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Abstract: Static aeroelastic deformations are nowadays considered as early as in the preliminary
aircraft design stage, where low-fidelity linear aerodynamic modeling is favored because of its low
computational cost. However, transonic flows are essentially nonlinear. The present work aims
at assessing the impact of the aerodynamic level of fidelity used in preliminary aircraft design.
Several fluid models ranging from the linear potential to the Navier–Stokes formulations were
used to solve transonic flows for steady rigid aerodynamic and static aeroelastic computations on
two benchmark wings: the Onera M6 and a generic airliner wing. The lift and moment loading
distributions, as well as the bending and twisting deformations predicted by the different models,
were examined, along with the computational costs of the various solutions. The results illustrate that
a nonlinear method is required to reliably perform steady aerodynamic computations on rigid wings.
For such computations, the best tradeoff between accuracy and computational cost is achieved by the
full potential formulation. On the other hand, static aeroelastic computations are usually performed
on optimized wings for which transonic effects are weak. In such cases, linear potential methods
were found to yield sufficiently reliable results. If the linear method of choice is the doublet lattice
approach, it must be corrected using a nonlinear solution.

Keywords: benchmark; aircraft design; aerodynamics; static aeroelasticity; computational fluid dynamics

1. Introduction

In recent years, constraints on limiting air pollution generated by aircraft increased dramatically.
For example, the European project Flightpath 2050 [1] aims at a reduction of 90% and 75% in NOx

and CO2 gas emissions, respectively. On the other hand, the aircraft market is becoming more and
more competitive, so that aircraft having low operational cost are valued. As a consequence, extensive
research is being carried out to reduce aircraft fuel consumption. Current design philosophies aim
at reducing aircraft structural weight while maximizing aerodynamic efficiency. This approach often
leads to the design of very flexible and highly loaded composite wings, with increased aspect ratio
and complex shape. For such wings, aeroelastic deformations cannot be ignored as they can have

Aerospace 2020, 7, 42; doi:10.3390/aerospace7040042 www.mdpi.com/journal/aerospace

http://www.mdpi.com/journal/aerospace
http://www.mdpi.com
https://orcid.org/0000-0001-8610-1694
https://orcid.org/0000-0001-6540-2180
https://orcid.org/0000-0002-4883-0383
http://www.mdpi.com/2226-4310/7/4/42?type=check_update&version=1
http://dx.doi.org/10.3390/aerospace7040042
http://www.mdpi.com/journal/aerospace


Aerospace 2020, 7, 42 2 of 22

a significant effect on the flight shape, hence the aerodynamic loading and efficiency of the wing.
Aeroelasticity must therefore be integrated early in the aircraft design, typically in the preliminary
stage, during which aero-structural design and optimization are performed. Since many design
parameters and configurations are considered at this early stage, engineers usually select low-fidelity
modeling to obtain results quickly. However, low fidelity aerodynamic models are linear, whereas
most transport aircraft fly in the transonic regime, in which the flow is nonlinear. The objective of the
present work is to assess the impact of the aerodynamic level of fidelity on steady aerodynamic and
static aeroelastic computations typically performed in preliminary aircraft design.

Various comparison analyses have already been performed on rigid geometries. For example,
Bhateley and Cox [2], Verhoff and O’Neil [3], and Rubbert and Saaris [4] used transonic small
disturbances and linear potential theory to compute transonic flows over fighter configurations,
and compared their results to nonlinear potential modeling or experimental data. In particular, Verhoff
and O’Neil already suggested to resort to multi-fidelity modeling to extend transonic prediction
capabilities by combining panel methods to nonlinear potential solvers. Flores et al. [5] compared
full potential to Euler solvers using two-dimensional airfoils and showed that the nonlinear potential
formulation was noticeably faster than the Euler formulation, for a similar accuracy in the integrated
aerodynamic coefficients, as long as the shocks were weak. Klopfer and Nixon [6] further showed
that adding a non-isentropic correction to the full potential formulation greatly improved the results
for strong shocks. Several authors, such as Le Balleur [7], Melnik et al. [8], and Van Muijden et al. [9],
also added an interactive boundary layer modeling capability to full potential solvers and were able to
match experimental data. Validation of various full potential codes with respect to higher-fidelity data
can be found in the survey work by Holst [10]. Drela et al. [11] , Potsdam [12], and Aftosmis et al. [13]
also extended various Euler solvers with viscous-inviscid calculations. The latter compared their
results to both Reynolds-Averaged Navier–Stokes computations and experimental data. Some authors
also performed surveys to assess the capabilities and limitations of the different aforementioned
aerodynamic levels of fidelity. For example, Jameson [14], and more recently Johnson et al. [15],
regrouped and analyzed the comparison studies performed by various authors using different solvers.
However, the computations are based on different geometries and are scattered across different years,
which makes direct comparison difficult. Moreover, the emphasis is usually placed on model or
methodology validation rather than on the tradeoff between accuracy and computational time. To the
knowledge of the present authors, there still exists no systematic and extensive comparative studies of
all major aerodynamic modeling methods for transonic flow on the same benchmarks.

Although engineers commonly use multi-fidelity [16] or high-fidelity [17,18] aerodynamic
modeling, even fewer comparative studies are available for static aeroelasticity computations. The most
extensive one is probably the first Aeroelastic Prediction Workshop organized by the American
Institute of Aeronautics and Astronautics in 2012 [19,20]. In this workshop, some authors, such
as Romanelli et al. [21] and Acar and Nikbay [22], compared their results obtained with linear
potential or Euler equations to experimental data. Particularly, Romanelli et al. observed noticeable
discrepancies between wing deflections obtained using the doublet lattice method and the Euler
formulation. However, the workshop placed the emphasis on obtaining representative data rather than
on comparing the models. Navier–Stokes solvers were mainly used and computational costs were not
always reported. An insight into the tradeoff between accuracy and computational time was given by
Edwards and Malone [23] for some models in the context of aeroelastic computations, and extensive
comparisons were made by Schuster [24] and Henshaw et al. [25]. However, these works focus on
unsteady aerodynamics and dynamic aeroelasticity. Again, to the best of the authors’ knowledge, there
are still no systematic studies of the effect of the major transonic aerodynamic modeling methods on
static aeroelastic predictions.

In the present work, the different models used in aircraft design, based on the linear and nonlinear
potential equations as well as on the Euler and Reynolds-Averaged Navier–Stokes equations, are
systematically compared on two benchmark wings. The first is the Onera M6 wing [26], a rigid and
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widely used transonic test case, and the second is the Embraer Benchmark Wing, which is elastic and
more representative of an airliner wing. The differences in predicted aerodynamic loads and wing
deflections, as well as in convergence characteristics and computational cost are analyzed, with the aim
of identifying the fastest method yielding consistent and reliable results. The present work is organized
as follows. In Section 2, the equations used for aerodynamic and structural modeling are briefly
presented. The solvers used to carry out the calculations are also briefly described. The different fluid
models are then used to solve transonic flow conditions on two rigid benchmark wings in Section 3.
The resulting aerodynamic load predictions and related computational costs are compared. Section 4
is dedicated to a similar comparison but on an elastic wing. Finally, the results are summarized and
discussed in Section 5 and future work is suggested.

2. Methodology

Five levels of fidelity are considered for the aerodynamic modeling: the Reynolds-Averaged
Navier–Stokes equations, the Euler equations, the Full Potential equation, on its own or coupled to the
Boundary Layer equations, and the Linear Potential equation. The structural dynamics is modeled
using linear finite element analysis and the analysis performed in either physical or modal coordinates.

2.1. Flow Modeling

The different aerodynamic models, their abbreviations, and the corresponding software packages
are detailed in Table 1.

Table 1. Naming convention and equations solved in the present work.

Name Solver Equations

PAN Panair Linear Potential
NAS NASTRAN Linear Potential
NASC NASTRAN Linear Potential corrected by Euler
TRN Tranair Full Potential
FLO Flow Full Potential
SU2 SU2 Euler
TRNV Tranair Full Potential and Boundary Layer
SU2V SU2 Reynolds-Averaged Navier–Stokes

2.1.1. High Fidelity

The unsteady Reynolds-Averaged Navier–Stokes equations can be written as

∂U
∂t

+∇ · Fc −∇ · Fd = 0, (1)

where U is the vector of the conservative flow variables defined as

U =

 ρ

ρu
ρE

 . (2)

The convective fluxes Fc and the diffusive fluxes Fd are defined as

Fc =

 ρu
ρu⊗ u + pI
ρEu + pu

 , Fd =

 .
τττ

τττ · u + µ?cp∇T

 (3)



Aerospace 2020, 7, 42 4 of 22

where ρ is the density, u is the velocity vector, p is the pressure, E is the total energy per unit mass,
cp is the specific heat capacity at constant pressure, and T is the temperature. The stress tensor for a
Newtonian fluid is given by

τττ = µ

(
∇u +∇uT − 2

3
I∇ · u

)
. (4)

The total viscosity µ and µ? in Equations (3) and (4) can be expressed as

µ = µd + µt,

µ? =
µd
Prd

+
µt

Prt
,

(5)

where Pr is the Prandtl number. The subscript d refers to dynamic quantities, which are properties of
the fluid, while the subscript t refers to turbulent quantities, which are given by a turbulence model.
In the present study, the Spalart–Allmaras model [27], commonly used for aeronautical flows, was
used. The system of equations needs to be closed with the state equations

E = cvT +
1
2

ρu2,

p = ρRT,
(6)

where u is the norm of the velocity vector, cv is the specific heat capacity at constant volume, and R is
the ideal gas constant. The Euler equations are the inviscid counterpart of the Navier–Stokes equations
and are obtained by neglecting the diffusive fluxes, Fd, in Equation (1).

In the present study, the Reynolds-Averaged Navier–Stokes and Euler equations were solved using
SU2 [28–30], an open-source code for multiphysics simulations and design optimization. The equations
are spatially discretized on an unstructured dual-grid using a finite volume method with a cell-vertex
based approach and a second-order accurate Jameson–Schmidt–Turkel scheme. The fluxes are
reconstructed using a Green–Gauss procedure. The time dependent terms are discretized using
an Euler implicit scheme, and steady state is reached through a time marching procedure. For the
Navier–Stokes computations, the Courant–Friedrich–Levy number is kept close to 1 and no multigrid
is used, while, for the Euler computations, the condition number is set to 5 and a multigrid with a W
pattern and 3 coarsening levels are used.

2.1.2. Medium Fidelity

The steady Full Potential equation assumes that the fluid is inviscid and the flow steady and
isentropic. The flow is irrotational and the velocity derives from a potential φ such that,

u = ∇φ. (7)

Conservation of momentum is automatically satisfied and only the mass conservation remains,
namely

∇ · (ρ∇φ) = 0, (8)

where the density ρ is given by the isentropic flow relationship

ρ = ρ∞

[
1 +

γ− 1
2

M2
∞

(
1− |∇φ|2

)] 1
γ−1

, (9)

where ρ∞ is the freestream density, γ is the heat capacity ratio, and M∞ is the freestream Mach number.
Note that the velocity has been normalized by the freestream velocity. The isentropicity assumption
restricts the use of the equation to transonic flow with embedded weak shocks only. The Kutta
condition must be enforced to allow a potential (irrotational) flow to generate aerodynamic loads.
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Mathematically, the pressure on the upper and lower sides of the trailing edge of a wing are imposed
to be equal. Numerically, the potential is discontinuous across a wake extending from the trailing
edge of any lifting configurations to the downstream boundary, and the Kutta condition is enforced by
prescribing the continuity of the mass flux and velocity magnitude on both sides of the wake such that

[[ρ∇φ ]] = 0,

[[|∇φ|2]] = 0,
(10)

where the double squared bracket indicates a jump through the wake surface. The exact
implementation of this boundary condition depends on the method used to discretize the potential
equation and on the grid type. Finite volume implementations of the Kutta condition include those of
Neel [31], Liegl [32], and Lyu et al. [33], while finite element formulations can be found in the works of
Nishida [34], Galbraith et al. [35], and Crovato et al. [36].

In the present work, the Full Potential equation was solved using Tranair [37,38] and Flow [36,39].
Tranair is a commercial software for aircraft design and optimization developed by NASA and Boeing
in the last two decades of the 20th century and distributed by Calmar Research [40] since 2004.
The equation is discretized with finite elements on a rectangular Cartesian grid refined automatically
by the software with an Octree method using a solution adaptation procedure. The equation is solved
with a Quasi-Newton procedure combined with the Rose and Bank line search [41]. Tranair also offers
the possibility to model the effect of the boundary layer on body surfaces by coupling the inviscid
solution to an integral solution of the Boundary Layer equations. Details about the formulation can
be found in several works by Drela [11,42,43]. Flow is an open-source finite element code developed
at the University of Liège for computing the flow around arbitrary wing-fuselage configurations for
preliminary aircraft design. The Full Potential equation is discretized using Continuous-Galerkin finite
elements on unstructured tetrahedral grids built automatically by gmsh [44,45]. A Newton method
with a quadratic line search [46] is used to solve the resulting system of equations.

2.1.3. Low Fidelity

The Full Potential equation can be transformed into an integral equation by integrating
Equation (8) and using Green’s third identity. The resulting expression can then be linearized, such that

φ = φ∞ −
∫

S
[∇φ · nK− φn · ∇K] dS, (11)

where φ∞ is the freestream potential, K is a kernel function depending on the geometry and the
freestream conditions, and n is the outward unit vector normal to the surface S of the geometry.
The terms appearing in the integral of Equation (11) represent the linear part of the flow, and are
expressed with sources and doublets, which are fundamental solutions of the equation.

In the present study, Equation (11) was solved using Panair [47,48] and NASTRAN [49,50]. Panair
is a high-order Panel Method developed at NASA during the 1980s. The body is discretized using
first-order source and second-order doublet panels, allowing Panair to account for both the thickness
and camber of a body with relatively few panels. The impermeability boundary condition, applied
at the center of each panel, allows computing the singularity strengths from which the potential can
be recovered. NASTRAN is distributed by MSC Software and uses the doublet-lattice method to solve
the integral potential equation. The mean plane surface of a lifting configuration is discretized
into a flat sheet containing panels with constant doublet line segments at their quarter chords,
and the impermeability condition is imposed at the three quarter-chord of each panel. As a result,
the doublet-lattice approach ignores the thickness and camber of the body, but NASTRAN offers the
possibility to apply corrections using geometric, numerical or experimental data [51,52]. In the present
work, the Euler solution obtained with SU2 is used to build the FA2J matrix required by NASTRAN to
correct the doublet-lattice pressure loads.
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2.2. Structural Modeling

Neglecting internal damping, the equilibrium equations of a solid are obtained by balancing the
inertial and internal forces in the solid with the external forces applied onto it. The structural equations
can be written as

ρs
d2us

dt2 −∇ · σσσ = f, (12)

where ρs is the solid density, σσσ is the stress tensor, f are the external forces, and us are the displacements.
In the present work, the wing is made of a composite material modeled as orthotropic and Equation (12)
is solved by the linear finite element method implemented in NASTRAN [52].

The displacements of the solid can be expressed in modal space and discretized as

us = Φq, (13)

where q are the modal coordinates of the solid and Φ is the modal matrix, containing the mode shapes
of the solid. By neglecting the time dependent terms, Equation (12) can be further discretized into

Kqq = −fq, (14)

where Kq is the modal stiffness matrix and fq is the vector of modal forces, obtained by multiplying
the vector of forces by the mode shape matrix. In the present study, the linear Equation (14) was solved
by modali, an in-house modal solver [53].

2.3. Fluid–Structure Coupling

Fluid structure interaction coupling was performed using NASTRAN, an in-house MATLAB [54] code,
or CUPyDO [55–57], depending on the software used to calculate the aerodynamic loads. The NASTRAN
computations were performed by means of the elastic trim analysis, also known as SOL 144, which
projects the loads directly on the structural model. Fluid structure computations were also carried
out in MATLAB, such that the displacements were obtained using a MATLAB version of modali, while the
loads were computed by Panair. MATLAB interpolation functions were used to transfer data between
the fluid and structural meshes. The loads and the displacements were updated until the FSI process
converged. Finally, Flow and SU2 were coupled to modali through CUPyDO, a Python suite designed to
couple staggered solvers. The code is developed at the University of Liège and offers different coupling
algorithms and different methods to interpolate the loads on the structural mesh and the displacements
on the fluid nodes. In the present study, the fluid–structure computations were performed using the
Block–Gauss–Seidel algorithm and the quantities were interpolated using Radial Basis Functions.

3. Rigid Aerodynamic Cases

The different fluid models and methods were first compared on the Onera M6 and Embraer
Benchmark wings, making the assumption that both are rigid.

3.1. Onera M6 Wing

The wing model is depicted in Figure 1 and its geometric parameters are given in Table 2. Wind
tunnel measurements are available [26] for this wing at a Mach number M of 0.839 and an angle of
attack α of 3.06◦. The present simulations used the same flight condition and angle of attack.
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Figure 1. Onera M6 wing model.

Table 2. Geometrical properties of the Onera M6 wing.

Parameter Value

Aspect ratio 3.8
Taper ratio 0.56

Sweep angle 30◦

Root chord 805 mm
Semi-span 1196 mm

A surface grid made of rectangular surface panels was used in Panair and NASTRAN. In Tranair,
the wing was enclosed in a box-shaped computational domain with boundaries placed two chord
lengths away from the wing in the chordwise and normal directions, and a half-span length from
the wingtip in the spanwise direction. The final grid, built automatically by Tranair, consists of
hexahedral cells with a minimum size of 1/200 of the chord at the shock and leading edge. In Flow,
the wing was enclosed in a box-shape computational domain with boundary faces placed 3.5 chord
lengths away from the wing in the chordwise and normal directions, and one span length away from
the wingtip in the spanwise direction. The unstructured grid was built using gmsh and is made of
tetrahedral cells having a characteristic size of 1/200 and 1/100 of the local chord at the leading
edge and at the trailing edge, respectively. The inviscid SU2 grids were also built with gmsh, based
on an unstructured O-grid topology extending 50 root chords away from the wing. The mesh has a
characteristic cell size of 1/200 and 1/100 of the local chord at the leading edge and at the trailing edge,
respectively. The viscous SU2 grids were built with ANSYS ICEM [58] using a multiblock structured
C-grid topology extending 50 root chords away from the wing. The grid has 150, 75, and 25 hexahedra
in the chordwise, normal, and spanwise directions, respectively. Experimental results consist of surface
pressures measured at 271 locations distributed on seven spanwise sections, and were gathered by
Schmitt and Charpin [26].

A convergence study was performed to find a suitable mesh size for each model. Table 3 shows
the convergence for the lift and drag coefficients of the Onera M6 wing at M = 0.839 and α = 3.06◦ for
the different models. Note that the grids required for NASC and TRNV are similar to those used for
NAS and TRN, respectively. In addition, note that NASTRAN does not provide any value for the drag
coefficient. In each case, the selected grid is the one for which the results did not change significantly
when the number of cells was increased, which is the medium grid indicated in Table 3.
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Table 3. Aerodynamic coefficients obtained on several meshes with the different numerical models for
the Onera M6 wing at Mach 0.839 and angle of attack 3.06◦.

Model n. Cells CL CD

360 0.246 0.0055
PAN 1000 0.247 0.0047

1440 0.247 0.0045

125 0.258 -
NAS 500 0.248 -

2000 0.245 -

50, 000 0.272 0.0137
TRN 500, 000 0.288 0.0111

1, 000, 000 0.288 0.0111

110, 000 0.287 0.0116
FLO 590, 000 0.294 0.0110

900, 000 0.294 0.0111

140, 000 0.281 0.0146
SU2 510, 000 0.286 0.0130

1, 200, 000 0.287 0.0129

300, 000 0.257 0.0220
SU2V 1, 500, 000 0.272 0.0181

3, 000, 000 0.270 0.0183

3.1.1. Aerodynamic Loads

The angle of attack of the wing and the aerodynamic force coefficients, obtained by integrating the
forces on the surface of the wing, are given in Table 4. The reference point for the moment computation
is taken at the leading edge of the root chord. As expected, the nonlinear inviscid models TRN, FLO,
and SU2 tend to predict higher lift and moment coefficients and a lower drag coefficient compared
to the viscous models TRNV and SU2V because they ignore the boundary layer, which modifies the
pressure distribution and produces shear forces. Compared to the nonlinear inviscid models, the linear
models PAN and NAS slightly underestimate the lift and moment coefficients. PAN also strongly
underestimates the drag coefficient, as it cannot compute the wave drag produced by shock waves.
When corrected by an Euler solution, NASC predictions move closer to the results of the nonlinear
models, except for the drag coefficient, which is not computed.

Table 4. Aerodynamic coefficients obtained by different levels of fidelity for the Onera M6 wing at
Mach 0.839 and angle of attack 3.06◦.

Model CL CD CM

PAN 0.247 0.0047 −0.181
NAS 0.248 - −0.181

NASC 0.271 - −0.201
TRN 0.288 0.0111 −0.212
FLO 0.294 0.0110 −0.217
SU2 0.286 0.0130 −0.212

TRNV 0.255 0.0161 −0.181
SU2V 0.272 0.0181 −0.196

Figure 2 shows the pressure distribution along the mean aerodynamic chord of the wing. Note
that the difference in pressure distribution between the suction and pressure sides is used to compare
linear models, since NAS and NASC are based on a lattice approach, hence not accounting for the
wing’s thickness. Because of their underlying assumptions, PAN and NAS are unable to predict
shocks and to represent the actual physics of transonic flows. Since NASC is corrected using an Euler
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calculation, it is the only linear approach that captures the shock. The nonlinear inviscid models TRN,
FLO, and SU2 were found to correctly represent the physics even though they predict a stronger shock
when compared to the experimental results. Finally, the viscous models TRNV and SU2V give accurate
pressure distribution predictions, although a small difference in the shock location and strength is still
observed between them.

Figure 2b also shows that the different numerical solution procedures implemented in Flow and
Tranair slightly affect the shock strength and location. Moreover, in the case of viscous models
(Figure 2c), the difference in boundary layer and turbulence modeling also affects the solution. This has
a direct impact on the aerodynamic coefficients: SU2 tends to predict higher values of drag compared
to TRN and FLO, while TRNV tends to underestimate the lift, moment, and drag coefficients compared
to SU2V, as illustrated in Table 4.

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5
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1.5

2

2.5

PAN

NAS

NASC
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(a)

0 0.2 0.4 0.6 0.8 1
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(b)

0 0.2 0.4 0.6 0.8 1
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0
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1

TRNV

SU2V
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(c)
Figure 2. Pressure distribution along the mean aerodynamic chord of the Onera M6 wing at Mach
0.839 and angle of attack 3.06◦ obtained from different levels of fidelity and compared to experimental
data [26]: (a) linear models; (b) nonlinear inviscid models; and (c) viscous models.

Figure 3 shows the distribution of the sectional lift and moment coefficients along the span of
the Onera M6 wing, obtained by integrating numerically the pressure coefficient in the chordwise
direction. The sectional moment is computed around the local quarter-chord. The lift distribution
predicted by the different solvers is similar to the experimental measurements, but there are differences
in magnitude. In particular, as already noted in Table 4, the nonlinear inviscid models tend to predict
higher lift coefficients for the same angle of attack. Both the inviscid and viscous nonlinear models
predict sectional moment distributions that are similar to the experimental results. Since inviscid
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models ignore the boundary layer and predict stronger shocks, they tend to yield higher magnitudes
for the moment coefficient. Finally, the moment distribution predicted by the linear models does not
follow the same trend as the experimental data, except when correct by a nonlinear solution.
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Figure 3. Sectional aerodynamic loads along the span of the Onera M6 wing at Mach 0.839 and angle
of attack 3.06◦ obtained from different levels of fidelity and compared to experimental data [26]: (a) lift
for linear models; (b) moment for linear models; (c) lift for nonlinear inviscid models; (d) moment for
nonlinear inviscid models; (e) lift for viscous models; and (f) moment for viscous models.
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3.1.2. Computing Performance

Models PAN, NAS, NASC, TRN, FLO, and TRNV were run in serial on a laptop fitted with an
Intel i7-7700HQ processor (2.8 GHz), and models SU2 and SU2V were run on a cluster equipped
with Intel Xeon X5650 processors (2.7 GHz). The mesh sizes and computational times are given in
Table 5. The linear models PAN, NAS, and NASC are very fast since they require only one iteration to
solve a scalar equation and need a small number of cells. Note that the computational time needed
to compute the reference Euler solution required by NASC is not taken into account. On the other
hand, the higher-fidelity models SU2 and SU2V need many iterations to solve five and six equations,
respectively, which makes them slower. The medium-fidelity models TRN, FLO, and TRNV require
few Newton iterations to solve a scalar equation, for a typical runtime of 10 min.

Table 5 shows that SU2V is quite slow. This is mainly due to the fact that using acceleration
techniques such as Courant–Friedrich–Levy number adaptation or multigrid was not possible for this
computation. Note that the goal of the present work is to identify the trends in the computational cost
of the different models. Optimizing the numerical parameters of the different solvers could lead to a
decrease in computational time.

Table 5. Mesh size and computational time required by the different models for the Onera M6
benchmark case.

Model n. Cells n. Threads Wall-Clock Time Cpu Time

PAN 1000 1 10 s 10 s
NAS 500 1 20 s 20 s

NASC 500 1 20 s 20 s
TRN 500, 000 1 7 min 7 min
FLO 590, 000 1 13 min 13 min
SU2 510, 000 12 14 min 3 h

TRNV 500, 000 1 15 min 15 min
SU2V 1, 500, 000 36 24 h 36 d

3.2. Embraer Benchmark Wing

The different models were next applied to the Embraer Benchmark wing, which is more
representative of a transport aircraft wing. The wing model is depicted in Figure 4 and its approximated
geometrical parameters are provided in Table 6. This benchmark is purely numerical and no
experimental data are available for this case. As such, the numerical results are compared to the
highest aerodynamic level of fidelity used in the present work: the RANS equations. The wing was
simulated at Mach number 0.78 and altitude of 27, 000 ft. For each calculation, the angle of attack was
adjusted such that the resulting lift coefficient was equal to CL = 0.60. Note that this procedure was
automatically handled by the solver for models TRN and TRNV.

Figure 4. Embraer Benchmark wing model.
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Table 6. Geometrical properties of the Embraer Benchmark wing.

Parameter Value

Aspect ratio 10
Taper ratio 0.28

Sweep angle 26◦

Dihedral angle 5◦

The models for the different solvers were built in the same way as for the Onera M6 case, but the
grid sizes differed. Again, a convergence study was performed on each of the meshes. PAN and
NAS/NASC werediscretized with 1400 and 800 surface panels, respectively. The final grids of TRN
and TRNV consist of 500, 000 hexahedral cells, with a minimum cell size of 1/200 of the chord at
the shock and leading edge. The mesh used for FLO consists of 660, 000 tetrahedral cells, with a
characteristic size of 1/100 of the local chord at the leading and trailing edges. The unstructured grid
used for SU2 contains 1.3 million tetrahedra with characteristic cell sizes of 1/200 and 1/100 of the
local chord at the leading edge and at the trailing edge, respectively. Finally, the grid for SU2V contains
150, 75, and 25 cells in the chordwise, normal, and spanwise direction, respectively, for a total of 1.5
million hexahedra.

3.2.1. Aerodynamic Loads

The computed angle of attack of the wing and the resulting aerodynamic force coefficients,
obtained by integrating the forces on the surface of the wing, are given in Table 7. TRNV and SU2V
require a higher angle of attack to reach the same target lift than the inviscid models. They also predict
higher values for the drag coefficient and moment coefficients. Linear models fall into two categories.
On the one hand, PAN, which makes use of the full geometry of the wing, predicts a slightly higher
angle of attack and a lower value of the drag coefficient when compared to TRN, FLO, and SU2. On the
other hand, NAS is based on a flat lattice geometry and predicts a significantly higher angle of attack.
Predictably, when the pressure correction calculated from the Euler solution is used, NASC predicts
almost the same results as the nonlinear solvers.

Table 7. Aerodynamic coefficients obtained by different levels of fidelity for the rigid Embraer
Benchmark Wing at Mach 0.78 and lift coefficient 0.60.

Model α(◦) CL CD CM

PAN −0.5 0.60 0.0136 −0.866
NAS +5.3 0.60 - −0.739

NASC −1.1 0.60 - −0.872
TRN −0.9 0.60 0.0159 −0.857
FLO −0.8 0.60 0.0147 −0.853
SU2 −0.9 0.60 0.0167 −0.866

TRNV +0.2 0.60 0.0241 −0.815
SU2V +0.4 0.60 0.0244 −0.819

Figure 5 shows the pressure distribution along the mean aerodynamic chord of the Embraer
Benchmark Wing at a lift coefficient of 0.6. PAN predicts a similar pressure difference compared to
that obtained from SU2V, except at the shock and pressure peak locations. NAS strongly overpredicts
the pressure peak at the leading edge. This is mostly due to the high angle of attack needed to achieve
the target lift coefficient. While PAN and NAS are not able to capture the shock, NASC is corrected by
an Euler solution and the resulting difference in pressure is comparable to that calculated by SU2V,
except that the shock is stronger and located further downstream. The same is true for the results
obtained from the inviscid nonlinear solvers, which also feature a reduced pressure peak compared to
the SU2V result. As opposed to the Onera M6 case, the shock on the Embraer wing is weaker and FLO
was found to smear the shock and underestimate the drag compared to TRN and SU2. TRNV, found
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to be as accurate as SU2V in the Onera M6 case, predicts a stronger shock and a slightly higher drag
coefficient in the present case.
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Figure 5. Pressure distribution along the mean aerodynamic chord of the Embraer Benchmark Wing at
Mach 0.78 and lift coefficient 0.60 obtained from different varying levels of fidelity: (a) linear models;
(b) nonlinear inviscid models; and (c) viscous models.

Figure 6 shows the sectional lift and moment coefficients distribution along the span of the
Embraer wing at a lift coefficient of 0.6. In this case, where the lift coefficient of the wing is prescribed,
the lift and moment distributions predicted by the various models are similar, with the following
exceptions. Firstly, as in the Onera M6 case, inviscid models tend to predict moment coefficients with
higher magnitude. Secondly, PAN does not capture the dip in the moment distribution located at the
kink of the wing (y/b = 0.37). Thirdly, NAS yields highly inaccurate results for the angle of attack,
pressure, lift, and moment distributions. It should be recalled that the Embraer wing is cambered
while the Onera M6 is not. NASTRAN does not include camber in its calculation by default; a camber or
pressure correction must be applied. The pressure correction obtained here from an Euler computation
improves all predictions significantly, as shown by the NASC results.
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Figure 6. Sectional aerodynamic loads along the span of the Embraer Benchmark Wing at Mach 0.78
and lift coefficient 0.60 obtained from different levels of fidelity: (a) lift for linear models; (b) moment
for linear models; (c) lift for nonlinear inviscid models; (d) moment for nonlinear inviscid models;
(e) lift for viscous models; and (f) moment for viscous models.

3.2.2. Computing Performance

The same computers were used as for the Onera M6 wing. The mesh size and the computational
time are given in Table 8. Again, the computational time needed to compute the reference Euler solution
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required by NASC is not taken into account. Compared to the Onera M6 wing, the Embraer wing has
a higher aspect ratio and unstructured meshes need to be denser to achieve the same resolution. This
has an impact on the runtime: FLO is now two times slower than TRN and two orders of magnitude
slower than the linear models. Furthermore, SU2 is about 50 times slower than TRN. As in the Onera
M6 case, TRNV is significantly faster than SU2V. Overall, the linear models PAN, NAS, and NASC
remain very fast, while higher-fidelity SU2 and SU2V based on the Euler and Navier–Stokes equations
are significantly slower. The full potential models TRN, FLO, and TRNV offer a good tradeoff between
accuracy and computational time.

Table 8. Mesh size and computational time required by the different models for the Embraer
benchmark case.

Model n. Cells n. Threads Wall-Clock Time Cpu Time

PAN 1400 1 10 s 10 s
NAS 800 1 25 s 25 s

NASC 800 1 25 s 25 s
TRN 500, 000 1 8 min 8 min
FLO 660, 000 1 16 min 16 min
SU2 1, 300, 000 12 30 min 6 h

TRNV 500, 000 1 42 min 42 min
SU2V 1, 500, 000 60 48 h 120 d

3.3. Discussion

For both the test cases considered in the present work, the presence of the shock and the
boundary layer affected the results significantly. The shock was found to change the behavior of
the pressure distribution and to impact the lift, drag, and moment coefficients. On the other hand,
the boundary layer was found to affect both the shock location and its strength, which in turn affected
the aerodynamic coefficients. Moreover, accounting for the shear stresses significantly increases the
magnitude of the drag coefficient. These results are in line with, and support, those previously reported
by various authors [7–9,11–13]. Results also show that using lattice methods, which do not account
for the wing thickness and camber, can have a significant impact on the solution. Correcting such
methods with a nonlinear solution improves all results except for the drag, but the computational
time becomes slightly higher than the one needed to obtain the nonlinear solution. This observation
supports the early suggestion of Verhoff and O’Neil [3], which is widely accepted today albeit in the
absence of thorough validation, of using multi-fidelity modeling for transonic flow computations.

The results presented up to this point demonstrate that, in the presence of shocks, linear
methods predict lift with reasonable accuracy but underestimate drag and pitching moment and
yield unphysical pressure distributions. They are therefore not suited for transonic aerodynamic
computations and optimization in preliminary aircraft design. On the other hand, the Euler
and Reynolds-Averaged Navier–Stokes equations correctly capture the physics but have a high
computational cost. Full potential models were found to give reliable results for a moderate
computational cost. More particularly, the full potential equation was found to predict results
comparable to the Euler equations for less than a tenth of the computational cost. Note that, even
though the shock on the Onera M6 is relatively strong, the full potential results remain accurate and the
formulation does not breakdown, contrary to what may sometimes be reported in the literature [14,15].
When coupled to the boundary layer equations, the full potential computations are almost as accurate
as Navier–Stokes results for less than a thousandth of the computational cost.

4. Static Aeroelastic Case

In this section, models PAN, NAS, NASC, FLO, and SU2 are compared on the flexible Embraer
Benchmark Wing, which is analyzed in the context of a static fluid–structure interaction simulation.
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The objective is to predict the deformed shape of the wing subjected to the flight condition described
in Section 3.2 and to recover the new angle of attack needed to obtain a lift coefficient of 0.6, as well as
the new load distributions along the span. Note that the wing is clamped at its root to represent its
attachment to the fuselage. Such a boundary condition is not fully realistic as the fuselage is not rigid.
However, this setup allows comparing the different solvers.

The aerodynamic meshes used by all the models are those described in Section 3.2. The associated
structural model was discretized in NASTRAN and consists of 50, 000 shell elements. The fluid–structure
computations for NAS and NASC were carried out directly within NASTRAN using the elastic trim
analysis. The other aerodynamic models were coupled to a structural model, obtained by a modal
decomposition performed in NASTRAN. The mesh used by the modal solver consists of 2100 points
distributed on the surface of the wing. Note that these points were only used to create the modal
matrix to transfer quantities between the physical and modal spaces. FLO and SU2 were coupled to the
modal solver using CUPyDO while PAN was coupled through MATLAB. The fluid–structure computation
stopped when the difference in an objective function between two consecutive iterations fell below
a given tolerance. In CUPyDO, the objective function includes the displacements, while the loads are
considered in MATLAB. In both cases, a normalized tolerance of 10−4 was used.

4.1. Aerodynamic Loads

Table 9 summarizes the new angle of attack and aerodynamic coefficients of the benchmark wing
in its deformed configuration. As in the rigid case presented in Section 3.2, the linear model PAN
slightly overpredicts the angle of attack needed to achieve the target lift coefficient when compared
to nonlinear models. On the other hand, the lattice model NAS neglects the camber of the wing,
strongly overperdicts the angle of attack, and underpredicts the moment coefficient. Using the Euler
correction with NASC significantly improves the predictions, even though the angle of attack is still
overestimated by about 1 degree. In this case, FLO was also found to strongly underestimate the drag
coefficient when compared to SU2. Comparing the results in Tables 7 and 9 illustrates the impact of
wing deformation on the angle of attack and aerodynamic coefficients.

Table 9. Angles of attack and aerodynamic coefficients for the flexible Embraer wing at Mach 0.78 and
lift coefficient 0.60 obtained from different levels of fidelity.

Model α (◦) CL CD CM

PAN +0.5 0.60 0.0148 −0.885
NAS +6.1 0.60 - −0.705

NASC +0.9 0.60 - −0.812
FLO +0.1 0.60 0.0141 −0.867
SU2 −0.1 0.60 0.0186 −0.890

Figure 7a,b shows the lift and the quarter-chord moment coefficient distribution along the span of
the deformed wing, respectively. With the exception of NAS, all models predict similar distributions
for both the lift and moment. Note that, as there is no viscous solution, it is not known if the inviscid
methods still underestimate the moment. Again, NAS is completely inaccurate as it ignores the camber
of the wing.
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Figure 7. Sectional aerodynamic coefficients distribution along the span of the deformed Embraer
wing at Mach 0.78 and lift coefficient 0.60, obtained from different levels of fidelity: (a) sectional lift
coefficient; and (b) sectional moment coefficient.

4.2. Wing Deflection

Figure 8 shows the vertical displacement, averaged between the leading and trailing edges, and the
nose-up rotation along the span of the deformed wing. Note that the displacement is normalized with
respect to the half-span of the wing and the rotation angle is normalized by the maximum value of the
rotation. All models predict similar results for both displacement and rotation, except for NAS, which
strongly underestimates rotation at the outboard section of the wing.
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Figure 8. Static deflection along the span of the Embraer wing at Mach 0.78 and lift coefficient 0.60,
obtained from different levels of fidelity: (a) mean vertical displacement; and (b) nose-up rotation.

4.3. Computational Performance

The mesh size and the computational time required to run the computations are given in Table 10.
The calculations were performed in serial on a laptop fitted with an Intel i7-7700HQ processor (2.8 GHz).
In this case, the computational cost of the Euler correction required by NASC is included. PAN, FLO,
and SU2 converged, respectively in nine, seven, and nine FSI iterations, while NAS and NASC
converged in three iterations. PAN and NAS are more than one order of magnitude faster than FLO,
which is itself more than one order of magnitude faster than SU2.
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Table 10. Mesh size and computational time required by the different models for the Embraer
Benchmark Wing case.

Model n. Cell n. Threads Wall-Clock Time

PAN 1400 1 90 s
NAS 800 1 75 s

NASC 800 1 6 h + 75 s
FLO 660, 000 1 1.5 h
SU2 1, 500, 000 1 22 h

4.4. Discussion

Although panel methods do not capture shocks, their static aeroelastic predictions are, in general,
quite similar to those obtained from the nonlinear solvers. For the present case at least, static wing
deflections are not sensitive to shock modeling. Consequently, flight shape calculations can be carried
out using linear methods with reasonable confidence in the predictions. In any case, the camber
must be modeled or corrected, otherwise wildly inaccurate results will be obtained. The corrected
doublet lattice model is also quite accurate but its computational cost is much higher due to the need
to calculate an Euler solution.

Note that the ability of linear methods to predict wing displacements accurately seems to be quite
sensitive to the geometry. Results previously reported by Romanelli et al. [21] show that the doublet
lattice method was less accurate than Euler computations, especially near the wingtip. However, it is
unclear whether the authors corrected the method with higher-fidelity data.

5. Conclusions

The objective of the present work is to assess systematically the impact of the aerodynamic level of
fidelity on steady aerodynamic and static aeroelastic computations typically performed in preliminary
aircraft design. To this end, several aerodynamic models were compared on the Onera M6 and the
Embraer Benchmark wings.

The assumptions made by considering different levels of fidelity can be grouped into four
categories: flow viscosity, isentropicity, linearity, and model geometry. The results obtained in the
context of steady aerodynamic computations on both rigid wings illustrate that neglecting the viscosity
leads to an underestimation of the aerodynamic loads, particularly the moment and the drag. When
the lift coefficient is imposed, the angle of attack is underestimated by about 1◦. The shock strength is
also underestimated and its location is moved downstream. These results globally agree with those
previously reported in the literature [9,13]. Considering the flow to be isentropic does not significantly
affect the solution. This is particularly true for the flows considered in aircraft design, where only weak
shocks are present. However, the results obtained on the Onera M6 demonstrate that the full potential
formulation does not necessarily break down when a relatively strong shock is present, although this
statement raises the question of what constitutes a strong shock wave and what are the exact limits
of validity of the full potential theory. Further considering the flow to be fully linear has only a mild
impact on the lift and the moment, even if the pressure distribution is significantly affected. The drag
is also underestimated since the wave drag produced through shocks is not accounted for. Finally,
modeling the wing without accounting for its camber results in a complete miscalculation of the angle
of attack and aerodynamic loads.

The present analysis suggests that at least a nonlinear method is required to accurately capture
transonic physics. Even though full potential methods achieve the best tradeoff between accuracy and
computational cost for rigid steady computations, they are still too expensive for static aeroelastic
computations in preliminary aircraft design. As such, calculations are usually performed on wings
already optimized for the transonic flow regime; a linear potential method seems sufficient to predict
the wing loading and deformation and should yield results similar to those obtained using nonlinear
methods, except for the drag. Note, however, that this result strongly depends on the geometry,
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as results previously reported in the literature [21] suggest that linear methods are not necessarily
accurate in transonic cases. In any case, if a linear model is used to compute the wing deflection, a single
nonlinear rigid aerodynamic calculation should be performed on the deformed shape in order to
estimate more accurate aerodynamic loads. This two-stage computation strategy might offer a cheaper
alternative to multi-fidelity static aeroelastic computations, whereby nonlinear computations are
performed during the iterative process to calibrate a linear computation. The two-stage computation
could also be more accurate than correcting a linear method with higher-fidelity data obtained from a
rigid aerodynamic computation performed on the undeformed wing shape.
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