THE $\Delta\theta$ - z_s RELATION AS A COSMOLOGICAL TEST

P. HELBIG

University of Manchester, Nuffield Radio Astronomy Laboratories, Jodrell Bank, Macclesfield, UK-SK11 9DL, England

Recently, it was noted by Park & Gott¹ that there is a statistically significant, strong, negative correlation between the image separation $\Delta\theta$ and source redshift z_s for gravitational lenses. Park & Gott explored several effects which could cause the observed correlation, but no combination of these can explain the observations with a realistic scenario. Here, I point out that in an inhomogeneous universe a negative correlation is expected regardless of the value of k. I also compare the results of the test from the Park & Gott sample to those using other samples of gravitational lenses and explore whether the $\Delta\theta$ - z_s relation can be used as a test to determine λ_0 and Ω_0 , rather than just the sign of k.

Complete versions of the conference poster are available from

http://multivac.jb.man.ac.uk:8000/helbig/research/publications/info/pocowo97.html

For a singular isothermal sphere, the image separation is given by²

$$\Delta\theta = 4\pi \left(\frac{v}{c}\right)^2 \frac{D_{\rm ds}}{D_{\rm s}} \tag{1}$$

where v is the velocity dispersion. For a given v, one can show that

$$\frac{\Delta\theta(z)}{\Delta\theta(0)} = \left(\int_{0}^{z_{\rm s}} \frac{D_{\rm ds}^{3} D_{\rm d}^{2} (1+z_{\rm d})^{2}}{D_{\rm s}^{3} Q(z_{\rm d})}\right) \left(\int_{0}^{z_{\rm s}} \frac{D_{\rm ds}^{2} D_{\rm d}^{2} (1+z_{\rm d})^{2}}{D_{\rm s}^{2} Q(z_{\rm d})}\right)^{-1}$$
(2)

where

$$Q(z_{\rm d}) = \sqrt{\Omega_0 (1 + z_{\rm d})^3 - (\Omega_0 + \lambda_0 - 1) (1 + z_{\rm d})^2 + \lambda_0}$$
 (3)

The D_{ij} (with $D_k := D_{0k}$) are angular size distances, which depend on z_d , z_s , λ_0 , Ω_0 and η . Park & Gott's analysis implicitly assumed an ideally homogeneous universe; generally, the more inhomogeneous the universe, the stronger the tendency for a negative correlation between $\Delta\theta$ and z_s regardless of the cosmological model.

I examined four gravitational lens samples: that used by Park & Gott (PG); PG with the addition of 0218 + 357, for which $\Delta\theta$ and z_s were known when Park & Gott made their results known; the JVAS/CLASS sample; and the union of PG and the JVAS/CLASS samples. I used the method of Park & Gott, which uses the Spearman rank correlation test to generate a relative probability

Table 1: The JVAS/CLASS gravitational lenses

Name	#images	$\Delta \theta$ ["]	lens galaxy type	$z_{ m d}$	$z_{\rm s}$
0218 + 357	ring + 2	0.33	spiral	0.6847	0.96
0414+0534	4	2.0	elliptical	?	2.62
0712 + 472	4	1.2	?	0.406	1.34
1030+074	2	1.6	peculiar	0.599	1.53
1422+231	4	1.2	?	0.65	3.62
1600 + 434	2	1.4	spiral	0.415	1.57
1608+656	4	2.2	spiral?	0.64	1.39
1933+503	4+4+2	0.9	?	0.755	?
1938+666	4+2	0.9	?	?	?
2045 + 265	4+1?	2.0	?	0.87	1.28
2114+022	2+2?	2.4	?	0.316	0.588?

for a given cosmological model. I did calculations for many cosmological models in a large region of the λ_0 - Ω_0 plane, for all four samples. Park & Gott noted the fact that they always obtained a low probability with their sample, even when allowing for possible effects which would tend to result in a more negative correlation between $\Delta\theta$ and $z_{\rm s}$, including $k\neq 0$ cosmological models.

I find that the probability is a weak function of the cosmological model and a strong function of the sample used. Thus, the test is not very useful and/or it is pointing to unknown selection effects in the literature sample used by Park & Gott. A possibility not examined by Park & Gott, namely an inhomogeneous universe, can produce a negative correlation regardless of the sign of the curvature, but it too is not strong enough to account for the effect. As a general test for the values of λ_0 and Ω_0 the test is of no use, all cosmological models being assigned roughly the same probability, but which value they are assigned depends on the sample used.

Acknowledgements

This research was supported by the European Commission, TMR Programme, Research Network Contract ERBFMRXCT96-0034 'CERES'.

- 1. M.-G. Park, and J. R. Gott III, ApJ (in press)
- 2. E. L. Turner, J. P. Ostriker and J. R. Gott III, ApJ 284, 1 (1984)
- 3. R. Kayser, P. Helbig and T. Schramm, A&A 318, 680 (1997)