore Eq. (2.36) yields

ẋ = u (2.38a)

Ṙ = RS(Ω) (2.38b)

Finally, the vector of virtual displacements δq, which is needed in the formula-
tion of d’Alembert principle, is defined as

δq = [δxT δΘT]T (2.39)

where δΘ represents the rotation increment vector such that δR = RS(δΘ).
In addition, the exponential map of a general Lie group G is a mapping from any

element of the Lie algebra g to the Lie group G

exp(·) : g→ G, S(∆q) 7→ q = exp(S(∆q)) (2.40)

where q belongs to the Lie group G, S(∆q) to the Lie algebra g and ∆q to a vector
space.

It should be remarked that with the adoption of this paradigm, in addition to
unilateral constraints, bilateral constraints dealing with kinematic joints and rigid
bodies will have to be managed. Next, let us introduce two examples of bilateral
constraints in multibody systems, the rigid link and the spherical joint.

2.8.2 Rigid link between two nodes

A rigid link represents a fixation between two nodes, node A and node B, keeping
constant the distance between them and the relative orientation. These constraints
can be defined as:

g(q) ≡
{
xB − xA −RAXAB

RT
ARB − I

}
= 0 (2.41)

where RA and RB are the rotation matrices of the nodes A and B, respectively, and
XAB the vector pointing from node A to B in the body-attached frame and q =

(xA,RA,xB,RB). Following this methodology a broad family of joint elements can
be created. For example the formulation of the hinge joint, prismatic joint, cylindrical
joint, planar joint, screw joint, and few others can be found in [5, 6].
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2.8.3 Spherical joint

The spherical joint is one of the simplest constraints to model. It restricts the relative
translations of two nodes, node A and node B, allowing only the relative rotations.
This constraints is defined as:

g(q) ≡ xB − xA = 0 (2.42)

where xA and xB are the positions of the nodes A and B, respectively. This element
can be treated as a constraint between two coordinates or by elimination of some
coordinates.

2.8.4 Spinning top example

−→
E 1

−→
E 2

−→
E 3

O

−→e 2

−→e 1

−→e 3

O′

FIGURE 2.14: Spinning top example

Here, to illustrate the previous concepts, the equations of motion of the spinning
top are described on a Lie group R3 × SO(3). A more detailed description of this
example can be found in [75].

The spinning top consists in a heavy mass with a symmetry axis rotating and
fixed to the ground by a spherical joint as depicted in Fig. 2.14. We consider the ori-
gin of the material frame at the center of mass O′, and the rigid body is linked to the
ground at the origin O. According to our finite element framework the configuration
of the system is represented by q = (x,R), where x is the translation of the center of
mass and R is the rotation matrix. Then the kinetic energy and the potential energy
of the system take the form

K(ẋ, Ω) = 1
2 (mẋ

Tẋ+ ΩTJΩ)

V(q) = −xTmag
(2.43)

where m is the mass, ag is the gravity acceleration, J is the inertial tensor with re-
spect the center of mass in the body attached frame and X is the position of the
center of mass in the reference configuration. To completely define the system, the



36 Chapter 2. Multibody systems with contacts and impacts

translation restriction at the fixation is introduced through bilateral constraints as

g(q) = −RTx+X (2.44)

Applying the d’Alembert principle, the equations of motion for a top spining sys-
tems can be expressed as follows:

ẋ = u (2.45a)

Ṙ = RS(Ω) (2.45b)

mu̇−mag −Rλ = 0 (2.45c)

JΩ̇ + Ω× JΩ +X × λ = 0 (2.45d)

−RTx+X = 0 (2.45e)

where u is the linear velocity and u̇ and Ω̇ represent the linear and angular acceler-
ations, respectively.

Eqs. (2.45a-2.45b) represent the kinematic compatibility conditions for the trans-
lation and rotation variables. The balance of linear and angular momentums is
represented by Eq. (2.45c) and (2.45d). mu̇ represents the inertial forces, mag the
gravitational forces and λ are the Lagrange multipliers associated with the bilateral
constraints, which are the necessary internal reaction forces to satisfy the rigid body
condition between the origin O and the center of mass of the top. In Eq. (2.45d) the
first two terms of the sum represent the inertial forces, including second the gyro-
scopic forces, and the last one represents the constraint forces. Finally, Eq. (2.45e)
imposes the rigid body constraints, ensuring that the distance between the points O
and O′ does not change during the evolution of the system.

2.9 Generalized-α method with a Lie group formulation

As shown in the previous sections, the configuration of a flexible multibody system
can generally be described by a variable q ∈ G, where G is a k-dimensional manifold
with a matrix Lie group structure. Then the equations of motions can be solved using
a Lie group time integrator. The generalized-α scheme was extended to systems on
Lie group in [75]:

M (qn+1)v̇n+1 + g
T
q (qn+1)λn+1 = −f (qn+1,vn+1, tn+1) (2.46a)

g(qn+1) = 0 (2.46b)

qn+1 = qn ◦ exp(hS(∆qn)) (2.46c)

∆qn = vn + (0.5− β)han + βhan+1 (2.46d)

vn+1 = vn + (1− γ)han + γhan+1 (2.46e)

(1− αm)an+1 + αman = (1− α f )v̇n+1 + α f v̇n (2.46f)
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where h is the time step, ∆q can be interpreted as an average velocity field in the
time step, and αm, α f , β and γ are numerical parameters related to the generalized-
α scheme. According to [48], these coefficients can be defined from the so-called
spectral radius at infinity, ρ∞ ∈ [0, 1], as:

αm =
2ρ∞ − 1
ρ∞ + 1

, α f =
ρ∞

ρ∞ + 1
, γ = 0.5 + α f − αm, β = 0.25(γ + 0.5)2 (2.47)

The numerical coefficients are thus chosen to achieve a desired level of high-frequency
dissipation, while minimizing unwanted low-frequency dissipation. No dissipation
is achieved for a spectral radius ρ∞ = 1, while a high level of dissipation is achieved
for ρ∞ = 0, annihilating the high-frequency response after one time step. Chung and
Hubert [48] also demonstrate that the method is unconditionally stable for:

αm ≤ α f ≤
1
2

, β ≥ 1
4
+

1
2
(α f − αm) (2.48)

The generalized-α method includes other methods as special cases, like the HHT
method (αm = 0, α f ∈ [0, 1/3]) or the Newmark algorithm (α f = αm = 0) [60].
As mentioned in Section 1.6 the second-order convergence of the generalized-α for
constrained mechanical systems is proven in [79]. Second-order accuracy is a de-
sirable property to capture the vibration effects of the flexible bodies, which can be
particularly determinant for flexible bodies subject to impacts.

As mentioned at the beginning of this section, it is observed that no parametri-
zation of rotations is needed to solve the equations of motion using the Lie group
generalized-α method presented in Eq. (2.46).

2.10 Summary

This chapter presents the equations of motion for MBS with rigid/flexible bodies,
bilateral constraints and unilateral frictional contact conditions. The system is repre-
sented according to the finite element approach and the nodal translation and rota-
tion variables are treated as elements of the Lie group R3 × SO(3). The equations of
motion are introduced gradually, starting from the virtual work principle which re-
sults in a DAE system to represent constrained MBS. A nonsmooth formalism is then
introduced for the description of impacts and discontinuous phenomena. Comple-
mentarity conditions and inclusions are exploited to properly represent the unilat-
eral constraints and the frictional Coulomb law. Finally the Lie group generalized-α
time integrator for dynamic mechanical systems is introduced. The extension of this
solver to deal with nonsmooth dynamic systems will be addressed in the next chap-
ter.





39

Chapter 3

Nonsmooth generalized-α solver

This chapter presents the development of a robust and accurate time integrator for
the dynamic simulation of multibody systems composed by rigid and/or flexible
bodies subject to frictionless contacts and impacts. Its content is adapted from the
paper [80]. The nonsmooth generalized-α scheme (NSGA) is a time-stepping in-
tegrator which is able to deal well with nonsmooth dynamical problems avoiding
any constraint drift phenomena and capturing vibration effects without introduc-
ing too much numerical dissipation. However, when dealing with problems in-
volving nonlinear bilateral constraints and/or flexible elements, it is necessary to
adopt small stepsizes to ensure the convergence of the numerical scheme. In order
to tackle these problems more efficiently, a decoupled version of the original non-
smooth generalized-α method is proposed in this work. The chapter is structured
as follows. First, the equations of motion are introduced, then the new splitting
strategy for the NSGA is presented and the algorithm is explained in detail. Finally
several examples are considered to assess its accuracy and robustness.

3.1 Equations of motion

In this chapter, we consider that the configuration of the system is represented by a
vector q. The complexities of the treatment of rotational variables are thus left aside
for the moment.

After spatial semi-discretization, the equations of motion for a frictionless multi-
body system with unilateral and bilateral constraints expressed at velocity level are
written in the following form:

q̇+ = v+ (3.1a)

M (q)dv − gT
q di = f (q,v, t)dt (3.1b)

−gUq v+ = 0 (3.1c)

if gj(q) ≤ 0 then 0 ≤ gj
q v

+ + ej gj
q v
− ⊥ dij ≥ 0, ∀ j ∈ U (3.1d)

where

• t is time, and dt is the corresponding standard Lebesgue measure.
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• q(t) is the vector of coordinates, which are absolutely continuous in time.

• U denotes the set of indices of the unilateral constraints, U is its complementar-
ity set, i.e., the set of bilateral constraints, C = U ∪U is the full set of constraints.

• g is the combined set of bilateral and unilateral constraints, and gq(q) is the
corresponding matrix of constraint gradients.

• q̇+(t) = limτ→t,τ>t q̇(τ) and v+(t) = limτ→t,τ>t v(τ) are the right limits of
the velocity, which are functions of bounded variations. Similarly, v−(t) =

limτ→t,τ<t v(τ) is the left limit of the velocity. It is assumed, without loss of
generality, that v+ and v− are related to an impact event by the Newton im-
pact law gj

qv+(t) = −ej gj
qv−(t), where ej is the coefficient of restitution at the

contact point j ∈ U . In what follows, for simplicity v(t) and q̇(t) will be used
to denote v+(t) and q̇+(t), respectively.

• f (q,v, t) = f ext(t) − f cin(q,v) − f damp(q,v) − f int(q) collects the external,
complementary inertia, damping and internal forces.

• M (q) is the mass matrix which may, in general, depend on the coordinates.

• dv is the differential measure associated with the velocity v assumed to be of
bounded variations.

• di is the impulse measure of the unilateral contact reaction and the bilateral
constraint forces.

• The measures dv and di have the following decomposition:

dv = v̇ dt + ∑
i
(v(ti)− v−(ti)) δti (3.2)

di = λ dt + ∑
i
pi δti (3.3)

where λ is the vector of smooth Lagrange multipliers associated with the Le-
besgue measurable constraint forces, δti the Dirac delta supported at ti, and pi

is the impulse producing the jump at the instant ti.

3.2 Decoupled version of the NSGA method

The original NSGA method proposed by Brüls et al. [50] is characterized by three
coupled sub-problems: one for the smooth part of motion, and two others for the
nonsmooth contributions at position and velocity levels. In order to avoid solving
the three systems of equations monolithically, the terms coupling the smooth pre-
diction to the corrections at position and at velocity levels are neglected. However,
as it will be shown in the numerical examples, this can have serious consequences
on the convergence of the method.
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The derivation of the time integration scheme to be proposed here follows the
same key steps as described in [50]. However, two differences should be highlighted.
Firstly, the splitting is modified in order to ensure a full decoupling of the different
subsets of equations. Secondly, the equations are formulated using an augmented
Lagrangian approach which combines Lagrange multiplier and penalty terms. The
advantage of using an augmented Lagrangian method is the presence of a penalty
term which adds convexity to the objective function and improves the convergence
of the Newton iteration far from the solution. This factor does not influence the
accuracy of the computed solution [5].

3.2.1 Splitting strategy

The splitting of the variables aims at isolating the impulsive terms from the smooth
contributions to the motion. Let us consider a time interval (tn, tn+1], and let ˙̃v(t)
be a function of bounded variations, which can be defined in several different ways
as it will be discussed below. Then, the nonsmooth impulsive contribution to the
motion dw can be defined by decomposing the measure of the velocity dv as

dv = dw+ ˙̃v dt (3.4)

where ˙̃v dt is a purely diffuse measure. The smooth contribution to the velocity field,
denoted by ṽ(t), is computed by integration of ˙̃v(t) with the initial values ṽ(tn) =

v(tn). On the other hand, the smooth contribution to the position, denoted as q̃(t),
is computed by integration of ˙̃q(t) = ṽ(t) with the initial values q̃(tn) = q(tn). By
construction, the variables ṽ(t) and q̃(t) are absolutely continuous and C1 in time,
respectively. In this sense, they only capture a smooth part of the motion.

The smooth part of the trajectory is obtained from the time integration of the
acceleration variable ˙̃v by a second order method, whereas dw is integrated using
a first-order Euler implicit scheme. Hence, it is recommended to capture as much
information as possible in ˙̃v to gain accuracy. Several alternatives exist for defining
the smooth part of motion in the splitting, as described next.

• The optimal choice would be to take ˙̃v , v̇, so that ˙̃v captures all diffuse con-
tributions in the equation of motion. This alternative was investigated in [71]
based on a formulation of the constraints at acceleration level, bringing certain
advantages such as the elimination of spurious oscillations of the constraints
after impact events.

• Some simplifications can be proposed to avoid the need of using acceleration
constraints and to eliminate the Linear Complementarity Problem (LCP) in the
definition of ˙̃v. For instance, Chen et al. [60] defined ˙̃v to satisfy the equations
of motion at almost any time t (when there is no impact) without accounting
for the bilateral and the unilateral constraints and associated forces.
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• A third alternative is proposed in [50], in which a compromise between the
option of taking ˙̃v , v̇ and that of Chen et al. [60] is made by defining an initial
value problem for the smooth contributions in which the bilateral constraints
and forces are considered. In this case, the smooth contributions to the position
q̃(t), the velocity ṽ(t), the acceleration ˙̃v(t) and the Lagrange multiplier λ̃(t)
satisfy

˙̃q = ṽ (3.5a)

M (q) ˙̃v − gT
q λ̃ = f (q,v, t) (3.5b)

−gUq (q) ṽ = 0 (3.5c)

λ̃U = 0 (3.5d)

with the initial values ṽ(tn) = v(tn) and q̃(tn) = q(tn). It is remarked that only
bilateral constraints at velocity level are taken into account in this formulation
and that the Lagrange multipliers of the unilateral constraints are set to zero.

• A fourth alternative could be obtained by setting the smooth acceleration vari-
able ˙̃v to zero so that all the dynamics would be integrated using the Euler
implicit method (with a loss of accuracy with respect to the other options).

• The first three alternatives for the definition of ˙̃v have the disadvantage that
the resulting equations depend on the total position and velocity, that is, they
depend not only on the smooth components of the position and the velocity,
but also on the nonsmooth (impulsive) components. Therefore, these formu-
lations are characterized by a smooth sub-problem which is coupled with the
set of equations defining the nonsmooth contributions. In order to avoid this
coupling, we propose to define the smooth sub-problem as the solution of the
following initial value problem:

˙̃q = ṽ (3.6a)

M (q̃) ˙̃v − gT
q̃ λ̃ = f (q̃, ṽ, t) (3.6b)

−gUq̃ (q̃) ṽ = 0 (3.6c)

λ̃U = 0 (3.6d)

with the initial values ṽ(tn) = v(tn) and q̃(tn) = q(tn), and where the ma-
trix of constraint gradients gq̃(q̃) is computed in terms of q̃ only. It should be
observed that this fifth definition of ˙̃v only depends on the smooth contribu-
tions to the motion, q̃ and ṽ, a property that naturally leads to a sequence of
decoupled sub-problems.

An elimination of dv and ˙̃v from Eqs. (3.1b, 3.4, 3.6b) yields the equations for the
nonsmooth contributions

M (q)dw− gT
q [di− λ̃ dt] = f ∗(q,v, q̃, ṽ, ˙̃v, t)dt (3.7)
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together with the set of bilateral and unilateral constraints Eqs. (3.1c-3.1d), and where

f ∗(q,v, q̃, ṽ, ˙̃v, t) = f (q,v, t)− f (q̃, ṽ, t) + (gT
q − gT

q̃ )λ̃− (M (q)−M (q̃)) ˙̃v (3.8)

3.2.2 Constraints at position and velocity levels

The constraints in the derived set of equations are imposed at velocity level only.
Moreau’s viability Lemma [73] implies that the exact solution of these equations
also satisfies the constraints at position level. However, the numerical solution will
not satisfy them at position level because of a drift phenomenon. Therefore, the
equations of motion are reformulated as in [50] such that the unilateral and bilateral
constraints appear both at position and velocity levels. This procedure is inspired
by the index-reduction proposed by Gear, Gupta and Leimkuhler for bilaterally con-
strained mechanical systems [62]. By introducing an additional Lagrange multiplier
µ, the velocity equation (3.1a) is relaxed:

M (q)q̇ =M (q)v + gT
q µ (3.9)

and by adding the constraints on position, the set of equations to be solved becomes

M (q̃) ˙̃v − gU ,T
q̃ λ̃U = f (q̃, ṽ, t) (3.10a)

−gUq̃ ṽ = 0 (3.10b)

λ̃U = 0 (3.10c)

dv = dw+ ˙̃v dt (3.10d)

M (q) q̇ − gT
q µ = M (q) v (3.10e)

−gU (q) = 0 (3.10f)

0 ≤ gU (q) ⊥ µ ≥ 0 (3.10g)

M (q)dw− gT
q [di− λ̃ dt] = f ∗(q,v, q̃, ṽ, ˙̃v, t)dt (3.10h)

−gUq v = 0 (3.10i)

if gj(q) ≤ 0 then 0 ≤ gj
q v + ej gj

q v
− ⊥ dij ≥ 0, ∀j ∈ U (3.10j)

3.2.3 Time stepping scheme

Velocity jump and position correction variables

Time integration of the velocity measure dv, Eq. (3.4), over the time interval (tn, t]
gives

v(t) =
∫
(tn,t]

dw+ ṽ(t) =W (tn; t) + ṽ(t) (3.11)

with the definitionW (tn; t) =
∫
(tn,t] dw and where the properties v(tn) = ṽ(tn) and

q(tn) = q̃(tn) were used. By construction, the nonsmooth variableW (tn; t) captures
all velocity jumps taking place in the interval (tn, t].
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In order to obtain a similar decomposition of the position variable, it is first re-
called that v(t) and q̇(t) are not formally equivalent, where the variable q̇(t) is re-
lated to the position variable q(t) by the relation∫

(tn,t]
q̇(τ)dτ = q(t)− q(tn) (3.12)

Time integration of the smooth component ṽ(t) gives∫
(tn,t]

ṽ(τ)dτ = q̃(t)− q(tn) (3.13)

where the property q̃(tn) = q(tn) was used. Subtracting Eq. (3.13) from Eq. (3.12)
results in

q(t) =
∫
(tn,t]

[q̇(τ)− ṽ(τ)]dτ + q̃(t) = U (tn; t) + q̃(t) (3.14)

with the definition of the position correction U (tn; t) =
∫
(tn,t][q̇(τ)− ṽ(τ)]dτ. Con-

sidering that q(t) is absolutely continuous and that q̃(t) is C1, Eq. (3.14) implies that
U (tn; t) is absolutely continuous on the interval (tn, tn+1].

In summary, we have the following expressions for the splitting of the total ve-
locity and position

v(t) = ṽ(t) +W (tn; t) (3.15a)

q(t) = q̃(t) +U (tn; t) (3.15b)

where the nonsmooth contributionsW (tn; t) and U (tn; t) are defined by

W (tn; t) =
∫
(tn,t]

dw (3.16a)

U (tn; t) =
∫
(tn,t]

[q̇(τ)− ṽ(τ)]dτ (3.16b)

where, by construction,W (tn; tn) = 0 and U (tn; tn) = 0. In what follows, the multi-
pliers Λ(tn; t) and ν(tn; t) are taken as

Λ(tn; t) =
∫
(tn,t]

[di− λ̃(τ)dτ], (3.17a)

ν(tn; t) =
∫
(tn,t]

[µ(τ) + Λ(tn; τ)]dτ, (3.17b)

with Λ(tn; tn) = ν(tn; tn) = 0.

Discrete approximations ofW and U

The discrete approximations of the involved variables are now introduced. The time
instant at which a discretized variable is evaluated will be indicated with a subscript,
e.g., gn+1 represents the approximation of g(tn+1). Also the discrete approximation
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of W (tn; tn+1) (resp. U (tn; tn+1), Λ(tn; tn+1) or ν(tn; tn+1)) will be denoted as Wn+1

(resp., Un+1, Λn+1 or νn+1).
Firstly, a discrete expression for Eq. (3.10h) is obtained by time integration∫
(tn,tn+1]

M (q)dw−
∫
(tn,tn+1]

gT
q [di− λ̃ dt] =

∫
(tn,tn+1]

f ∗(q,v, q̃, ṽ, ˙̃v, t)dt (3.18)

The three terms involved in the above expression can be interpreted as nonsmooth
contributions, in the sense that each of them represents a difference between the
actual motion and the smooth motion. Indeed, dw is the difference between dv
and ˙̃v dt and the expression of f ∗ in (3.8) involves the difference between three
operators (f , gq and M ) evaluated for the actual motion and for the smooth mo-
tion. According to the NSGA method, the integration of these nonsmooth contri-
butions is based on first-order approximations M (q(τ)) = M (q(t)) + O(h) and
gT
q (q(τ)) = gT

q (q(t)) +O(h), ∀τ ∈ (tn, tn+1] and an Euler implicit discretization

∫
(tn,tn+1]

M (q(t))dw 'M (qn+1)
∫
(tn,tn+1]

dw 'M (qn+1)Wn+1 (3.19)∫
(tn,tn+1]

gT
q (q(t)) [di− λ̃ dt] ' gT

q,n+1

∫
(tn,tn+1]

[di− λ̃ dt] ' gT
q,n+1 Λn+1(3.20)∫

(tn,tn+1]
f ∗(q(t),v(t), q̃(t), ṽ(t), ˙̃v(t), t)dt ' hf ∗n+1 (3.21)

This leads to the discrete equation

M (qn+1)Wn+1 − gT
q,n+1 Λn+1 − hf ∗n+1 = 0 (3.22)

Secondly, a discrete expression for Eq. (3.10e) is obtained by time integration∫
(tn,tn+1]

M (q) q̇ dt−
∫
(tn,tn+1]

gT
q µ dt =

∫
(tn,tn+1]

M (q) v dt (3.23)

Then, Eq. (3.15a) is used together with the approximation

M (q(t))W (tn; t) ' gT
q (q(t)) Λ(tn; t) + hf ∗(q(t),v(t), q̃(t), ṽ(t), ˙̃v(t), t) (3.24)

which can be derived in a similar way as Eq. (3.22). We obtain∫
(tn,tn+1]

M (q) (q̇ − ṽ)dt−
∫
(tn,tn+1]

gT
q (Λ(tn; t) + µ(t))dt

= h
∫
(tn,tn+1]

f ∗(q,v, q̃, ṽ, ˙̃v, t)dt
(3.25)

Again, the three terms involved in the above equality are interpreted as nonsmooth
contributions and are thus integrated based on first-order approximations and an
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Euler implicit discretization∫
(tn,tn+1]

M (q) (q̇ − ṽ)dt 'M (qn+1)
∫
(tn,tn+1]

(q̇ − ṽ)dt

'M (qn+1)Un+1

(3.26)

∫
(tn,tn+1]

gT
q (Λ(tn; t) + µ(t))dt ' gT

q,n+1

∫
(tn,tn+1]

(Λ(tn; t) + µ(t))dt

' gT
q,n+1νn+1

(3.27)

and Eq. (3.21). This leads to the discrete equation

M (qn+1)Un+1 − gT
q,n+1νn+1 − h2f ∗n+1 = 0 (3.28)

We will see later that this equation shall be used to compute the position correction
Un+1, after the evaluation of the smooth motion q̃n+1, ṽn+1, ˙̃vn+1 but before the eval-
uation of the velocity jump Wn+1 and of the total velocity vn+1. The dependency
of the operator f ∗ on the velocity then leads to a coupling between the equation for
the position correction and the equation for the velocity jump. The mass matrix de-
pends continuously on the configuration q. Since q = q̃ +U and U is O(h), then
M (q) =M (q̃) +O(h). Therefore, a simplified version of Eq. (3.28) is considered to
avoid the coupling between the position and velocity variables and to eliminate the
dependency of the mass matrix on U

M (q̃n+1)Un+1 − gT
q,n+1νn+1 − h2f

p
n+1 = 0 (3.29)

with

f
p
n+1 = f (qn+1, ṽn+1, tn+1)− f (q̃n+1, ṽn+1, tn+1) + (gT

q,n+1 − gT
q̃,n+1)λ̃n+1 (3.30)

In summary, we get the following discrete equations

M (qn+1)Wn+1 − gT
q,n+1 Λn+1 − hf ∗n+1 = 0 (3.31a)

M (q̃n+1)Un+1 − gT
q,n+1νn+1 − h2f

p
n+1 = 0 (3.31b)

Let us remark that, if impacts occur and h→ 0,W (tn; tn+1) = O(1) and Λ(tn; tn+1) =

O(1) since the velocity may exhibit finite jumps, whereas U (tn; tn+1) = O(h) and
ν(tn; tn+1) = O(h) since the position remain continuous. The position corrections
eliminate the introduced drift, because the exact instant at which impacts develop is
not known, and the velocity jumps are approximated over the time step.

It should be observed that Eqs. (3.31) can be further simplified by neglecting the
terms which are multiplied by h and h2, getting the following results:

M (qn+1)Wn+1 − gT
q,n+1 Λn+1 = 0 (3.32a)

M (q̃n+1) Un+1 − gT
q,n+1 νn+1 = 0 (3.32b)
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By adopting this simplification, the order of the resulting integration algorithm would
still beO(h). However, for some problems it is necessary to use very small stepsizes
for obtaining the accuracy of an integrator based on Eqs. (3.31) as it will be shown
in the numerical examples. It can be argued that the force term f is very sensitive
to the position correction U for problems involving nonlinear flexible components,
and it should be well represented to avoid needing small stepsizes. Therefore, the
complete version of the jump equations in Eqs. (3.31) is retained.

The discrete complementarity conditions at velocity and at position levels are the
same as those introduced in [50]:

if gj(qn+1) ≤ 0 then 0 ≤ gj
q,n+1 vn+1 + ej gj

q,n vn ⊥ Λ
j
n+1 ≥ 0, ∀j ∈ U (3.33a)

0 ≤ gU (qn+1) ⊥ νUn+1 ≥ 0 (3.33b)

The complete time integration scheme is obtained by combining this first-order
approximation of the nonsmooth variables and equations, with a one-step and se-
cond-order time integration scheme for the smooth variables. The generalized-α
method is used for the smooth part, although other DAE time integration schemes
could also be considered. This hybrid time integration scheme is formulated to ad-
vance the solution at each step as follows.

Computation of the smooth motion

As previously proposed in Eqs. (3.10a–3.10c), the smooth motion is defined by a
modified form of the equations of motion at time step n + 1 where the contributions
of the unilateral constraints and associated reaction forces are ignored, i.e.,

M (q̃n+1) ˙̃vn+1 − f (q̃n+1, ṽn+1, tn+1)− gU ,T
q̃,n+1

(
ksλ̃
U
n+1 − psg

U
q̃,n+1 ṽn+1

)
= 0 (3.34a)

−ksg
U
q̃,n+1 ṽn+1 = 0 (3.34b)

where the Lagrange multiplier λ̃U has been augmented with a penalty parameter
ps ≥ 0 in order to add convexity to the objective function [5], and where ks > 0
is a scaling factor for the Lagrange multiplier. The scaling factor ks contributes to
an improvement of the condition number of the iteration matrix yielding a better
convergence rate.

These equations are completed with the difference equations:

q̃n+1 = qn + hvn + h2(0.5− β)an + h2βan+1 (3.35a)

ṽn+1 = vn + h(1− γ)an + hγan+1 (3.35b)

(1− αm)an+1 + αman = (1− α f ) ˙̃vn+1 + α f ˙̃vn (3.35c)

where an+1 is a pseudo acceleration term that arises in the generalized-α integrator
scheme [79]. The numerical coefficients γ, β, αm, and α f can be chosen to achieve a
desired level of high-frequency dissipation, represented by spectral radius at infinity
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ρ∞ ∈ [0, 1], while minimizing unwanted low-frequency dissipation [48]:

αm =
2ρ∞ − 1
ρ∞ + 1

, α f =
ρ∞

ρ∞ + 1
, γ = 0.5 + α f − αm, β = 0.25(γ + 0.5)2 (3.36)

Equations (3.34-3.35) only involve the smooth position q̃n+1 and velocity ṽn+1

and are thus decoupled from the variables Wn+1, Un+1, qn+1, and vn+1. Therefore,
these five equations can be solved for the five variables q̃n+1, ṽn+1, λ̃Un+1, ˙̃vn+1 and
an+1 using a Newton-Raphson algorithm without any information about the other
variables.

Computation of the position correction

After the computation of the smooth motion, the position correction Un+1 is com-
puted in order to obtain a position qn+1 which satisfies the bilateral constraints
gU (qn+1) = 0 and the non-penetration constraints gU (qn+1) ≥ 0. Using Eq. (3.31b)
and the discrete complementarity condition (3.33b), this problem writes

M (q̃n+1)Un+1 − h2f
p
n+1 − gT

q,n+1 νn+1 = 0 (3.37a)

−gU (qn+1) = 0 (3.37b)

0 ≤ gU (qn+1) ⊥ νUn+1 ≥ 0 (3.37c)

An augmented Lagrangian approach as presented by Alart and Curnier [43] is adopted
to solve this LCP. Accordingly, the augmented Lagrangian for the set of bilateral and
unilateral constraints C of the sub-problem at position level is given by

LCp(Un+1, νn+1) = ∑
j∈U

[
−kpν

j
n+1gj

n+1 +
pp

2
gj

n+1gj
n+1 −

1
2pp

dist2(ξ
j
n+1, R+)

]
+ ∑

i∈U

[
−kpνi

n+1gi
n+1 +

pp

2
gi

n+1gi
n+1

] (3.38)

where ξn+1 = kpνn+1 − ppgn+1 is the augmented Lagrange multiplier at position
level with kp > 0 a scaling factor and pp > 0 a penalty coefficient, and where the
distance of a point z ∈ Rn to the convex set C is defined as dist(z, C) = ||z −
prox(z, C)|| with prox(z, C) = argminz∗∈C

1
2 ||z − z∗||2. The adoption of this aug-

mented Lagrangian results in the following set of equations for the sub-problem at
position level:

M (qn+1)Un+1 − h2f
p
n+1 − gA,T

q,n+1 ξAn+1 = 0 (3.39a)

−kpg
A
n+1 = 0 (3.39b)

−
k2

p

pp
νAn+1 = 0 (3.39c)
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where the active set A ≡ An+1 and its complement A ≡ An+1 are given by

An+1 = U ∪
{

j ∈ U : ξ
j
n+1 ≥ 0

}
, (3.40a)

An+1 = C \ An+1 (3.40b)

The terms associated to the constraints were obtained from the stationary condition
δLCp = 0. The resulting set of equations can be solved in terms of the unknown
variables Un+1, qn+1 and νn+1 using a Newton semi-smooth method.

Computation of the velocity jump

After the computation of the position field, the velocity jump Wn+1 is computed
such that the velocity vn+1 satisfies the bilateral constraints gUq vn+1 = 0 and the
impact law gj

q,n+1vn+1 + ejgj
q,nvn ≥ 0 for all unilateral constraints j ∈ U that are

active at position level, i.e., that satisfy ξ
j
n+1 ≥ 0. Using Eq. (3.31a) and the discrete

complementarity condition (3.33a), the equations for this problem are given by

M (qn+1)Wn+1 − hf ∗n+1 − gT
q,n+1Λn+1 = 0 (3.41a)

−gUq,n+1vn+1 = 0 (3.41b)

if gj(qn+1) ≤ 0 then 0 ≤ gj
q,n+1 vn+1 + ej gj

q,n vn ⊥ Λ
j
n+1 ≥ 0, (3.41c)

∀j ∈ U

In order to solve this LCP problem, we proceed in a similar manner as we did for
the sub-problem at position level. However, the activation of a given unilateral con-
straint j ∈ U at velocity level depends on the activation condition gj(qn+1) ≤ 0,
see Eq. (3.41c). This condition is equivalent to ξ

j
n+1 ≥ 0, which is more robust from

the algorithmic point of view, and therefore adopted in this work. The augmented
Lagrange multiplier at velocity level is defined by

σn+1 = kvΛn+1 − pv
◦gn+1 (3.42)

where pv > 0 is the penalty parameter, kv > 0 is the scaling factor for the Lagrange
multiplier Λ, and ◦gn+1 is a notation for the impact law

◦gj
n+1 = gj

q,n+1vn+1 + ejgj
q,nvn (3.43)

which applies to every j ∈ C. The coefficients associated to bilateral constraints are
trivially defined as ej = 0 ∀ j ∈ U . Then, the augmented Lagrangian for this case is
given by

LCv (Wn+1, Λn+1) = ∑
j∈U

[
−kvΛ

j
n+1

◦gj
n+1 +

pv

2
◦gj
n+1

◦gj
n+1 −

1
2pv

dist2(σ
j
n+1, R+)

]
+ ∑

i∈U

[
−kvΛi

n+1
◦gi
n+1 +

pv

2
◦gi
n+1

◦gi
n+1

] (3.44)
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This results in the following set of equations for the problem at velocity level:

M (qn+1)Wn+1 − hf ∗n+1 − gB,T
q,n+1 σBn+1 = 0 (3.45a)

−kv
◦gBn+1 = 0 (3.45b)

− k2
v

pv
ΛBn+1 = 0 (3.45c)

where the active set B ≡ Bn+1 and its complement B ≡ Bn+1 are given by

Bn+1 = U ∪ {j ∈ An+1 : σ
j
n+1 ≥ 0} (3.46a)

Bn+1 = C \ Bn+1 (3.46b)

The terms associated to the constraints were obtained from the stationary condition
δLCv = 0. The resulting set of equations can be solved in terms of the unknown
variablesWn+1, vn+1 and Λn+1 using a Newton semi-smooth method.

Global numerical procedure

The three sub-problems (3.34, 3.39, 3.45) need to be solved at each time step, one
for the smooth motion, another for the position correction, and, lastly, one for the
velocity jump. These are computations which can generally be organized in a se-
quential manner. In [50] and [71], the sub-problem defining the smooth variables
involve the total position qn+1 and velocity vn+1 fields. As a consequence, some
global iterations over the three sub-problems have to be implemented, which tend
to penalize the numerical cost of the procedure. In contrast, the sub-problem defin-
ing the smooth motion is strictly independent of the position correction and velocity
jump, and the problem at position level is independent of the velocity jump. In this
way, the three sub-problems can be solved in a purely decoupled sequential manner.

Each sub-problem can be solved using a semi-smooth Newton method. The
correction terms should satisfy the integration formulae, therefore, the corrections
∆ ˙̃vn+1 and ∆qn can be eliminated in terms of ∆ṽn+1, ∆Wn+1 and ∆Un+1:

∆vn+1 = ∆ṽn+1 + ∆Wn+1 (3.47a)

∆ ˙̃vn+1 = (1− αm)/((1− α f )γh)∆ṽn+1 (3.47b)

∆qn+1 = h β/γ ∆ṽn+1 + ∆Un+1 (3.47c)

Then, the vectors of independent corrections are given by

∆xs =

{
∆ṽn+1

∆λ̃
U
n+1

}
, ∆xp =


∆Un+1

∆νAn+1

∆νAn+1

 , ∆xv =


∆Wn+1

∆ΛBn+1

∆ΛBn+1

 (3.48)
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and the correction equations for each sub-problem are obtained as

Si
t ∆xi = −ri, for i = s, p, v (3.49)

where rs, rp and rv have been used to denote the residuals of Eqs. (3.34), (3.39)
and (3.45), respectively, and where the iteration matrices are given by

Ss
t =

 Ss∗
t −ksg

U ,T
q̃,n+1

−ks

(
gUq̃,n+1 +

hβ
γ G

s
)

0

 (3.50)

S
p
t =


S

p∗
t −kpg

A,T
q,n+1 0

−kpg
A
q,n+1 0 0

0 0 − k2
p

pp
IA

 (3.51)

Sv
t =


Sv∗

t −kvg
B,T
q,n+1 0

−kvg
B
q,n+1 0 0

0 0 − k2
v

pv
IB

 (3.52)

where IA and IB are identity matrices and

Ss∗
t =

1− αm

h(1− α f )γ
M (q̃n+1) +Ct +

hβ

γ
Ks

t ,

Ks
t =

∂
(
M (q̃n+1) ˙̃vn+1 − gU ,T

q̃,n+1 (ksλ̃
U
n+1 − ps g

U
q̃,n+1 ṽn+1) − f (q̃n+1, ṽn+1, tn+1)

)
∂q̃n+1

,

Ct = psg
U ,T
q̃,n+1g

U
q̃,n+1 −

∂f (q̃n+1, ṽn+1, tn+1)

∂ṽn+1
, Gs =

∂(gq̃,n+1ṽn+1)

∂q̃n+1
,

S
p∗
t =M (q̃n+1)−

∂
(
gA,T
q,n+1ξAn+1

)
∂qn+1

− h2 ∂f p(qn+1, q̃n+1, ṽn+1, tn+1)

∂qn+1
,

Sv∗
t =M (qn+1) + pvg

B,T
q,n+1g

B
q,n+1 − h

∂f (qn+1,vn+1, tn+1)

∂vn+1
(3.53)

As mentioned before, the solution does not depend on the value of parameters ks,
kp, kv, ps, pp and pv. Nevertheless, the matrix conditioning and convergence rate do
depend on their values, and therefore they are determined as in [67]:

ks = ps =
m̄
h

, kp = pp = m̄, kv = pv = m̄ (3.54)

where m̄ is a characteristic mass of the problem.
The integrator is summarized in Algorithm 1. The criterion used for checking the

Newton scheme convergence in each sub-problem is denoted simply as ||ri|| < tol,
for i = s, p, v. However, the actual expression of the convergence criterion is given
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by

||ri|| < tolr

(
∑

k
||ri

k||+ tol f

)
(3.55)

where tolr is a given relative tolerance, ri
k is the k-th term contributing to the residual

ri, tol f is a reference value of tolerance and || · || is the L2 norm of ·.
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Algorithm 1 Decoupled nonsmooth generalized-α time integration scheme

1: Inputs: initial values q0 and v0;
2: Compute consistent value of ˙̃v0
3: a0 := ˙̃v0
4: for n = 0 to nfinal − 1 do
5: ˙̃vn+1 := 0, λ̃Un+1 := 0, νn+1 := 0
6: Λn+1 := 0, Un+1 := 0,Wn+1 := 0
7: an+1 := 1/(1− αm)(α f ˙̃vn − αman)
8: vn+1 := ṽn+1 := vn + h(1− γ)an + hγan+1
9: qn+1 := qn + hvn + h2(1/2 − β)an + h2βan+1

10: Step 1 (smooth motion):
11: for i = 1 to imax do
12: Compute residual rs

13: if ||rs|| < tol then break
14: end if
15: Compute the iteration matrix Ss

t
16: ∆xs := −(Ss

t )
−1rs

17: ṽn+1 := ṽn+1 + ∆ṽ
18: ˙̃vn+1 := ˙̃vn+1 + (1− αm)/((1− α f )γh)∆ṽ
19: qn+1 := qn+1 + hβ/γ∆ṽ

20: λ̃
U
n+1 := λ̃

U
n+1 + ∆λ̃

U

21: end for
22: Step 2 (projection on position constraints):
23: for i = 1 to imax do
24: Compute residual rp

25: if ||rp|| < tol then break
26: end if
27: Compute Sp

t
28: ∆xp := −(Sp

t )
−1rp

29: Un+1 := Un+1 + ∆U
30: qn+1 := qn+1 + ∆U
31: νn+1 := νn+1 + ∆ν
32: end for
33: Step 3 (projection on velocity constraints):
34: for i = 1 to imax do
35: Compute residual rv

36: if ||rv|| < tol then break
37: end if
38: Compute Sv

t
39: ∆xv := −(Sv

t )
−1rv

40: Wn+1 :=Wn+1 + ∆W
41: vn+1 := ṽn+1 +Wn+1
42: Λn+1 := Λn+1 + ∆Λ
43: end for
44: an+1 := an+1 + (1− α f )/(1− αm) ˙̃vn+1
45: end for
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3.3 Numerical examples

Four numerical examples are considered to study the accuracy and robustness of the
proposed methodology, Fig. 3.1. Special emphasis is made on showing the improve-
ments brought to the original NSGA [50]. The average and the maximum number
of iterations per time step as well as the rate of convergence with each integrator,
are compared. In the case of the original NSGA, the reported number of iterations is
actually computed as the number of times that a linearized system of equations has
to be solved per global time step. The results obtained with the original NSGA are
denoted by CS (Coupled-Solution), whilst the ones resulting from the new algorithm
are denoted by DS (Decoupled-Solution). The convergence rates are computed with
an error evaluated with the L1 norm:

Error(h) = ∑N
n=0 | fn − f (tn)|
∑N

n=0 | f (tn)|
(3.56)

where N is the number of time steps, fn is the numerical solution and f (tn) is the ref-
erence solution. The reference solution is taken as the numerical solution for a very
small stepsize using the original NSGA. The tolerances tolr and tol f in the conver-
gence criterion of the Newton solver, are both adopted equal to 10−5. The spectral
radius is taken as ρ∞ = 0.8.

Three of the four examples involve a spatial discretization. When performing the
convergence study for these examples, the number of elements is kept constant and
only the time stepsize is varied.

Both integrators have been implemented in the finite element code Oofelie [66].
The finite elements for flexible multibody systems are described in [5] and the co-
ordinates are the nodal absolute translations and rotations. The discretization of
rotation variables relies on a Lie group time integration method directly adapted
from [78].

The examples have been chosen to highlight important aspects of the proposed
strategy. In the first example, the impact of a rigid rectangular parallelepiped body
with a large initial angular velocity is solved to show how the presence of gyroscopic
forces and of the coupling stemming from nonlinear bilateral constraints (which rep-
resent the rigid body) influence the solvers performance. Next, the horizontal impact
of an elastic bar is considered to study the ability of the proposed algorithm to deal
with flexibility. In the third example, the behaviour of the integrators for problems
with nonlinear flexible beams is considered by studying the bouncing of a flexible
pendulum. Lastly, the bouncing of a 3D flexible cube is examined to investigate the
performance of the method for 3D nonlinear finite element models.

3.3.1 Impact of a rigid rectangular parallelepiped body

This example consists in the impact of a rigid rectangular parallelepiped body on
a rigid support, Fig. 3.1(a). This problem does not involve flexibility, but is subject
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FIGURE 3.1: Numerical examples to assess the performance of the
proposed solver.

to nonlinear bilateral constraints that model the rigidity of the body. The nonlin-
ear bilateral constraints couple the smooth problem to the sub-problem at position
level in the CS algorithm, influencing the required number of iterations for conver-
gence. A large initial angular velocity is imposed, making it necessary to accurately
account for gyroscopic effects. The important contribution of gyroscopic forces al-
lows to evaluate the appropriateness of the approximation f (qn+1,vn+1, tn+1) ≈
f (qn+1, ṽn+1, tn+1) at the position level in the DS solver.

The parameters of the problem are m = 46.8 kg, lx = 0.1 m, ly = 0.2 m, lz = 0.3 m,
ag = 9.81 m/s2 and restitution coefficient e = 0.8. The inertia tensor J is diagonal
with entries Jxx = m(l2

y + l2
z )/12, Jyy = m(l2

x + l2
z )/12 and Jzz = m(l2

y + l2
x)/12. The

body center of mass has initial conditions: angular velocity Ω0 = [60, 60, 0]T rad/s,
translation velocity v0 = [3, 0, 0]T m/s and initial position x0 = [0, 0, 1]T m. The
reference solution is obtained with a stepsize of h = 10−5 s using the CS solver.
The z-displacement and velocity of node xp for a stepsize of h = 10−3 s is plotted in
Fig. 3.2(a), whilst in Fig. 3.2(b) the convergence analysis of both integrators is shown.
As it can be seen, both methods converge with the same convergence rate and error.
However, the average and the maximum number of iterations, Figs. 3.3(a-b), make
clear that the new splitting strategy of DS is more robust than CS for problems with
nonlinear bilateral constraints and important gyroscopic contributions. In addition,
we observe that the approximation f (qn+1,vn+1, tn+1) ≈ f (qn+1, ṽn+1, tn+1) at posi-
tion level in the DS solver does not affect the accuracy of the obtained results for the
considered example.
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FIGURE 3.2: Results obtained for the impact of a rigid rectangular
parallelepiped body.

3.3.2 Horizontal impact of an elastic bar

In this section, the horizontal impact of an elastic bar is analyzed, see Fig. 3.1(b). This
example deals with a linear flexible model with no bilateral constraints, allowing to
understand convergence problems associated to flexibility. It should be noted that
in the case of the CS solver, the smooth sub-problem is coupled to the position sub-
problem through the internal elastic forces which depend on the total position q.

The bar starts moving from a distance d0 in an undeformed configuration with
a uniform initial velocity field v0, and bounces back after impacting a rigid wall.
The impact is horizontal and no gravity is considered [50]. The parameters of this
test are: Young modulus E = 900 Pa, density ρ = 1 kg/m3, undeformed initial
length L = 10 m, initial distance from the wall d0 = 5.005 m, initial velocity v0 =

10 m/s and restitution coefficient e = 0. The bar is discretized uniformly using
200 beam finite elements. The reference solution is computed with a time step of
h = 10−5 s using the CS solver. Three different nonsmooth integrators are tested:
the original NSGA (CS) solver, the decoupled NSGA based on Eqs. (3.31a, 3.31b),
and the decoupled NSGA based on Eqs. (3.32a, 3.32b). The solutions obtained with
the two latter options are respectively denoted by DS and DSn (Decoupled-Solution
neglecting the f p and f ∗ terms).

The average and maximum number of iterations for each strategy can be ob-
served in Figs. 3.4(a-b). Since the problem is linear, the maximum number of iter-
ations in the DS and DSn strategies is only one per sub-problem for any value of
stepsize h. On the other hand, the number of iterations required by the original
solver (CS) is quite high, and it even diverged for stepsizes greater than or equal to
h = 10−2 s. Therefore, the advantage of the proposed splitting becomes quite clear.

Figures 3.5(a-b) show the convergence analysis for two nodes of the bar (one at
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FIGURE 3.3: Rigid rectangular parallelepiped problem: number of
iterations taken by the DS and CS solvers.

the tip and another located 0.45 m from the tip). It can be seen that the robustness
improvement in the DS strategy is obtained without damaging the convergence rate
neither the accuracy. However, in the decoupled strategy DSn, where the f p and
f ∗ terms were neglected, the error is larger than for the DS strategy for moderately
large stepsizes. A comparison of the results of DSn and DS for different stepsizes is
shown in Figs. 3.6(a-b).

It is important to highlight that for moderately large stepsizes, the DSn solution
does not reproduce certain key aspects of the physical solution, such as, for instance,
the bouncing back ot the bar (h = 0.03 s), or a quite long delay in the bouncing back
with respect to the reference solution (h = 0.01 s), Fig. 3.6(a). In addition, the contact
forces deviate considerably from what is expected. Therefore, these results indicate
that the term f (q, ṽ, tn+1)− f (q̃, ṽ, tn+1) ≈ ∂f

∂qUn+1 has an important contribution to
the position correction for large values of h and cannot be neglected. Another error is
evidenced by observing the computed displacement and velocity at the node located
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FIGURE 3.4: Horizontal impact of an elastic bar: number of iterations
taken by the DS and CS solvers.

at 0.45 m from the tip of the bar, Fig. 3.6(b). When neglecting the f p and f ∗ terms
for h = 0.03 s, the computed solution satisfies the non-penetration condition at the
tip node, Fig. 3.6(a), but the node at 0.45 m from the tip penetrates the wall, see
Fig. 3.6(b).

3.3.3 Bouncing of a flexible pendulum

The bouncing of a flexible beam pendulum hitting an obstacle is next studied, Fig. 3.1(c).
This test allows to assess the performance of the integrators for problems involv-
ing nonlinear flexible beams. The pendulum is constrained to swing in the x-y
plane around a pivot located at the origin. The properties of the beam are: unde-
formed length L = 1 m, cross-section area A = 10−4 m2, cross-section inertia I =

8.33 10−10 m4, shear section area As = 5/6A, Young modulus E = 2.1 1011 N/m2,
density ρ = 7800 kg/m3 and Poisson ratio ν = 0.3. The beam is in horizontal posi-
tion at the initial configuration with zero velocity, and begins to fall under the action
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FIGURE 3.5: Convergence analysis for the horizontal impact of an
elastic bar.
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FIGURE 3.6: Comparison of the results obtained for different step-
sizes using the decoupled solver with (DSn) and without (DS) ne-

glecting the f p and f v terms.

of gravity ag = 9.81 m/s2. The tip of the beam hits a rigid wall located at x =
√

2/2,
with a coefficient of restitution e = 0.

The beam is discretized into 8 equally-spaced nonlinear beam elements. The
unilateral constraint representing the impact condition is 0 ≤ gU = x −

√
2/2 ⊥

diU ≥ 0 and is enforced at the tip node. The reference solution is computed with a
stepsize of h = 10−6 s by using the original NSGA (CS) solver.

The y component of the displacement and the velocity at the tip of the beam cal-
culated using h = 10−4 s for both solvers are plotted in Fig. 3.7(a). The average and
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ġ
[m

/
s]

(a) Solution obtained for both solvers for h =
10−4 s. Showing the y component of the displace-
ment and the velocity fields at the tip of the beam.
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FIGURE 3.7: Results obtained for the bouncing flexible pendulum.
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FIGURE 3.8: Bouncing flexible pendulum: number of iterations taken
by the DS and CS solvers.

maximum number of iterations are shown in Figs. 3.8(a-b). It can be observed that
for the three largest stepsizes, the original NSGA does not converge, Fig. 3.8. In ad-
dition, when it converges for smaller stepsizes, it takes a large number of iterations
at impact events (see the maximum number of iterations). On the contrary, the pro-
posed decoupled solver (DS) requires a small number of iterations for convergence.

3.3.4 Bouncing of a 3D flexible cube

In what follows a 3D example is considered. It consists of a 3D flexible cube which
bounces against a rigid plane due to the action of gravity ag = 9.81 m/s2, Fig. 3.1(d).
The cube is discretized into 125 equal tri-linear hexahedral geometrically nonlinear
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(a) Solution obtained for both solvers for h =
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placement and the velocity fields at node x1, see
Fig. 3.1(d).
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FIGURE 3.9: Results obtained for the bouncing of a 3D flexible cube.

finite elements. It is assumed that the material responds linearly. The cube has an
undeformed side length L1 = 0.1 m, the Young modulus is E = 90 Pa, the density
is ρ = 1 kg/m3, the Poisson ratio is ν = 0.3 and the centroid of the cube is initially
located at 0.35 m from the floor with a zero initial velocity. The restitution coefficient
is e = 0. Contact elements are defined between the floor plane and each node on the
cube face.
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FIGURE 3.10: Bouncing 3D flexible cube: number of iterations taken
by the DS and CS solvers.

The z component of the displacement and the velocity at node x1, computed
using h = 3 · 10−5 s for both solvers, are plotted in Fig. 3.9(a). The convergence anal-
ysis for both solvers is shown in Fig. 3.9(b). As it can be observed, a convergence
rate close to order 1 is achieved for the proposed solver (DS). The original NSGA
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(CS) algorithm also exhibits order 1 with the same accuracy, but only for stepsizes
smaller than or equal to 3 · 10−5 s. For large stepsizes, the CS solver does not con-
verge (Figs. 3.10(a-b)). The proposed DS solver deals well with flexible problems
characterized by large displacements for any time stepsize. On the contrary, the
original NSGA (CS) requires adopting a very small stepsize to get convergence.

3.4 Summary and concluding remarks

In this chapter, a fully decoupled nonsmooth generalized-α integration method was
presented. Like its predecessor, it does not suffer from any drift phenomenon as it
imposes the constraints both at position and at velocity levels. Additionally, it is well
suited for problems with vibration effects as it integrates the smooth component of
the motion with the second order accurate generalized-α method.

The algorithm was implemented as a sequence of three sub-problems to be solved
at each time step. The most distinctive feature of the new algorithm was that the
sub-problem defining the smooth part of the motion is strictly independent of the
position correction and of the velocity jump, so that the solution of the three sub-
problems could be performed in a purely decoupled sequential manner.

Four numerical examples were presented, showing that the proposed method
improves the robustness for problems involving nonlinear bilateral constraints and/
or flexible elements, without deteriorating the accuracy of the original NSGA method.
The number of iterations was reduced and much larger time steps could be adopted.

A variant of the new method, in which the f p and f ∗ terms were neglected, was
analyzed in the examples. The computed results showed that neglecting those terms
could lead to results of bad quality if sufficiently small stepsizes were not adopted.
Hence, it was recommended to take into account those terms in the implementation
of the decoupled algorithm. The application of this new algorithm to deal with
frictional contact problems is studied in the next chapter.
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Chapter 4

A nonsmooth frictional contact
formulation for MBS dynamics

This chapter presents a new node-to-face frictional contact element to simulate the
nonsmooth dynamics of systems composed of rigid and flexible bodies connected
by kinematic joints. Its content is adapted from the paper [81]. The equations of
motion are integrated using the NSGA time integration scheme presented in Chap-
ter 3. The frictional contact problem is formulated using a mixed approach, based on
an augmented Lagrangian technique proposed by Alart and Curnier for quasi static
problems [43] and a Coulomb’s friction law. The numerical results are independent
of the user-defined penalty parameter for the normal or tangential components. The
bilateral and the unilateral constraints are exactly fulfilled both at position and ve-
locity levels. Finally, the robustness and the performance of the proposed element
is demonstrated by solving several numerical examples of nonsmooth mechanical
systems involving frictional contact.

4.1 Frictional contact formulation

The nonlinear Finite Element Method (FEM) is used in this work to analyze multi-
body systems composed of rigid and/or flexible elements and kinematic joints with
different types of loading. By using the FEM approach, there is no distinction be-
tween the global coordinates of the rigid or flexible bodies. Therefore, the nonlinear
effects are described with respect to a unique inertial frame [5].

As shown in Section 2.7, impacts and frictional phenomena in dynamic systems
can be concisely represented by differential inclusions. Following this approach, for
systems involving frictional impacts, Eqs. (3.37, 3.41) at position and velocity levels
can be rewritten as

M (q̃n+1)Un+1 − h2f
p
n+1 − gT

q,n+1 νn+1 = 0 (4.1a)

−gU (qn+1) = 0 (4.1b)

−gj
N(qn+1) ∈ ∂ψR+(ν

j
N,n+1), ∀ j ∈ U (4.1c)

−g j
T(qn+1) ∈ ∂ψC(νj

N,n+1)
(ν

j
T,n+1), ∀ j ∈ U (4.1d)
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FIGURE 4.1: Node-to-face contact element.

M (qn+1)Wn+1 − hf ∗n+1 − gT
q,n+1Λn+1 = 0 (4.2a)

−gUq,n+1vn+1 = 0 (4.2b)

if gj
N(qn+1) ≤ 0 then − ◦gj

N,n+1 ∈ ∂ψR+(Λ
j
N,n+1), ∀ j ∈ U (4.2c)

if gj
N(qn+1) ≤ 0 then − ◦g j

T,n+1 ∈ ∂ψC(Λj
N,n+1)

(Λ
j
T,n+1), ∀ j ∈ U (4.2d)

By observing Eqs. (3.39, 3.45), the terms that are related with the frictionless uni-
lateral constraints can be compiled in the following global generalized internal force
vectors at position and velocity levels, respectively,

F
p

G(qn+1, νn+1) =


−gA,T

q,n+1 ξ
A
n+1

−kpg
A

− k2
p

pp
νAn+1

 (4.3)

F v
G(vn+1, Λn+1) =


−gB,T

q,n+1 σ
B
n+1

−kv
◦gB

− k2
v

pv
ΛBn+1

 (4.4)

From Eqs. (3.51, 3.52) the global tangent matrix at position and velocity levels are

K
p
G =


−gA,T

qq,n+1 ξ
A
n+1 −kpg

A,T
q,n+1 0

−kpg
A
q,n+1 0 0

0 0 − k2
p

pp
IA

 (4.5)

Kv
G =


0 −kvg

B,T
q,n+1 0

−kvg
B
q,n+1 0 0

0 0 − k2
v

pv
IB

 (4.6)

In a similar way, we consider that the frictional contact element does not con-
tribute to the smooth motion and only participates to the position and velocity equa-
tions through vectorsF p

G(qn+1,νn+1) andF v
G(vn+1,Λn+1) that will be detailed below.
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The proposed node-to-face frictional contact element is formulated in the frame-
work of finite displacements and rotations. It is composed of a master planar rigid
face in space with reference node A in body B1, and a slave node B belonging to
body B2, see Fig. 4.1. For conciseness, this study focuses on the contact of a node
with a planar external surface of a body.

The coordinates of the contact element q include the positions xA and xB of
nodes A and B, respectively, and the rotation operator RA of node A. For the treat-
ment of the rotation operator, we follow a similar formulation and solution strategy
as described in [78] and in Section 2.9. The rotational velocity of node A is thus
represented in the velocity vector v by the three components of the angular velocity
vector ΩA in the local frame of node A. Therefore

ṘA = RAS(ΩA) (4.7)

where the operator S(u) : R3 → R3 ⊗R3 returns a 3× 3 skew-symmetric matrix
such that u× v = S(u)v = −v × u, ∀ u,v ∈ R3. Following the principle of the
Lie group solver [78], the rotation at time step n + 1 is represented as an increment
vector ΨA,n+1 ∈ R3 with respect to the rotation at time step n as

RA,n+1 = RA,n exp(S(ΨA,n+1)) (4.8)

which involves the exponential map on the rotation group. The nonsmooth generali-
zed-α time integration formulae are then expressed in terms of the unknowns ΨA,n+1

and ΩA,n+1 at position and velocity levels, respectively, as discussed in Section 2.9
The inertial frame is defined by a set of orthonormal vectors E1, E2 and E3,

see Fig 4.1. During motion, node B undergoes a displacement, meanwhile the rigid
plane rotates and translates. The normal to the contact surface in the reference con-
figuration is given byN , meanwhile the vectors T1 and T2 are tangent to the contact
surface. The positions of nodes A and B in the reference configuration are XA and
XB, respectively, and the positions of nodes A and B in the current configuration
are given by vectors xA and xB, respectively. During motion, the new orientations
of N , T1 and T2 at the current configuration, are denoted by vectors n, t1 and t2,
respectively:

nn+1 = RA,n+1N (4.9)

t1,n+1 = RA,n+1T1 (4.10)

t2,n+1 = RA,n+1T2 (4.11)

The normal gap between nodes A and B in the current configuration is

gN,n+1 = NTRT
A,n+1 (xB,n+1 − xA,n+1) (4.12)

The normal gap is used to evaluate if the interacting bodies come in contact with
each other (a zero gap indicates contact). From a geometrical point of view, the
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normal gap gN represents the shortest distance from node A to the contact surface
at the current configuration. Thus, gN > 0 implies that the bodies are not in con-
tact. In order to account for friction when the bodies are in contact, i.e if gN = 0 in
the time interval (tn, tn+1), the incremental tangential movement with components
gT1,n+1, gT2,n+1 referred to the material frame T1,T2, is computed as follows

gT1,n+1 = T T
1

[
RT

A,n+1 (xB,n+1 − xA,n+1)−RT
A,n (xB,n − xA,n)

]
gT2,n+1 = T T

2

[
RT

A,n+1 (xB,n+1 − xA,n+1)−RT
A,n (xB,n − xA,n)

] (4.13)

This tangential movement defines if the contact state is stick or slip. Stick state
not only means that the normal gap distance between the node and the face remains
constant along two consecutive time steps, but also that there is no relative move-
ment between the contact node B and the contact surface which is attached to node
A. The surface rotation is taken into account projecting the relative position of the
nodes in the material frame at time n + 1 and n, and checking its variation over the
time step according to Eq. (4.13). For better understanding imagine the case repre-
sented in Fig. 4.2 where the positions of nodes A and B are constant, but the contact
surface attached to node A rotates around its normal direction. In this case, since the
tangential movement is not zero and the contact state is slip even if the position of
the nodes is constant.

T T
1 R

T
A,n(xB − xA)

T T
2 R

T
A,n(xB − xA)

T1,n

T2,n

A B

T T
1 R

T
A,n+1(xB − xA)

T T
2 R

T
A,n+1(xB − xA)

T1,n+1
T2,n+1

A B

FIGURE 4.2: Tangential gap representation for a rotation contact sur-
face

Finally, the generalized gap vector is defined as

gn+1 =

{
gN,n+1

gT,n+1

}
=
NTRT

A,n+1 (xB,n+1 − xA,n+1)

T T
1

[
RT

A,n+1 (xB,n+1 − xA,n+1)−RT
A,n (xB,n − xA,n)

]
T T

2

[
RT

A,n+1 (xB,n+1 − xA,n+1)−RT
A,n (xB,n − xA,n)

]
 (4.14)

where the first component is the normal gap, while the second and the third compo-
nents are the tangential displacements. In what follows, we will adopt the subscripts
T and N for denoting the components of a given quantity in the tangential and in
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the normal directions, respectively.

4.1.1 Frictional contact problem at position level

The modeling of friction represents an additional complexity with respect to the fric-
tionless problem, as a consequence of the non-conservative character of the friction
forces. A popular model is given by the Coulomb friction law. In this model, the
bodies in contact can be in two different states: stick or slip. In stick, there is no rel-
ative displacement between the bodies, meanwhile in slip the bodies slide on each
other. At position level, the friction law should be expressed in terms of the main
unknowns Un+1 and νn+1 (with the splitting qn+1 = q̃n+1 +Un+1). The restrictions
of gap, contact, stick or slip, described before, are represented by the following fric-
tional contact conditions,

gN,n+1 ≥ 0, νN,n+1 ≥ 0, gN,n+1νN,n+1 = 0; (4.15a)

‖gT,n+1‖ ≥ 0, ‖νT,n+1‖ ≤ µνN,n+1,

‖gT,n+1‖ (‖νT,n+1‖ − µνN,n+1) = 0; (4.15b)

gT,n+1 = −‖gT,n+1‖
νT,n+1

‖νT,n+1‖
(4.15c)

where νN and νT are the normal and the tangential Lagrange multipliers at position
level in the normal and tangential directions, respectively, and collinearity between
the tangential displacement and the tangential contact force is assumed with the
tangential force opposed to motion. The first condition in Eq. (4.15a) indicates the
impenetrability restriction; the second one is the non-traction condition (only com-
pression is allowed) and the third one is the complementarity equation. The second
set of restrictions, Eq. (4.15b), represents the conditions for friction. The first in-
equality, that is always satisfied, states that the tangential displacement is positive
or zero; the second one establishes that the maximum value of the density of the
tangential contact force is µνN,n+1, where µ is the friction coefficient; the third one is
the complementarity equation, which indicates that ‖gT,n+1‖ and ‖νT,n+1‖− µνN,n+1

cannot be simultaneously different from zero. Hence, when ‖νT,n+1‖ < µνN,n+1 and
‖gT,n+1‖ = 0 the contact status is in stick, and when ‖gT,n+1‖ 6= 0, the body slips
and the tangential force is equal to ‖νT,n+1‖ = µνN,n+1.

It is important to remark that, in the proposed framework, it is mandatory to
impose the Coulomb friction constraint at position level. In order to understand
this, recall that the time integration scheme is characterized by three decoupled sub-
problems, and that the correction at position level is blind to any correction done at
velocity level for the same time step where the terms are independent. Therefore,
if the friction constraints are imposed only at velocity level some non-physical be-
haviour can be observed at position level, as shown in more detail in the application
example in Section 4.2.1.
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(a) Coulomb isotropic friction
cone

(b) Extension of the aug-
mented Coulomb isotropic
friction cone

FIGURE 4.3: Three dimensional representation of the Coulomb fric-
tion cone.

The set of constraints given in Eq. (4.15) could have been expressed in the form
of an inclusion as in Eq. (4.1). In this work, from a convex analysis as in Alart and
Curnier [43], the frictional contact problem is solved by transforming the normal
and tangential inclusions into equivalent equations by using the proximal point al-
gorithm [82]. For the sake of conciseness, in what follows, we only work with the
part of the augmented Lagrangian corresponding to the unilateral constraints of a
specific contact element. A similar approach was used in [80]. The adopted form
of the augmented Lagrangian approach can be derived from the following function
expressed in terms of the variables qn+1 and νn+1 defined in the global frame of
reference.

Lp(qn+1,νn+1) = −kpgN,n+1νN,n+1 +
pp

2
(

gN,n+1
)2−

1
2pp

dist2 [kpνN,n+1 − ppgN,n+1, R+
]
− kpgT,n+1 · νT,n+1+

pp

2
‖gT,n+1‖2 − 1

2pp
dist2 [kpνT,n+1 − ppgT,n+1, CξN

] (4.16)

where it is understood that the gap function depends on q, though this is not explic-
itly mentioned for the sake of conciseness.

In order to facilitate the presentation of the problem, the augmented Lagrangian
is split in two terms: the normal and the tangential contributions

Lp(qn+1,νn+1) = Lp
N(qn+1, νN,n+1) + Lp

T(qn+1,νT,n+1) (4.17)
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where the augmented Lagrangian in the normal direction is

Lp
N(qn+1, νN,n+1) = −kpgN,n+1νN,n+1 +

pp

2
(

gN,n+1
)2−

1
2pp

dist2 [ξN,n+1, R+
] (4.18)

while in the tangential direction it is given by

Lp
T(qn+1,νT,n+1) = −kpgT,n+1 · νT,n+1 +

pp

2
‖gT,n+1‖2−

1
2pp

dist2 [ξT,n+1, CξN

] (4.19)

The function dist(z, C) represents the distance between a point z ∈ Rn and a
convex set C, see [28]. The normal part of the Lagrangian is based on the definition
of the distance to the set R+:

dist(ξN , R+) =

−ξN if ξN < 0 Gap

0 if ξN ≥ 0 Contact
(4.20)

The Coulomb isotropic friction law, in 3D problems, is represented by a cone as
shown in Fig. 4.3(a). A section of the Coulomb cone of radius µνN is defined by

C(νN) = {νT s.t. ||νT|| ≤ µνN} (4.21)

which represents the set of admissible tangential friction forces. Then, the extended
augmented cone CξN is the convex set defined by extension of the friction cone to the
half line R−(ξN), i.e., the set of negative values of the normal augmented multiplier,
see Fig. 4.3(b). The tangential part of the Lagrangian is based on the definition of the
distance to the extended augmented friction cone:

dist(ξT; CξN ) =


ξT if ξN < 0 Gap

ξT − µξNτp if ‖ξT‖ ≥ µξN Slip
0 if ‖ξT‖ < µξN Stick

(4.22)

where τp = ξT/‖ξT‖ is a unit vector pointing in the direction of the tangential
contact force.

Force vector in the normal direction

The generalized internal force vector in the normal direction is obtained by taking
variations of Eq. (4.18),

δLp
N(q, νN) = −kpδνN gN − ξNδgN −

1
pp

δ

[
1
2

dist2(ξN , R+)

]
(4.23)
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where ξN = kpνN− ppgN is the augmented multiplier in the normal direction. In this
equation, the subindex n + 1 is omitted for conciseness. This notation is adopted for
the rest of the chapter. The variation of (1/2)dist2(ξN , R+) in Eq. (4.23) gives

δ

[
1
2

dist2(ξN , R+)

]
=

{
ξNδξN if ξN < 0 Gap

0 if ξN ≥ 0 Contact
(4.24)

The virtual variation of the normal gap in Eq. (4.12), is written as follows

δgN = nT(δxB − δxA) +N
TS(RT

A(xB − xA))δΘA (4.25)

where the variation of the normal δn = −RAÑδΘA was used. Here, δΘA is the vari-
ation of the incremental material rotations at node A such that δRA = RAS(δΘA), [5].
In order to obtain a compact expression for the normal gap variation, Eq. (4.25) can
be written as follows

δgN = gNqδq (4.26)

where the gradient matrix in the normal direction is

gNq = [−nT NTS(dAB) nT] (4.27)

with dAB = RT
A(xB − xA); δq is the variation of the nodal coordinates for a con-

tact element with nodes A, B, where the positions and rotations are ordered in the
following way

δq = [δxT
A δΘT

A δxT
B]

T (4.28)

Replacing Eqs. (4.24, 4.26, 4.27) into Eq. (4.23), the generalized internal forces vector
of the contact element F p

N can then be readily identified as conjugated to the varia-
tion of generalized coordinates of the element Φ = [qT νN ν

T
T ]

T as follows,

δLp
N(Φ) = δΦTF

p
N(Φ) =


δq

δνN

δνT


T




0

− k2
p

pp
νN

0

 ξN < 0 Gap


−gT

NqξN

−kpgN

0

 ξN ≥ 0 Contact

(4.29)
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Force vector in the tangential direction

The generalized internal force vector in the tangential direction is computed in a
similar way. By taking variations of Eq. (4.19) the following equation is obtained

δLp
T(q,νT) = −kpδνT · gT − ξT · δgT −

1
pp

δ

[
1
2

dist2(ξT, CξN )

]
(4.30)

The variation of (1/2)dist2(ξT; CξN ) is

δ

[
1
2

dist2(ξT; CξN )

]
=


ξT · δξT if ξN < 0 Gap

(‖ξT‖ − µξN)τp · δξT if ‖ξT‖ ≥ µξN Slip
0 if ‖ξT‖ < µξN Stick

(4.31)

where τp = ξT/‖ξT‖ is the direction of the tangential contact force at position level.
Then, the virtual variation of the tangential displacement gT (Eq. (4.13)) is given by

δgT = gTqδq (4.32)

with the gradient matrix in the tangential direction defined as

gTq =

[
−tT

1 T T
1 S(dAB) tT

1

−tT
2 T T

2 S(dAB) tT
2

]
(4.33)

Finally, replacing Eqs. (4.31, 4.32) in Eq. (4.30), the generalized internal forces
vector of the contact element F p

T for the status of gap, slip or stick, is given by

δLp
T(Φ) = δΦTF

p
T (Φ) =


δq

δνN

δνT


T




0

0

− k2
p

pp
νT

 ξN < 0 Gap


−µξNg

T
Tqτp

0
kp
pp
(−kpνT + µξNτp)

 ‖ξT‖ ≥ µξN Slip


−gT

TqξT

0

−kpgT

 ‖ξT‖ < µξN Stick

(4.34)

Force vector and Hessian matrix at position level

The final expression of the internal contact force vector for the different contact status
are obtained by adding the normal and tangential contributions of the internal forces
vector from Eqs. (4.29, 4.34).
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F p =




0

− k2
p

pp
νN

− k2
p

pp
νT

 ξN < 0 Gap


−gT

NqξN − µξNg
T
Tqτp

−kpgN
kp
pp
(−kpνT + µξNτp)

 ‖ξT‖ ≥ µξN Slip


−gT

NqξN − gT
TqξT

−kpgN

−kpgT

 ‖ξT‖ < µξN Stick

(4.35)

The linearization of the internal force vector gives the contact Hessian matrix.
The contributions to the Hessian matrix for the different contact conditions are ex-
pressed as follows:

∆F p =




0

− k2
p

pp
∆νN

− k2
p

pp
∆νT

 ξN < 0 Gap



−∆gT
NqξN − gT

Nq∆ξN − µ∆ξNg
T
Tqτp − µξN∆gT

Tqτp−
µξNg

T
Tq∆τp

−kp∆gN
kp
pp
(−∆νT + µ∆ξNτp + µξN∆τp)


‖ξT‖ ≥ µξN Slip


−∆gT

NqξN − gT
Nq∆ξN −∆gT

TqξT − gT
Tq∆ξT

−kp∆gN

−kp∆gT

 ‖ξT‖ < µξN Stick

(4.36)

The contact/friction Hessian matrices are computed by replacing in Eq. (4.36)
the Eqs. (4.26, 4.32) together with the derivatives of the matrices of constraints of
gap and tangential displacements, which are next given:

∆gT
Nq =

∂gT
Nq

∂q
∆q =

 0 RAS(N ) 0
−S(N )RT

A S(N )S(dAB) S(N )RT
A

0 −RAS(N ) 0


∆xA

∆ΘA

∆xB

 (4.37)

∆gT
Tqτ =

∂gT
Tq

∂q
τ∆q =

 0 RAS(τ ) 0
−S(τ )RT

A S(τ )S(dAB) S(τ )RT
A

0 −RAS(τ ) 0


∆xA

∆ΘA

∆xB

 (4.38)
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The derivative of τp is given by

∆τp = (I − τp ⊗ τp)
ξT

‖ξT‖
(4.39)

and finally, the rotation increment ∆ΘA is such that

∆RA = RAS(∆ΘA) (4.40)

4.1.2 Frictional contact problem at velocity level

The augmented Lagrangian which regularizes the frictional contact problem at ve-
locity level is given by

Lv(vn+1,Λn+1) = −kv
◦gN,n+1ΛN,n+1 +

pv

2
( ◦gN,n+1

)2−
1

2pv
dist2 [kvΛN,n+1 − pv

◦gN,n+1, R+
]
− kv

◦gT,n+1 ·ΛT,n+1+

pv

2
‖ ◦gT,n+1‖2 − 1

2pv
dist2

[
kvΛT,n+1 − pv

◦gT,n+1, CσN

] (4.41)

where ◦gN and ◦gT are the Newton impact law in the normal and tangential direction,
respectively, and defined as follows:

◦gj
N,n+1 = gj

Nq,n+1vn+1 + ej
N gj

Nq,nvn (4.42)
◦g j

T,n+1 = g
j
Tq,n+1vn+1 + ej

Tg
j
Tq,nvn (4.43)

and CσN is a section of radius µσN of the augmented Coulomb friction cone expressed
in terms of variables at velocity level with the generalized velocity vector given by

vn+1 =
[
ẋT

A,n+1 ΩT
A,n+1 ẋ

T
B,n+1

]T
(4.44)

Additionally, the dependence of the impact law in terms of v is not explicitly speci-
fied in Eq. (4.41) for the sake of conciseness.
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Then, by following a similar reasoning as that presented in Section 4.1.1, the
internal force vectors at velocity level are given by

F v =




0

− k2
v

pv
ΛN

− k2
v

pv
ΛT

 σN < 0 Gap


−gT

NqσN − µσNg
T
Tqτv

−kp
◦gN

kp
pp
(−kpΛT + µσNτv)

 ‖σT‖ ≥ µσN Slip


−gT

NqσN − gT
TqσT

−kv
◦gN

−kv
◦gT

 ‖σT‖ < µσN Stick

(4.45)

The unit vector τv pointing in the direction of the contact force is defined as τv =

ΛT/‖ΛT‖.
Finally, the linearization of the internal force vector gives the Hessian matrix.

Note that in Step 3 of the algorithm presented in Section 3.2.3, where the projection
on velocity constraints are calculated, the variable q coming from the solution of
the position sub-problem is fixed. Thus, the gradient matrices gNq and gTq are con-
stant at this instance and do not contribute in the calculation of the Hessian matrix.
Therefore, the Hessian matrix for the different contact conditions is as follows:

∆F v =




0

− k2
v

pv
∆ΛN

− k2
v

pv
∆ΛT

 σN < 0 Gap


−gT

Nq∆σN − µ∆σNg
T
Tqτv − µσNg

T
Tq∆τv

−kv∆
◦gN

kv
pv
(−∆ΛT + µ∆σNτv + µσN∆τv)

 ‖σT‖ ≥ µσN Slip


−gT

Nq∆σN − gT
Tq∆σT

−kv∆
◦gN

−kv∆
◦gT

 ‖σT‖ < µσN Stick

(4.46)

The contact/friction Hessian matrices are computed similarly to the contact/fric-
tion Hessian matrices at the position level. The internal forces vectors and the Hes-
sian matrices at the position and velocity levels contribute to the global tangent ma-
trices and to the generalized internal forces vectors by a standard assembly proce-
dure.
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4.2 Numerical examples

Several numerical examples are studied to evaluate the robustness and accuracy of
the proposed frictional contact model. Each of the examples has been chosen to
highlight different characteristics that help to evaluate the performance of the pro-
posed friction algorithm. In the first example, a point mass undergoes slipping and
sticking motion on an inclined plane, showing the ability of the proposed method to
handle a friction force different from zero at equilibrium state. The second example
consists of a rocking rod impacting two supports, which allows us to assess the per-
formance of the algorithm when the contact surface does not remain still. Then, in
order to study problems with flexible components, the motion of a sliding chain of
springs and masses and the oblique impact of a beam with a rigid wall are consid-
ered. The last example consists in the simulation of a pendulum impacting a rigid
plane attached to flexible supports, showing the ability of the algorithm for handling
flexible elements, a moving contacting surface and 3D trajectories which imply a 3D
frictional behaviour.

The frictional contact algorithm proposed in this work has been implemented in
the finite element code Oofelie [66] as will be described in Chapter 5. The conver-
gence of the numerical solution obtained with the proposed methodology is ana-
lyzed in all examples. For that purpose, as in the previous chapter, the error for each
value of the time increment h is evaluated using the L1 norm:

Error(h) = ∑N
i=0 | fi − f (ti)|
∑N

i=0 | f (ti)|
(4.47)

where N is the number of time steps, fi is the numerical solution obtained using
the nonsmooth generalized-α method (NSGA) and f (ti) is the reference solution.
The analytical solution is adopted as a reference solution in all cases in which it
is available, otherwise the numerical solution corresponding to a very small time
increment is taken as reference solution.

4.2.1 A point mass sliding and sticking on an inclined plane

This example intends to show the ability of the proposed algorithm to handle the
switch between the sliding and sticking states, and to handle cases with a friction
force different from zero at equilibrium state. The problem consists of a point mass
which is initially in sliding state with an initial tangential velocity of v0 = 2 m/s with
respect to the inclined plane, Fig. 4.4(a). Under the action of gravity and friction, the
mass looses velocity. The final state depends on the friction coefficient and on the
plane angle values. Here, the friction coefficient is larger than the tangent of the
slope angle. Therefore, the mass reaches a state of sticking.

The parameters used for the simulation are defined as follows: the mass of the
point is m = 1 kg, the angle of the inclined plane is π/12, the gravity acceleration is
g = 9.81 m/s2, the friction coefficient is µ = 0.3 and the restitution coefficients for
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(a) (b)

FIGURE 4.4: (a) A point mass sliding and sticking on an inclined
plane. (b) Position correction when Coulomb’s friction law is not im-

posed at position level.

the normal and tangential directions are zero. The numerical solution is computed
with a spectral radius of ρ∞ = 0.8 and a total simulation time of 2s.
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FIGURE 4.5: Point mass sliding and sticking on an inclined plane:
results for a time step of 10−3 s.
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FIGURE 4.6: Zoom of the Fig. 4.5, adding also the results for the case
of NSGA-NP
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FIGURE 4.7: Point mass sliding and sticking on an inclined plane:
results for a time step of 10−3 s.

A comparison between the numerical and analytical solutions for the displace-
ment and the velocity fields is shown in Figs. 4.5(a,b), respectively, where a good
agreement between them can be noticed. As expected, it can be observed that a slip
motion takes place from 0 s to 0.374 s, followed by a constant sticking phase in which
the block remains at rest.

As already mentioned in Section 4.1.1, the Coulomb’s friction law must also be
imposed at position level, due to the fact that both q̃ andU are blind to any correction
done at velocity level during the time step. In Fig. 4.6(a), the results obtained for the
x component of the position and the velocity for the case in which the Coulomb’s
friction law is not imposed at position level (NSGA-NP) are shown.

As it can be observed in the NSGA-NP solution, when the contact is in stick
mode, the position still evolves even though the velocity is zero. This non-physical
phenomenon of the NSGA-NP algorithm is explained in Fig. 4.4(b), where it is made
clear that the smooth prediction of the position q̃ is only corrected in the normal
direction, and, therefore, the position of the block ends up artificially sliding down
in a kind of numerical drift. This problem is reduced when the time step of the
NSGA-NP algorithm decreases and fully disappears when imposing in the NSGA
algorithm as the Coulomb’s law is then imposed at position level, see Figs. 4.5 and
4.6.

In Fig. 4.7(a) the Lagrange multipliers Λ in the normal and tangential directions
can be observed. As expected from the physics, in the tangential direction a sign
change takes place and it represents the change of the contact status, from sliding
to sticking. Additionally, once the mass is at rest the numerical solution agrees with
the analytical values for the normal reaction impulse ΛN and the tangential friction
impulse ΛT which are in this case 9.48× 10−3 Ns and −2.54× 10−3 Ns, respectively.
During the sliding phase the value of the tangential impulse is ΛT = 2.84× 10−3 Ns,
which is equal to µΛN , satisfying the Coulomb’s frictional law. It is remarked that in
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order to obtain the constraint force, the Lagrange multiplier Λ must be divided by
the time step h, becauseΛ represents the impulse of the unilateral constraints which
is the integral of the reaction force in the time interval (tn, tn+1]. Lastly, Fig. 4.7(b)
shows the convergence obtained for the displacement and velocity fields, where, as
expected, O(h) is achieved.

4.2.2 A rocking rod impacting two supports

Let us study a rigid rocking rod impacting two supports, see Fig. 4.8, which has
already been studied by several authors [83, 84, 85]. In this example, the contact
occurs between the support points and the face represented by the rod, meaning
that the contact surface does not remain still. The parameters of the model and
the initial conditions are taken from Zander et al. [83]. The rocking rod initially
falls from a height h1 = 0.104 m with an initial angle θ = 12◦ under the action of
gravity g = 9.8 m/s2. Then, it impacts against two rigid obstacles separated by a
horizontal distance a of 0.4 m and a vertical height h2, as depicted in Fig. 4.8. The
rod is considered rigid and slender; it has a length l = 1 m, an inertia moment
Iz = 4× 10−2 kg m2 and a mass m = 0.48 kg. Zander et al. [83] made a numerical
study to find the restitution coefficients that best approximate the results obtained
using a flexible model of the rod, and they found the values for the normal and
tangential restitution coefficients to be eN = 0.6262 and eT = 0, respectively. In the
following simulations, the time increment is 10−3 s, the spectral radius is ρ∞ = 0.8
and the total simulation time is 0.3 s.

FIGURE 4.8: Rocking rod dimensions.

In order to evaluate the robustness of the proposed methodology, four different
configurations for the supports are considered. The vertical position of the supports
and the friction coefficients are selected as specified in Table 4.1, where h2 is the ver-
tical distance between supports and, µ1 and µ2 are the friction coefficients at support
1 and 2, respectively.
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Case h2 [m] µ1 µ2 a [m]
I 0 0.1 0.1 0.4
II 0 0 0.1 0.4
III 0.4 0.3 0.3 0.4
IV 0.4 0 0.3 0.4

TABLE 4.1: Rocking rod parameters.
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FIGURE 4.9: Normal gap in the contacts for the rocking rod example.

The numerical solution of Case I is depicted in Fig. 4.9(a), where the normal gap
distance between the supports and the rod are compared to the solution computed
by Zander et al. [83]. Both solutions are in a good agreement. Figure 4.9(b) presents
the results for Case II, where the normal gap distance at support 1 is assumed fric-
tionless, whilst friction effects are considered in the support 2. By analyzing this
figure, after the first impact, the normal gap distance at support 1 shows different
bounces from the frictionless case (take Fig. 4.9(a) as reference). On the other hand,
the solution for the normal gap distance at support 2 is not very affected until im-
pacting for the second time. This happens because during this period of time the
right end of the rod is in a free fall motion. Then, after the third impact, the solutions
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for Case I and II show a different behaviour.
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FIGURE 4.10: Convergence rate for the rocking rod example.

The cases III and IV, in which the supports are not aligned horizontally and the
friction coefficients are different, are also tested. It can be observed that the solutions
in Figs. 4.9(c,d) are quite different compared to Cases I and II since we are using a
greater frictional coefficient. The differences between cases III and IV start to be
slightly perceptible even after the first impact, and become obvious after the second
impact. In all the studied cases, exact satisfaction of the constraints at position level
is attained, see Fig. 4.9.

The case III, where the supports are not aligned and friction is present on both
sides is a good example to explain the phenomenon of redundancies in multiple
constraints, which has been studied by several authors [86, 87, 88]. This phenomenon
often arises in simulations involving rigid bodies with frictional contact [89]. For a
rigid body with several frictional contacts, like the rocking rod, if more than one
contact is in stick state at the same time, dependent constraints are imposed. In this
case, the solution is not unique.

In Fig. 4.11, the free body diagram of the rocking rod at the end of the simulation,
once it is resting on the supports is presented. Let us remark that it is not perfectly
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centered: the COM rod is at the coordinate position (0.0134, -0.0213) m instead of (0,
0.02) m. It is clear that the normal reaction forces N1 and N2 are properly defined,
and can be analytically computed resulting a value of N1 = 2.19 N and N2 = 2.50 N,
which are in agreement with the values observed in Fig. 4.12. Nevertheless, since
the rod is not moving, the contacts are in stick state, which implies that frictional
forces F1 and F2 are equal or smaller than the maximum frictional force, ‖Fi‖ ≤ µNi,
for i = 1, 2. In this case there is an infinite number of possible solutions F1, F2 such
that the condition F1 + F2 − PT = 0 is satisfied. Figure 4.12 shows the Lagrangian
multipliers divided by the time step, which are the reaction forces. In the tangential
direction only one of the possible solution is obtained, which satisfies the condition
F1 + F2 − Pt = 0 with the tangential weight PT = 0.47 N.

N1

F1

N2

F2

PT

PN

FIGURE 4.11: Free body diagram of the rod at rest
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FIGURE 4.12: Case III: Lagrange multipliers at velocity level Λ

The convergence of the error with the time step is shown in Fig. 4.10, the refer-
ence solution is obtained with h = 10−6 s. A linear convergence rate is obtained for
all cases.

4.2.3 Block sliding on a belt

This section deals with the dynamic modeling of a planar mechanism composed
by a mass m attached to a spring with stiffness k and natural length l to a inertial
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fixed point, where m = 3 kg, k = 50 N/m and l = 1 m. As shown in Fig. 4.13,
the mass starts from rest with an initial angle between the spring and the horizontal
of π/12 radians. Due to the gravity effect it falls until it collides with a belt that
has a constant velocity vo = 1 m/s. The friction coefficient at the contact is µ = 1,
the restitution coefficients are eN = 0.5 in the normal direction and eT = 0 in the
tangential direction. The numerical solution is computed with a spectral radius of
ρ∞ = 0.8 and the analyzed time interval is t ∈ [0, 3] s. with a time step h = 10−3 s.

h φ

mag

v0

y

x

FIGURE 4.13: Block sliding in belt dimensions

The mechanism has three different stages highlighted with colors in the charts
presented in Fig. 4.14. The first one goes from the initial time until time t = 0.65 s.
During this stage the mass is bouncing and dissipates energy in each bounce until
it remains in contact with the belt. When the mass stops bouncing the second stage
starts, in which the contact is in stick state. Therefore the mass moves with constant
velocity along with the belt. During this movement the spring is elongated until
the instant t = 0.94 s when the spring force overpasses the maximum frictional
force and the mass slides over the belt, starting the third stage. These effect can be
observed in Fig. 4.14 where the displacements and velocities of the mass are shown.
In the second and third stage, displacements and velocity in the vertical direction
become zero, while in the horizontal direction during the second stage the velocity is
constant and in the third it becomes oscillatory. Fig. 4.15(a) shows the phase portrait
for the x direction, where the the limit cycle of the third phase is shown. Finally
Fig. 4.15(b) shows the convergence rate curves that, as in the previous examples,
reveals a linear convergence. This example shows the capabilities of the method
to account for all the possible contact states (gap, slip and stick) and the transition
between them.
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FIGURE 4.14: Block sliding in Belt
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4.2.4 Sliding masses connected by springs

In this example, the capability of the proposed methodology to deal with flexible
components is studied. It consists of 21 identical masses, m = 0.0025 kg, connected
by 20 equal springs of length ` = 0.05 m and rigidity k = 20 N/m, as shown in
Fig. 4.16. The system has zero initial velocity and displacement, with an axial force
F = 0.4 N acting on the first node from t = 0 s to t = 0.1 s. A friction coeffi-
cient µ = 0.3 and a gravity acceleration of g = 9.81 m/s2 are adopted. The nor-
mal and tangential restitution coefficients are zero, and the analyzed time interval
is t ∈ [0, 1.5] s. In the initial configuration, the length of each spring is its natural
length.
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FIGURE 4.16: System of sliding masses connected by springs.

First, a time step of h = 10−3 s is used. Fig. 4.17(a) shows the positions of the
first and last nodes, and the total length of the system. The first node starts to move
in response to the action of the applied force and a wave front propagates. The
last node starts to move after 0.22 s, with the subsequent shrinkage of the system
and a wave reflection. Thanks to friction, the wave propagates in several cycles but
with a decreasing amplitude up to the point where the system remains still without
moving and with its initial length recovered. The wave propagation effect can be
clearly observed in Fig. 4.17(b) as well as in Fig. 4.18(a) where the velocity for each
node is shown as a function of time. Finally, the results for a convergence study can
be observed in Fig. 4.18(b) where, as expected, O(h) is achieved.
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FIGURE 4.17: Sliding masses for a time step h = 10−3s.
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(a) Plot of nodal velocity amplitudes in time, il-
lustrating wave propagation (h = 10−3s).
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FIGURE 4.18: Sliding masses results.

4.2.5 Oblique impact of an elastic beam against a rigid wall

This example deals with the oblique impact of an elastic beam against a rigid wall
(Fig. 4.19), which allows us to evaluate the robustness of the method for problems
involving friction and nonlinear flexible elements such as beams. Initially, García
Orden and Goicolea [90] studied this problem using truss elements and only axial
deformation effects. Then, Lens and Cardona [91] proposed a modification taking
into account the flexural behaviour by using beam elements in the framework of an
energy preserving time integration scheme.

FIGURE 4.19: Oblique impact of a flexible beam with a rigid wall.

The elastic beam impacts against a vertical rigid wall with an angle of incidence
θ. It moves horizontally until the lower tip of the beam impacts with the rigid wall.
Then, it rotates resulting in a second impact at the upper end of the beam. The initial
configuration is defined by θ = 35.2◦ and v0 = 2 m/s. The beam is 1 m long with a
transverse area of 2.5477× 10−3 m2 and inertia moment of I = 5.40897× 10−7 m4.
The Young modulus is 1× 109 N/m2, the Poisson ratio is 0.3 and the mass density
is ρ = 7850 kg/m3. The friction coefficient is µ = 0.5 and the normal and tangential
restitution coefficients are zero. The beam is discretized with eight equally spaced
nonlinear beam finite elements.
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FIGURE 4.20: Oblique impact of a beam results.
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FIGURE 4.21: Oblique impact of a beam results.

The normal gap for both contacts is shown in Fig. 4.20(a), where the results are
computed with a time step h = 10−4. It can be observed that the first impact takes
place in the lower end of the beam at 0.05 s. The second impact occurs at the other
end of the beam at 0.5878 s. A detail of the motion involving the dynamics of the
first impact is shown in 4.20(b) and 4.21(a). It is observed that the impact phase has
a duration of 82.5 ms. During the first 5 ms the contact remains closed, after which
the tip of the beam clatters until the contact is completely released. This vibration
effect is more evident at the velocity level, as it can be appreciated in Fig. 4.21(a),
where the x-component of the velocity field during the impact phase is shown. The
convergence analysis is shown in Fig. 4.21(b), it was computed for a total time of
0.85 s with different time step sizes.

The numerical solutions presented in this paper can be compared to those pre-
sented by Lens and Cardona [91] or García Orden and Goicolea [90]. However, we
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should take into account that García Orden and Goicolea only considered axial de-
formation effects and friction was not modeled. On the other hand, in the model of
Lens and Cardona [91] the flexural behaviour was modeled using beam elements;
however, the impact was frictionless. Furthermore, in both cases, the impact equa-
tions were regularized by the penalty method, and a high dependency of results on
the penalty factor was shown. Hence, owing to these facts, the dynamic response
obtained with the current model is not exactly the same to the ones found in [90, 91].

4.2.6 A pendulum impacting a rigid plane attached to flexible supports

As shown in Fig. 4.22 a pendulum impacting a rigid plane attached to flexible sup-
ports has been simulated. The plane is of square shape with a side length of l = 5 m.
Its center of mass, located at its geometrical center, has its translations fixed, there-
fore it can only rotate. Each of the four corners of this plane is attached to a geo-
metrically nonlinear spring-damper element, where the stiffness constant and the
damping coefficient are 100 N/m and 1 Ns/m, respectively, and the initial length is
L0 = 0.2 m. The mass and the principal moments of inertia of the plate are equal to
ms = 0.2 kg and Is = msL2/6. At a height h0 = 1 m from the center of the plane,
there is attached a pendulum of 1.3 m length with mass and principal moments of
inertia equal to mp = 5 kg and Ip = mpl2. The fixed end of the pendulum is free
to rotate, and initially the free end is in the position (0; 1.3; 1) m. Both, the pendu-
lum and the plane are under the action of the gravity equal to 9.81 m/s2. Initially,
the pendulum has an angular velocity of Ω = (0; 0; 1.5) rad/s and the free end a
velocity of v = (−1.95; 0; 0) m/s. Friction is modeled adopting a friction coefficient
equal to µ = 0.3, and the normal and tangential restitution coefficients are taken
equal to zero. This setting allows us to show the ability of the proposed algorithm
for handling flexible elements and a 3D frictional behaviour.

FIGURE 4.22: Pendulum impacting a rigid plane attached to flexible
supports: Configuration of the problem.
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FIGURE 4.23: Pendulum impacting a rigid plane attached to flexible
supports (results for h = 10−3).

The pendulum starts a downwards trajectory in response to the effect of gravity,
until colliding with the plane attached to flexible supports. Due to the flexibility of
the system, the pendulum bounces adopting states of sliding and sticking as the ori-
entation of the plane changes in response to the collisions with the pendulum. This
can be observed in Fig. 4.23(a-b), where the bounces of the pendulum can be reck-
oned by analyzing the normal component of the gap, and the sticking and sliding
phases can be inferred from the graph of the norm of the gap in the tangential direc-
tion. In Fig. 4.23(c) the history of the rotation vector of the plane can be appreciated.
The results for a convergence study are shown in Fig. 4.23(d) where, as expected,
O(h) is achieved.
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4.3 Summary and concluding remarks

A new frictional contact algorithm for nonsmooth multibody systems is presented.
The integration of the equations of motion of the frictional contact problem is per-
formed using the nonsmooth generalized-α time integration scheme based on an
augmented Lagrangian approach. The smooth contributions are integrated using a
second-order scheme, whereas a first order scheme is used for the impulsive con-
tributions. Compared with the classical Moreau-Jean method, the proposed method
leads to qualitatively better numerical solutions with less numerical dissipation. The
proposed contact model satisfies exactly the contact constraints at position level,
which means that no penetration is observed. Impacts are also properly solved with
the exact satisfaction of constraints at velocity level. Then, the complementarity
problem for the normal and frictional contact problem is solved at each time step
using a Newton semi-smooth method in a fully implicit approach with fast conver-
gence. The proposed methodology has been successfully applied to study different
mechanism configurations consisting of flexible and/or rigid bodies and to observe
the friction effects on the dynamic response of the system.

The presented numerical examples demonstrate the ability of the method to rep-
resent frictional contact problems with large displacements and rotations in a two
and three dimensions. The algorithm has three main features: i) the final solu-
tion is independent of the penalty parameters both in the tangential and normal
directions, their values mostly affect the convergence rate, ii) the algorithm does not
require modifications in existing finite elements of the library, in other words it is
minimally intrusive and iii) the smooth motion of a mechanism which captures a
large part of elastic and vibration phenomena in the flexible bodies, is solved using
a generalized–α method with second-order accuracy and with controlled dissipa-
tion, something that is not possible with the first order integrators which are usually
used to solve this kind of problems and introduce a much higher numerical dissipa-
tion. The equations for the analytical computation of the residual forces and tangent
matrices of the frictional contact algorithm are provided. Five numerical examples
of mechanisms with unilateral friction constraints are presented. Finally, the results
of these examples were compared to analytical equations and previous numerical
solutions obtained by other authors showing good agreement and convergence rate.
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Chapter 5

Finite Element implementation

This chapter introduces the procedure to embed the nonsmooth generalized-α solver
and the previously presented frictional contact formulation into a general purpose
finite element code, in this case Oofelie::Multiphysics (Object Oriented Finite Ele-
ments Led by Interactive Executor) [66] software. Compared to other general pur-
pose codes for nonsmooth dynamic systems, such as, LMGC90 [30], Siconos [63] and
Chrono [64], the nonlinear finite element approach is particularly well-suited to deal
with complex articulated systems including flexible components.

The chapter starts with an introduction to the Oofelie software, explaining the
different types of classes, the scripting procedure and the data base used to store
information. The description of the implementation for the new solver and the fric-
tional contact presented in Chapters 3 and 4 is given. Finally the woodpecker toy
example is simulated, which is a multibody dynamic system involving frictional
contacts and nonlinear dynamic interactions. This example demonstrates the pos-
sibility to solve this type of problems in a systematic way using the finite element
method.

5.1 Oofelie Multiphysics

Oofelie is a multiphysics finite element software designed to study coupled ther-
mal, mechanical, acoustic and electrical fields problems. It is written in C++ making
use of the object oriented philosophy. The structure of the software was firstly pre-
sented by Cardona et al. [66]. The first version of the software was developed in the
Laboratoire de Techniques Aéronautiques et Spatiales (LTAS) at the University of Liège
and at CIMEC-INTEC in Argentina. Later on in 2001 the spin-off Open Engineer-
ing was created, in order to further develop and industrialize the software. The use
of Oofelie can be done through an associated interpreter, which uses a specialized
high-level language with a syntax close to C++. This interpreter allows to access the
most relevant classes and methods in the Oofelie code. It is used to define the neces-
sary physical data of the problem, and set up the desired numerical options to solve
it. Most classes in Oofelie can be classified in the next groups:

• MTK classes contain mathematical tools, such as different types of matrices
and vectors, most of them inheriting from the virtual class MotherMatrix or
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MotherVector. The idea is to optimize the matrix operations for each case, e.g.
the Vect3 and Matr3 are defined to deal with 3D space operations.

• Analysis classes contain all the necessary classes to manage the data base (DB)
where the results are stored.

• Each of the FEM classes represents a different type of mechanical finite ele-
ment, e.g. linear flexible beams, nonlinear flexible beams, rigid bodies, hinges
and so on.

• Materials classes are used to model different material behaviors.

• Solvers classes include different numerical algorithms techniques to solve dis-
tinct types of problems.

• In Kernel and Main are the main general classes of Oofelie used to define the
work flow of the program and its data structure, for example, the Dof, Dofset,
Partition, Connection, VectorStr, MatStr and Domain.

Any class which needs to be accessed from the interpreter needs an extra class,
which has the same name preceded by oeI_. These classes define the wrapper be-
tween the interpreter and Oofelie classes.

An important contribution of this thesis to Oofelie is the implementation of the
nonsmooth NSGA method and the frictional contact element presented in Chap-
ters 3 and 4 respectively. The solver class is called oeNonSmoothGASolver2 and the
contact element class oeContactNodeToFaceWithFrictionAndRotation.

5.1.1 Input data: Interpreter scripts

As aforementioned, the data used to carry out a simulation in Oofelie is introduced
through the interpreter. This information is typed in a text file with the Oofelie
extension, which is .e. In an Oofelie simulation file, the physical data to describe
the system is stored inside an object of the class Domain. In order to create an ob-
ject Domain with the necessary data for a simulation, at least one instance of the
class PositionSet, ElementSet and FixationSet is required. Even though it is not
mandatory, the ExcitationSet is also needed when external loads are applied. Fi-
nally to solve the problem, an instance of a solver class is needed. In our case the
solver class is the NonSmoothGASolver2. The creation of a solver instance requires
an associated domain. Finally some commands are required to save the data results,
e.g. the class ToParaView can be used to save the data in the format of the post pro-
cessing software Paraview, or the class ToUNV can be used to visualize the results in
Siemens NX, provided that a dedicated plug-in is available. For a better understand-
ing an example of the script for a falling ball is shown in Code 5.1. In line 8, the four
arguments are the node number followed by the x, y and z components of its initial
position.
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CODE 5.1: Oofelie scritp example: Falling ball

1 Domain domain_1("fallingBall");

2 domain_1.setAnalysis(DYNAMIC_PO);

3

4 scalar mass = 1;

5 Propelem point_element(PointMass_E) { MASS, mass; }

6

7 PositionSet position_set_1();

8 position_set_1.define(1, 0.0, 1, 0.0);

9 domain_1.add(position_set_1);

10

11 ElementSet element_set_1();

12 element_set_1.define(1,point_element, 1);

13 domain_1.add(element_set_1);

14

15 FixationSet fixation_set_1();

16 domain_1.add(fixation_set_1);

17

18 ExcitationSet excitation_set_1();

19 excitation_set_1.define(1, TY|GF, (-9.81 * mass));

20

21 domain_1.dom_add(excitation_set_1);

22 domain_1.setAnalysis(DYNAMIC_PO);

23 domain_1.setStep(1);

24

25 NonSmoothGASolver2 solver (domain_1);

26 solver.setFinalTime (4);

27 solver.setTimeStep (2e-3);

28 solver.compute();

29

30 ToParaView toPV(domain_1);

31 toPV.exportCodeNode(DISPLACEMENT, "Displacement");

32 toPV.writeResults(DYNAMIC_PO, domain_1.getUserName());

5.1.2 Data structure and assembly procedure

Continuum fields are discretized in space using nodal coordinates [92], it means
that different nodes in the space are connected by elements. Depending on which
element connects the nodes with its neighborhood nodes, different DOF may be
defined for each node, e.g. displacements, rotations or temperatures. When the ele-
ments are initialized it is checked if the necessary DOFs at their nodes already exist
in the DB, if it is the case, then the existing DOFs are associated to the node element,
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therefore the contribution of this element is added to these associated DOFs. If the
DOFs do not exist, they are created and associated. Also some DOFs can be associ-
ated to an element instead of a node, e.g. the Lagrange multipliers. Each of these
DOFs are one instance of the class Dof and the list of DOFs is managed by the class
DofSet.

The DOFs status can be saved for all the time steps and at different differentiation
levels, such as the generalized displacements, generalized velocities and generalized
accelerations. This information is stored in the DB that belongs to the domain, and
it can be globally accessed from the solver but also locally from each element, which
simplifies the exchange of information between the solver and the elements.

An intuitive way to imagine the Oofelie DB is as a set of tables storing infor-
mation with the same structure. In these tables each row can be understood as the
information related to a specific DOF and each column as the information for all
the DOFs of one type or differentiation level, i.e. displacement, velocity, force or
any oder relevant information depending on the analysis type. This concept is illus-
trated in Fig. 5.1, for a case where the displacements, velocities, accelerations and
forces are stored. Each of these tables is related to a different instant for a given cat-
egory and these categories in Oofelie are called Analysis, for example DYNAMIC_PO

or NONLINEARSTATIC_PO. An Analysis is a compilation of data for different instants,
each instant is called a step. At each step a table with all the data is stored, similarly
to the one showed in 5.1. Depending on the Analysis type the meaning of these
steps can be different. For example in the DYNAMIC_PO are the time discretization
steps for a dynamic analysis, on the other hand in the NONLINEARSTATIC_PO Analysis
are the incremental load steps. The Analysis type is chosen through the domain as
can be seen in Code 5.2 and 5.3. In Fig. 5.2 an example of DB is represented, where
Code 5.2 points to the table highlighted in red and Code 5.3 to the one highlighted
in blue in Fig. 5.2.

CODE 5.2: Code used to set the domain analysis to dynamic

1 dom->setAnalysis(DYNAMIC_PO);

2 dom->setStep(1);

CODE 5.3: Code used to set the domain analysis to nonlinear static

1 dom->setAnalysis(NONLINEARSTATIC_PO);

2 dom->setStep(2);

In order to access the DB the class VectorStr can be used. This class not only
allows one to access the DB but also to execute the assembly procedure. An instance
of the class VectorStr is a vector where the size can be the number of DOF of the
system or less, in which every element vector is a pointer to the corresponding DOF
in the database. For a better understanding of this concept an example is shown in
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Fig. 5.3. The example consists of a system with one node and one instance of the
VectorStr which is related to the rotations of the node. In this case the DOF are the
displacements, the rotations and the Lagrange multipliers.

In Oofelie, the contribution of an element is not computed inside one unique
function, normally this contribution is splitted in different functions related to its
nature. For example a spring-damper element could have different functions to
compute the residue, one to compute the internal forces and other ones to compute
the dissipative forces, called fill_inter_forc and fill_dissipation_forc respec-
tively. The same philosophy applies for the tangent matrix: one function computes
the damping contribution and another the stiffness contribution, called fill_tang_

damping and fill_tang_stiffness respectively. These functions can be called from
the VectorStr and MatrixStr classes, computing and assembling the contribution
of all elements.

Additionally, another way to access the DB is by making direct requests to get the
value of a DOF or several values for one node, for example to get the displacements
in a three dimension space of one specific node. This type of calls is the one used
inside the elements.

All these possibilities to access the DB give flexibility to implement different
types of solvers, being useful, for example, to implement an implicit solver, for in-
stance the NSGA, with almost no modification to the existing elements.

Finally, it is worth mentioning that even though the DB is organized in an effi-
cient way, in some problems the number of nodes can be very large, and storing the
data for all the time steps can be overwhelming in the sense that the computer can
run out of memory. Therefore in Oofelie a memory manager tool allows one to save
the information into the hard drive periodically every certain number of time steps
in order to release memory.

DOF ID DIS VEL ACC FOR
TX - - - -
TY - - - -
TZ - - - -
RX - - - -
RY - - - -
RZ - - - -

LM1 - - - -
LM2 - - - -

FIGURE 5.1: Data base table representation

5.2 NSGA solver and frictional contact implementation

5.2.1 Solver classes

As introduced in the Chapter 3 the NSGA is based on three different problems to be
solved at each time step: for the smooth variables, the position correction and the
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DOF ID DIS VEL ACC FOR
TX - - - -
TY - - - -
TZ - - - -
RX - - - -
RY - - - -
RZ - - - -

LM1 - - - -
LM2 - - - -

DOF ID DIS VEL ACC FOR
TX - - - -
TY - - - -
TZ - - - -
RX - - - -
RY - - - -
RZ - - - -

LM1 - - - -
LM2 - - - -

DOF ID DIS VEL ACC FOR
TX - - - -
TY - - - -
TZ - - - -
RX - - - -
RY - - - -
RZ - - - -

LM1 - - - -
LM2 - - - -

Step 1 Step 2 Step n

NONLINEARSTATIC_PO

DOF ID DIS VEL ACC FOR
TX - - - -
TY - - - -
TZ - - - -
RX - - - -
RY - - - -
RZ - - - -

LM1 - - - -
LM2 - - - -

DOF ID DIS VEL ACC FOR
TX - - - -
TY - - - -
TZ - - - -
RX - - - -
RY - - - -
RZ - - - -

LM1 - - - -
LM2 - - - -

Step 1 Step m

DYNAMIC_PO

FIGURE 5.2: Data base representation

DOF ID DIS VEL ACC FOR
TX - - - -
TY - - - -
TZ - - - -
RX - - - -
RY - - - -
RZ - - - -

LM1 - - - -
LM2 - - - -

VectorStr(RX|RY|RZ|DIS)
pointer to
pointer to
pointer to

FIGURE 5.3: Data base representation

velocity jump. All of them have a similar structure. Therefore the solver has been
implemented using different classes to make it flexible, efficient, and maintainable.
The classes for the NSGA solver are:

• NonSmoothGASolver: It is the main class, which contains the definition of the
data structure, and solves the complete system.

• NonLinearSolver: It is an abstract class, which is used as an interface for the
classes PositionNonLinearSolver, SmoothNonLinearSolver and VelocityNon-
LinearSolver. It also contains methods to solve nonlinear systems.

• SmoothNonLinearSolver: Concrete class, which contains the methods to com-
pute the smooth contribution.

• PositionNonLinearSolver: Concrete class, which contains the methods to com-
pute the position correction.

• VelocityNonLinearSolver: Concrete class, which contains the methods to com-
pute the velocity jump.
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The NSGA solver is implemented in the NonSmoothGASolver2 class. The method
called computeSolution solves the full system following the Algorithm 1. In or-
der to exchange the information between the different classes a data structure called
NonLinearSolverContext has been created. The members of this structure are mainly
VectorStr, one BlockMatrixStr and one TypeMatStr that are linked to the Oofelie
DB. It also contains the numerical parameters of the generalized-α method. This
data structure is instantiated in the NonSmoothGASolver2 and its memory address is
taken as an input by the constructors of the three concrete classes, in that way they
can directly assemble their contribution.

The NonLinearSolver is a class with numerical tools to solve a non linear sys-
tem of the general form r(q) = 0 where r(q) is the residual function. The two
implemented methods are newtonRaphson and lineSearch. The Newton-Raphson
method is a root-finding algorithm which produces successively better approxima-
tions to the roots of a real-valued function. Despite the need of a Newton semi-
smooth method to solve the frictional contact problem, in the newtonRaphson func-
tion a standard Newton-Raphson is implemented because all the computations re-
lated with the activation status of the unilateral constraints are managed at the el-
ement level, completly separated from the solver. In that way the methods imple-
mented in the NonLinearSolver are easy to mantain and reusable for other function-
alities.

The Newton-Raphson method only converges locally, which can cause conver-
gence problems in some cases, for example if the starting point is out of the conver-
gence area or the derivate of the function whose root is sought is discontinuous [93].
Therefore in the second method a Line Search (LS) algorithm has been implemented
following the approach presented by Wriggers [94]. The line search is a modification
of the Newton-Raphson method. When the residue of iteration i + 1 is greater than
the value obtained in the previous iteration i the line search is applied, which can be
seen as a damping in the corrections to avoid to go outside of the attractive region.
This reduction is represented by αi; which is a numeric value between 0 and 1, as it
is shown in Eq. (5.1).

qi+1
n+1 = qi

n+1 + αi∆q
i+1
n+1 (5.1)

This parameter αi could be chosen heuristically, but to improve the performance
it is convenient to compute its optimal value. Since the associated solution for
r(q)Tr(q) is also solution for r(q), it makes sense to express this as a function only
dependent on αi

f (αi) = −r(qi + αi∆qi+1)
Tr(qi + αi∆qi+1) (5.2)

and minimize it to obtain the optimal αi. The minimization of Eq. (5.2) is done using
the secant method, which is easy to implement since it only involves the evaluation
of r.

The Algorithms 2 and 3 show how these two methods have been implemented,
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NonLinearSolver
-newtonRaphson()

-lineSearch()
+computeResidue()
+computeJacobian()
+applyCorrection()

PositionNonLinearSolver
+computeResidue()
+computeJacobian()
+applyCorrection()

SmoothNonLinearSolver
+computeResidue()
+computeJacobian()
+applyCorrection()

VelocityNonLinearSolver

+computeResidue()
+computeJacobian()
+applyCorrection()

NonSmoothGASolver
+computeSolution()

TransientSolver

FIGURE 5.4: UML diagram: Nonsmooth Generalized-α Solver

where e is the relative error defined as the ratio between the norm of the residue and
the norm of the residue plus a certain reference value, e = ‖ri‖/‖ri + re f erence‖, els

is the relative error used in the line search method, imax is the maximum number of
allowed iterations and the criterion expression used for checking the convergence is
the one presented in Eq. (3.55).

These two methods call the three defined virtual methods computeResidue,
computeJacobian and applyCorrection, which are fully defined in the concrete
classes that inheritate from the NonLinearSolver class, having a different behaviour
for each subproblem, smooth, position and velocity. The full interaction between
these classes is shown in the UML diagram in Fig. 5.4, where the standard notation
+ and − denotes public and private methods, respectively.

Algorithm 2 NonLinearSolver::newtonRaphson() implementation

1: q0
n+1 = qn

2: r0 = r(q0
n+1)

3: i = 0
4: Compute e(q0

n+1)
5: while (i < imax and e > tol) do
6: Compute Jacobian matrix J
7: Compute corrections ∆qi+1

n+1: Solve J(qi
n+1)∆q

i
n+1 = −r(qi

n+1)

8: Apply correction: qi+1
n+1 = qi

n+1 + ∆qi+1
n+1

9: Compute residue r(qi+1
n+1)

10: Compute e(qi+1
n+1)

11: i = i + 1
12: end while

The contribution of the three different problems can be computed using the ex-
isting methods implemented in the element library. Equations (3.34), (3.39) and
(3.41) to compute the residue for the smooth motion, position correction and veloc-
ity jumps, respectively, present a similar structure, the same occurs for the tangent
matrix presented at Eq. (3.50), (3.51) and (3.52). This allows us to call the existing
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Algorithm 3 NonLinearSolver::lineSearch() implementation

1: q0
n+1 = qn

2: r0 = r(q0
n+1)

3: i = 0
4: Compute e(q0

n+1)
5: while (i < imax and e > tol) do
6: Compute Jacobian matrix J
7: Compute ∆qi+1

n+1: Solve J(qi
n+1)∆q

i
n+1 = −r(qi

n+1)

8: Apply corrections: qi+1
n+1 = qi

n+1 + ∆qi+1
n+1

9: Compute residue r(qi+1
n+1)

10: eLS = e
11: Compute e(qi+1

n+1)
12: if e > eLS then
13: Compute αoptimal

14: Apply correction: qi+1
n+1 = qi

n+1 + αoptimal∆q
i+1
n+1

15: Compute residue r(qi+1
n+1)

16: Compute e(qi+1
n+1)

17: end if
18: i = i + 1
19: end while

methods using as arguments pointers to different locations in the DB to compute
their contribution to the residue or the tangent matrix at each level (smooth, posi-
tion or velocity). For example, the nsmth_inert_forces is called at smooth, position
and velocity levels using ˙̃v, U , andW as argument, respectively.

It is important to remark that not all the results are stored in the DB for all the
time steps. The only variables that are stored for all the time steps are the positions
qn, velocities vn, accelerations ˙̃vn and the Lagrange multipliers λ̃n, νn and Λn. Once
convergence is achieved these variables are stored in the DB Analysis DYNAMIC_PO

for the current time step. The other variables q̃n+1, Un+1, ṽn+1 and Wn+1 are only
stored during the iteration procedure and are linked to the Analysis CURRITERATIO

N_PO.
The method computeResidue uses the standard methods inert_forces, dissip

ation_forces and int_forces which are already implemented in the elements and
also the new ones nsmth_int_forces_smo, nsmth_int_forces_pos and nsmth_int

_forces_vel. The new frictional contact element is the only one in which these
three new methods are explicitly implemented. For other existing elements, since
these new functions are not implemented, the standard function of the elements
fill_inter_forc is called. Only the elements involving bilateral constraints have
been slightly modified to introduce these three functions, which call the function
fillConstraintsAtPositionLevel or fillConstraintsAtVelocityLevel.
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5.2.2 Frictional contact element class

The friction model is added at the element level, using a frictional contact element
as presented in the Chapter 4. This element has been implemented in Oofelie in
an element class called oeContactNodeToFaceWithFrictionAndRotation. It follows
the same structure as the rest of Oofelie elements. In the constructor, the nodes
are defined, and the standard method toDofSet associates or creates and associates
the DOFs regarding to this element. The frictional contact element involves twelve
DOFs, three translations of the slave node, three translations and three rotations
of the node attached to the master surface, and three Lagrange multipliers which
represent the reaction forces due to the impacts. One of these Lagrange multipliers
is in the normal direction and the other two to acount for the frictional effects in the
tangential direction.

The contribution of the element is split in three different parts, following the
idea of the solver, the smooth variables, the position corrections and the velocity
jumps. As presented in the section 4.1 the frictional contact only contributes to
the residue when the unilateral constraints are active, otherwise it has no influence
on the motion. Therefore the contribution to the residue is done by two methods:
fill_nsmth_int_forc_pos and fill_nsmth_int_forc_vel, computing the Eqs. (4.35)
and (4.45) respectively.

In the case of the tangent matrix a contribution is evaluated for the three levels.
The methods: fill_nsmth_tang_pos_ns and fill_nsmth_tang_vel_ns compute the
Eqs. (4.36) and (4.46) respectively, and fill_nsmth_tang_smo_ns computes the con-
tribution to the smooth variables. This last contribution is the negative identity ma-
trix for the components related to the Lagrange multipliers DOFs. Indeed, even if
there is no unilateral constraint, the number of DOFs is the same for all three sub-
problems (smooth variables, position corrections and velocity jumps) to simplify the
implementation. Inside these methods some mathematical operations are repeated.
Therefore several auxiliary methods have been implemented to simplify the code.

5.3 NSGA and FEM applied to the woodpecker toy example

5.3.1 Introduction to the woodpecker toy

The study of the woodpecker toy dynamics sets up a good example to show the ca-
pabilities of the nonsmooth generalized-α implemented in a general purpose finite
element code to solve multibody dynamics problems involving nonsmooth phenom-
ena.

The woodpecker toy is a frequent example in papers dealing with nonsmooth
contact dynamics methodologies. It involves several rigid bodies, which undergoes
impacts and dynamic transitions between the gap, stick and slip states. The toy
consists of a pole, a sleeve with an internal diameter slightly larger than the pole
diameter, a woodpecker body with the beak and a spring which attaches the bird’s
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body with the sleeve, see Fig. 5.5(a). It is a non conservative system where the grav-
ity acts as the only energy source. The gap between the sleeve and the pole is small
so that, the potential energy is not only transformed into kinetic energy but also dis-
sipated through the frictional impacts, ending in a stable limit cycle. The example
was first introduced by Pfeiffer [95] where the loss of energy due to the impacts is
represented by an equivalent heuristic model. Glocker and Pfeiffer [96] studied the
problem including a contact model for the beak. The equations of motion were based
on a Coulomb friction model and a Poisson impact law, and their solution was com-
puted using the Moreau-Jean scheme. In an experiment, these authors measured a
falling distance per cycle of 5.3 mm and a limit cycle frequency of f = 9.2 Hz. The
problem was also studied in [97, 98, 99, 100]. In these references, a minimal set of co-
ordinates is used to describe the woodpecker toy: the vertical position of the sleeve
y, the sleeve rotation φM, and the bird rotation φS. Also, the sleeve displacement
in the horizontal direction is neglected, so that symmetry can be used to simplify
the example, and small rotations approximations are considered. Leine [99] made a
bifurcation analysis of the system, and an exhaustive explanation of all the motion
phases. Glocker [101] studied the problem with the same assumptions but using the
Newton impact law. Slavic and Boltezar [102] adapted the methodology to consider
unilateral constraints between bodies with arbitrary shapes, and they took the beak
shape into account. Recently, Charles et. al [100] presented an algorithm for prob-
lems with impacts and friction, where the woodpecker toy model from Glocker [96]
is used as a benchmark test.

All the previous works dealing with the nonsmooth dynamics of the woodpecker
toy specifically deduced the equations of motion for the considered problem result-
ing in a model with a minimal set of coordinates. They assumed small rotations and
neglected the horizontal displacement of the sleeve, except for Slavic and Boltezar
[102]. For all of them, the numerical solution was also obtained using first-order
time integrators, such as the Moreau-Jean scheme.

The use of a model with a minimal set of coordinates has the advantage that
the equations of motion are compact and only unilateral constraints are involved.
However, this approach can hardly be automatized in a general purpose software
and the scalability to more complex mechanisms is hardly possible. Using a general
MBS formulation, such as the finite element approach, the equations of motion can
be assembled automatically considering large rotation. It should be remarked that
with the adoption of this paradigm, in addition to unilateral constraints, bilateral
constraints dealing with kinematic joints and rigid bodies will have to be managed.
Using the nonsmooth generalized-α method, both types of constraints can be exactly
satisfied without any drift at position and velocity levels, so the treatment of bilateral
constraints does not represent any problem.
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FIGURE 5.5: Woodpecker example.

5.3.2 Problem definition for the woodpecker toy

The woodpecker toy is modeled as a mechanical planar system, as shown in Fig. 5.5(b).
The translations in z direction and rotations around x and y axes are imposed to zero.
Table 5.1 gives the parameters of the model used in the numerical simulation accord-
ing to [95]. In Fig. 5.5(b), the letters M and S make reference to the sleeve and the
woodpecker body respectively, and the numbers 1-5 are the IDs of the contact ele-
ments accordingly specified in Table 5.2: pole-beak (ID: 1), down right sleeve-pole
(ID: 2), upper right sleeve-pole (ID: 3), upper left sleeve-pole (ID: 4) and down left
sleeve-pole (ID: 5).
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FIGURE 5.6: Woodpecker toy element discretization. Showing nodes
ID.

5.3.3 Decomposition in elements

As finite element coordinates are used, the system is described through nodes and
elements [5]. Each node defines a position and/or an orientation in the 3D space
whilst the elements represent the interplay between them. In general, a system is
modeled using a library of elements like rigid bodies, flexible beams, springs, hinges
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TABLE 5.1: Woodpecker model parameters and initial conditions

Geometrical characteristics
pole radius rO = 0.0025 m
sleeve radius rM = 0.0031 m
half sleeve height hM = 0.0058 m
distance: spring - COM sleeve lM = 0.0100 m
distance: spring - COM woodpeaker lG = 0.0150 m
distance: beak - COM woodpeaker hS = 0.0200 m
distance: beak - COM woodpeaker lS = 0.0201 m
Inertial properties
sleeve mass mM = 0.0003 kg
woodpecker mass mS = 0.0045 kg
sleeve moment of inertia JM = 5.0 · 10−9 kg·m2

woodpecker moment of inertia JS = 7.0 · 10−7 kg·m2

Force elements
angular stiffness cφ = 0.0056 Nm/rad
gravity g = 9.81 m/s2

Contact parameters
COR in normal direction εN1 = 0.5
COR in normal direction εN2 = εN3 = 0

εN4 = εN5 = 0
COR in tangential direction εT1 = εT2 = εT3 = 0

εT4 = εT5 = 0
frictional coefficient µ1 = µ2 = µ3 = 0.3

µ4 = µ5 = 0.3
Initial conditions
sleeve angular position φMO = −0.1036 rad
woodpecker angular position φSO = −0.2788 rad
woodpecker vertical velocity vo = −0.3411 m/s
sleeve angular velocity ωMO = 0.0 rad/s
woodpecker angular velocity ωSO = −7.4583 rad/s
sleeve position X XM = 0 m
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and so on. Then the contributions of the different elements are assembled numeri-
cally to obtain the discretized equations of motion of the system, which afterwards
are integrated in time, in our case using the nonsmooth generalized-α method.

Flexible elements, like springs or beams, do not introduce constraints. These ele-
ments only contribute to the system with a force term that depends on the position,
orientation and/or velocity of the element nodes. On the other hand, rigid bodies
and hinges add bilateral constraints that connect the element nodes. Because of that,
it is important to use an algorithm that imposes the constraints not only at velocity
level but also at position level, otherwise a drift at position level can occur, as shown
in [50]. Finally, contact conditions are modeled using a node-to-face frictional con-
tact element.

In Fig. 5.6, the set of elements used to simulate the woodpecker example are
shown, where the numbers refer to the nodes id, and the numbers inside a circle to
the elements id. Two rigid elements, one hinge element, one torsional spring element
and five frictional contact elements are used. In Table. 5.2 the list of elements and
the nodes belonging to each one is shown. The rigid bodies connect all the element
nodes with the center of mass of the element, which is the first node of the element.
For each node that is connected to the center of mass, three bilateral constraints are
introduced. In each contact element only two nodes are involved, the first one is
the node attached to the contact surface. In this example the position of the surface
contact node is fixed in time, but the element is capable to deal with the translation
and rotation of the contact surface. The hinge element is composed of three nodes
and introduces six bilateral constraints. The first two nodes are the position of the
material points to be joined by the hinge, whilst the third node is used to store the
relative angle of the hinge, which can be used to model a torsional spring or impose
an external torque, to simulate the action of a motor for example. Three of the five
bilateral constraints guarantee that the two nodes remain together. The next two
fix the rotations about the two directions, that are perpendicular to the rotation axis
of the hinge. The last constraint defines the value of the relative angle. A more
extended explanation of the rigid, hinge and spring elements formulation can be
found in Géradin and Cardona [5].

5.3.4 Elements contributions

This subsection presents the different contributions of the elements and shows that
many of them can be evaluated from standard operators available in a nonlinear
finite element code. The nonsmooth generalized-α method presents the advantage
that the three sets of Eqs. (3.34), (3.37) and (3.41) have a similar structure to the
smooth problem, allowing to reuse the implemented functions of the existing ele-
ments in the software. To assemble the set of equations presented in Eq. (3.34), (3.37)
and (3.41), the functions of the elements are called several times with different input
variables. The standard functions for the elements are:
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TABLE 5.2: Finite elements description

Element ID Element type Description Nodes
1 Friction Contact Pole - Beak 2 11
2 Friction Contact Pole - Sleeve 2 4
3 Friction Contact Pole - Sleeve 2 5
4 Friction Contact Pole - Sleeve 1 6
5 Friction Contact Pole - Sleeve 1 7
6 Rigid Body Sleeve 3 4 5 6 7 8
7 Rigid Body Body bird 12 10 11
8 Hinge Sleeve-Body 8 10 9
9 Spring Torsional spring 0 9

• Bilateral internal forces (BIF): computes the reaction forces of the general form
gT
qλ. , where λ is a vector with the same dimensions as the Lagrange mul-

tipliers. The input variables are the vector λ and the configuration variable
q.

• Flexible internal forces (FIF) f (q,v): computes internal forces of the elements
that are not related with constraints, the inputs are the position and velocity
vectors.

• Inertial forces (IF): computes Ma, where a is a vector with the same dimen-
sions as the acceleration. The input variables are a and the position vector.

• Constraints (C): computes the contribution of the position constraints, the in-
put variable is the position vector.

• Velocity constraints (VC): computes the contribution of the velocity constraints.
The input variables are the configuration variable and the velocity vectors at
time n and n + 1.

In the case of the spring element, which does not contribute to bilateral cons-
traints or mass, the function FIF is only called three times, once for each subproblem,
with the inputs q̃n+1, ṽn+1 at smooth level, qn+1, ṽn+1 at position level and qn+1,vn+1

at velocity level.
In the hinge and rigid elements, the function BIF is called for the three subprob-

lems, smooth, position and velocity with the input variables λ̃, ν, Λ respectively.
Also, to impose the constraints at position level, the function C is called with the po-
sition vector qn+1 as inputs. To impose the constraints at velocity level, the function
VC is called for the smooth subproblem with q̃n+1, ṽn+1 as inputs, and it is called
again for the velocity subproblem with the inputs qn+1,vn+1. Additionally, in the
rigid element the function IF is called with the input values q̃n+1, ˙̃vn+1 for the smooth
subproblem, qn+1,Un+1 for the position subproblem and qn+1,Wn+1 for the velocity
subproblem.
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The contact element has been developed explicitly for this algorithm, therefore,
since it is massless and it does not contribute to the smooth subproblem, its contri-
bution is condensed in two functions:

• Nonsmooth residue position (NRP): computes all the contributions of the con-
tact element to the position subproblem. The input variables are the position
vector at time n + 1 and the Lagrange multipliers ν,

• Nonsmooth residue velocity (NRV): computes all the contribution of the con-
tact element to the velocity subproblem. The input variables are the velocity
vector at time n and n + 1, the position vector at time n + 1 and the Lagrange
multipliers Λ,

5.3.5 Numerical results

In this section, the results for the woodpecker toy are presented. Two different cases
are studied. In case I, the horizontal displacement of the sleeve center of mass (xm)
is fixed, whereas in case II this displacement is free. In case I since the displacement
of the center of mass is fixed, it is possible to apply a symmetry condition and the
contacts 4 and 5 can be removed [96, 101, 98, 102].

For both cases the convergence of the numerical solution obtained with the pro-
posed methodology is analyzed. For that purpose, as in previous chapters, the error
over the full time interval divided into N time increments h is evaluated using the L1

norm, which is defined as shown in Eq. (4.47). Since no analytical solution is avail-
able, the numerical solution corresponding to a smaller time increment (h = 10−5 s)
is taken as reference solution.

All figures from 5.7(a) to 5.9(b) show the comparison of results between the cases
I and II computed using a time step h = 10−4 s. The rotation φS and angular velocity
φ̇S for the woodpecker (node 12), are shown in Figs. 5.7(a) and 5.7(b), respectively. In
Fig. 5.7(a) it can be observed that there is one dominant nonsmooth point per cycle,
corresponding to the instant when the beak impact occurs.

Figs. 5.8(a)-5.9(b) compare the behavior of the sleeve for both cases. Figs. 5.8(a)
and 5.8(b) show the rotations and the angular rotations of the sleeve, whilst Figs. 5.9(a)
and 5.9(b) show the vertical displacements of the sleeve center of mass and its time
derivative, respectively. In order to facilitate the understanding of the sleeve contact
process for the case II, four zones are highlighted in blue and yellow in the charts.
During the first phase the lower left corner of the sleeve (contact 5) impacts the rod.
In the second phase the contacts 2 and 4 bounce against the pole entering in slip
during short periods of time, until the moment where both remain closed, as can be
seen in Figs. 5.10(a) and 5.10(b) where the gaps are shown. In this instant, the phase
3 starts and contacts 2 and 4 are active in slip mode, as can be seen in Fig. 5.9(a), i.e.,
the sleeve keeps falling. Finally, in phase 4 the sleeve contacts 2 and 4 are in stick
mode, therefore, the sleeve does not have any motion and the curve remains flat, as
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can be observed in Figs. 5.8(a)-5.9(b). Besides in Figs. 5.10(b) it is possible to observe
that for case II the upper right corner (contact 3) is never closed.

Comparing the two cases, we can observe that the decision to neglect the hor-
izontal displacements of the sleeve center of mass has a considerable influence on
the behavior of the woodpecker. The cycle frequency for case I is f I = 7.66 Hz and
f I I = 7.96 Hz for case II. The vertical displacements of the sleeve in each cycle is
hI = 14.3 mm and hI I = 7.6 mm for case I and II respectively. Despite their simi-
lar behavior and close frequencies, the restriction of the displacements extends the
sticking face, slowing down the fall of the sleeve, a phenomenon that is clearly ob-
servable in Fig. 5.9(b). In case II, after tuning the friction coefficient, we observe that
for µ = 0.35 the frequency is f ∗I I = 8.3 Hz and the sleeve vertical displacements
h∗I I = 5.3 mm. These results are quite close to the experimental ones observed by
Glocker and Pfeiffer [96], where the frequency is slightly bigger, fexp = 9.2 Hz, and
the sleeve vertical displacement is the same hexp = 5.3 mm.

For case II, since the sleeve center of mass displacement in the horizontal di-
rection is not fixed, its position and velocity are shown in Figs. 5.11(a) and 5.11(b)
respectively. As expected, the bilateral constraints are satisfied at position level with-
out any drift. In order to highlight this property, Fig. 5.12 shows the bilateral cons-
traints introduced by the sleeve rigid body, for the node 4. The error obtained for
this bilateral constraint is below the allowed tolerance.
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For both cases, Figs. 5.13(a) and 5.13(b) show the convergence rate obtained for
the y component of the displacement and velocity fields of node 3. As it can be
observed, an order 1 convergence is achieved.

Finally, an animation of the woodpecker toy simulation compares the results ob-
tained for the case where the horizontal component of the sleeve displacement is
fixed to zero (left side) and where it is totally free to move (right side). It can be
found in the following link (https://youtu.be/6wb1mCfF2t8).

5.4 Summary and concluding remarks

In this chapter an introduction to the Oofelie code was done, explaining the scripting
methodology and the data base. Oofelie has arisen as good choice to implement the
methodology presented in this thesis due to its wide element library, its modularity,

https://youtu.be/6wb1mCfF2t8
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and the accessibility of the source code at the University of Liège. An explanation of
the implementation of the NSGA solver and the frictional contact element has been
done.

With this methodology, the woodpecker toy was simulated considering large
rotations for two different cases, i) the horizontal displacement of the sleeve center
of mass is fixed, and ii) this displacement is free. It was observed that this modeling
assumption has a considerable influence as the vertical displacement of the sleeve is
reduced from 14.3 mm in case I to 7.6 mm in case II, that is closer to the experimental
measurement of 5.3 mm. The agreement with the experimental results could be
further improved by an adjustment of the frictional coefficient.
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Chapter 6

Conclusions

6.1 Summary

The modeling of mechanical systems dynamics involving rigid and flexible bodies
is a mature field, with well established techniques available in several industrial
simulation software. But, the dynamic simulation of mechanical systems involving
frictional impacts is a challenging problem for the scientific community because of
the high non-linearities and non-smoothness stemming from the Signorini’s condi-
tions and the Coulomb friction’s law. There is an industrial demand to have reli-
able tools to simulate the aforementioned systems in an easy and systematic way.
Therefore, this dissertation addresses the simulation of mechanical systems involv-
ing frictional contacts in the framework of multibody dynamics and presents a FEM
solution based on nonsmooth techniques, and its implementation in the general pur-
pose finite element software, Oofelie [66]

The presented methodology gathers the possibility to represent rigid bodies, flex-
ible bodies and frictional contacts under the umbrella of the FEM approach. To
achieve this, the rigid bodies are represented as a set of nodes, one of them being
located at the COM and other nodes being rigidly linked to the COM by bilateral
constraints. The connections between different rigid or flexible bodies is also done
by bilateral constraints, for example to model hinges or spherical joints. The flexible
bodies are discretized in space using flexible elements which allow deformation be-
tween their nodes. A node-to-face contact element is now included in the element
library, which defines unilateral constraints between the master face and the slave
node. Finally, the contribution of these elements are computed and numerically as-
sembled together in an automatic way and the system is solved.

The original contribution of the thesis can be divided in two different parts. On
the one side, a new version of the NSGA solver is developed as an evolution of the
previous solver presented in [50]. On the other side, the development of a frictional
contact element compatible with the NSGA solver is developed and tested. This
element is based on a combination of a Newton impact law and a Coulomb frictional
law and the methodology proposed by Alart and Curnier [43].

The proposed fully decoupled NSGA integration method was presented in Chap. 3
and has the following characteristics:
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• The most distinctive feature of the new algorithm is that the sub-problem
defining the smooth part of the motion is strictly independent of the posi-
tion correction and of the velocity jump, so that the solution of the three sub-
problems could be performed in a purely decoupled sequential manner. The
algorithm is implemented as a sequence of three sub-problems to be solved at
each time step.

• Like its predecessor, it does not suffer from any drift phenomena as it imposes
the constraints both at position and at velocity levels.

• The algorithm is well suited for problems with vibration effects as it inte-
grates the smooth component of the motion with the second order accurate
generalized-α method, whereas a first order scheme is used for the impulsive
contributions. This allows to finally control the numerical dissipation, some-
thing that is not possible with the first order integrators which are usually used
to solve this kind of problems and introduce a much higher numerical dissipa-
tion.

• The algorithm does not require modifications in existing finite elements of the
library, in other words it is minimally intrusive.

Four numerical examples were presented for frictionless problems, showing that
the proposed method improves the robustness for problems involving nonlinear bi-
lateral constraints and/or flexible elements, without deteriorating the accuracy of
the original NSGA method. The number of iterations was reduced and much larger
time steps could be adopted.

A variant of the new method, in which the f p and f ∗ terms were neglected, was
analyzed in the examples. The computed results showed that neglecting those terms
could lead to results of bad quality if sufficiently small stepsizes were not adopted.
Hence, it was recommended to take those terms into account in the implementation
of the decoupled algorithm.

The application of this new algorithm to deal with frictional contact problems
was presented in Chap. 4. The main features of the frictional contact element are:

• The enforcement of the unilateral constraints is done following an augmented
Lagrangian approach, similarly to the one proposed Alart and Curnier [43] for
the quasi-static problems.

• A Coulomb frictional law is used, then the complementarity problem for the
normal and frictional contact problem is solved at each time step using a mono-
lithic Newton semi-smooth method in a fully implicit approach, which allows
to reproduce the slip and stick status of the contact.

• The jumps in the velocity field are modeled using a Newton impact law, which
involves two restitution coefficients, one in the normal direction and another
in the tangential direction.
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• The final solution is independent of the value of the penalty parameters, both
in the tangential and normal directions. Their values only affect the conver-
gence rate.

• The proposed contact model also satisfies exactly the contact constraints at
position level and velocity level, which means that no penetration is observed
up to the tolerance of the solver.

• The node-to-face contact element can account for large displacements and ro-
tations of the master face in three dimensions.

An important remark is the necessity to impose the Coulomb friction sticking
constraints at position level in the proposed framework. In order to understand
this, recall that the time integration scheme is characterized by three decoupled sub-
problems, and that the correction at position level is blind to any correction done
at velocity level for the same time step. Therefore, if the friction constraints in the
tangential direction are imposed only at velocity level some non-physical behaviour
can be observed at position level, as it was shown with an example in Section 4.2.1.

The proposed methodology was successfully applied to study different mech-
anism configurations consisting of flexible and/or rigid bodies and to observe the
friction effects on the dynamic response of the system. The results of these examples
were compared with analytical or previous numerical solutions obtained by other
authors showing good agreement and convergence rate, demonstrating the viability
of the method and all the aforementioned features.

The possibility to embed these technique in an existing FEM software was proven
in Chap. 5. An introduction to the Oofelie code was done, explaining the scripting
methodology and the data base. Oofelie has arisen as good choice to implement the
methodology presented in this thesis due to its wide element library and its mod-
ularity. This software and its finite element library were extended to nonsmooth
frictional contact and impact problems, and due to the small intrusiveness of the
algorithm many existing elements were reused without major modifications. An
explanation of the implementation of the NSGA solver and the frictional contact ele-
ment is included in the manuscript. It is important to remark that the Newton solver
for problems involving frictional contact conditions suffers from convergence issues,
resulting in a large number of iterations. In order to solve this problem, a line-search
solver was used reducing the number of iterations needed to reach convergence.

Finally, with this methodology, the woodpecker toy example was simulated con-
sidering large rotations for two different cases, i) the horizontal displacement of the
sleeve center of mass is fixed, and ii) this displacement is free. It was observed that
this modeling assumption has a considerable influence as the vertical displacement
of the sleeve is reduced from 14.3 mm in case I to 7.6 mm in case II, that is closer to
the experimental measurement of 5.3 mm. The agreement with the experimental re-
sults could be further improved by an adjustment of the frictional coefficient. There-
fore, the different examples of the thesis demonstrate the capacity of the proposed
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methodology to simulate MBS involving rigid bodies, flexible bodies, frictional con-
tacts, including dynamic transitions between stick and slip contact states.

6.2 Further work

Let us discusses other points that could be further investigated in this field.
In a recent work [71] a new version of the NSGA method was proposed. The

main difference is that the smooth motion is defined by imposing bilateral cons-
traints and the active unilateral constraints at the acceleration level. This eliminates
some spurious numerical oscillations of the constraints that generally occur after an
impact, resulting in an increase of the robustness and stability of the proposed algo-
rithm. It would be interesting to study the possibility to include these acceleration
constraints in the presented formulation of the solver while preserving the decou-
pled formulation of the different sub-problems.

In this work an element for rigid to rigid or rigid to flexible contact was studied.
From a geometric viewpoint, the element is described as slave node colliding against
a master face. The method could be extended to the interaction between more com-
plex geometries. This can be done by expressing analytically the geometries and
attach them to the rigid body center of mass node. For example, basic geometries
like sphere to sphere or a cylinder to surface contact element could be considered.
A more general approach would be based on a geometrical description by spline
functions that are used by computer-aided design (CAD) software packages.

In order to simulate a contact between two flexible bodies, some extra techniques
should be implemented. For example, mortar technique proposed for quasi-static
problems [37] could be extended to dynamic problems.

With the evolution of flexible multibody systems simulations, the industrial in-
terest to study complex mechanical interactions between highly flexible bodies, such
as cable wires, fibers braiding, hair, fibers in shield structures, among other has
arisen [103, 104]. Therefore, it would be interesting to extend the presented method-
ology to the case of beam to beam contacts.

The equations of motion with bilateral and unilateral constraints formulated as
a CP can be interpreted as optimization problems. Within the mathematical pro-
gramming community, several techniques have been developed to solve such prob-
lems [21]. In this thesis, the augmented Lagrangian approach with a Newton semi-
smooth solver was tested resulting in a feasible solution. But the use of alternative
solvers could be further explored.

The methodology presented in this thesis proved the capability to deal with re-
dundant compatible constraints, but some problems arise when redundant incom-
patible constraints are present. To better understand these incompatibilities let us
imagine a rigid pendulum connected to a fixed point by a hinge, if during the ro-
tation, the pendulum impacts a fixed surface and the friction coefficient is large
enough to enter in stick mode, then the bilateral constraints of the rigid body and the



6.2. Further work 117

unilateral constraint in the tangential direction due to friction may become incom-
patible. This incompatibility is observed when a numerical solver with finite time
steps is used, but is not presented in the exact analytical solution. This is an open
question where further research is needed.

As presented in this work, single-contact impacts are properly modeled using a
Newton impact law, even accounting for frictional effects. Nevertheless, when mul-
tiple impacts occur at the same instant it is not possible to get an accurate prediction
of the system evolution in agreement with experimental observations if the classical
Newton impact law is used. This phenomenon is noticeably observed in the New-
ton’s cradle pendulum example. Therefore, more sophisticated impact laws could
be considered to model and simulate multiple collisions. For example, Winandy
and Leine [105] propose an instantaneous impact law for completely elastic multi-
collisions of the 3-ball Newton’s cradle able to reproduce the outcomes of experi-
mental observation. Nevertheless, they conclude that no dissipation function exists
for the proposed impact law; therefore, it can not be used in a general manner for an
arbitrary MBS. Other methods, e.g. the binary collision model or the one presented
by Han and Gilmore [106], are able to reproduce simple examples, but also show
limitations to model higher dimensional examples [9]. Thus, a general impact law
able to account for multiple impacts in high dimensional problems is still an open
question.

The methodology has been implemented in the software Oofelie, which has an
easy and intuitive graphical interface embedded in the CAD software package Siemens
NX, but the frictional contact element and the solver are not interfaced yet. There-
fore, it is an important future task in order to transfer easily and fast this simulation
technology to industrial applications.
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