
1

Recent Developments in Machine Learning for
Energy Systems Reliability Management

Laurine Duchesne, Efthymios Karangelos, Member, IEEE, and Louis Wehenkel

Abstract—This paper reviews recent works applying machine
learning techniques in the context of energy systems reliability
assessment and control. We showcase both the progress achieved
to date as well as the important future directions for further
research, while providing an adequate background in the fields
of reliability management and of machine learning. The objective
is to foster the synergy between these two fields and speed up
the practical adoption of machine learning techniques for energy
systems reliability management. We focus on bulk electric power
systems and use them as an example, but we argue that the
methods, tools, etc. can be extended to other similar systems, such
as distribution systems, micro-grids, and multi-energy systems.

Index Terms—Machine learning, reliability, electric power
systems, security assessment, security control.

I. INTRODUCTION

ARTIFICIAL INTELLIGENCE (AI) emerged as a re-
search subfield of computer science in the near aftermath

of the second world-war, and started to expand towards
software engineering in the 1970’s. Recently, AI and more
specifically Machine Learning (ML) has become a ‘must-
have’ technology and a very active research field addressing
complicated ethical and theoretical questions. This recent
boom is facilitated by the continuous growth in the availabil-
ity of computational power and advanced sensing and data
communication infrastructures.

ELECTRIC POWER SYSTEMS (EPS) emerged during
the early twentieth century, became soon ubiquitous,

and progressively more and more computerised since the
1970’s. Recently, EPS started to undergo a revolution, in
order to respond to societal and environmental challenges;
renewable energy sources, micro-grids, power electronics, and
globalisation are indeed changing their game. The changes
characterising such revolution are pushing the existing ana-
lytical methods for power system reliability assessment and
control to their limits.

The first proposals for applying ML to EPS dynamic
security assessment and control (a part of EPS reliability
management) were already published during the 1970’s and
1980’s [1]. In spite of a significant number of academic
publications since then, only a few real-world applications
have been reported. This should be contrasted by the very
significant practical impact of control, simulation, optimisa-
tion, and estimation theories on EPS engineering, and in
particular on their reliability management. Recently, research
on the application of ML to EPS reliability management has
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experienced a very vivid revival. This is hopefully not only
explained by the trendy behaviour of the research community
and funding agencies, but rather by the fact that new ideas and
techniques are available and liable to increase the potential for
real-world impact.

This paper seeks to foster the synergy between the electric
power and energy systems and machine learning communities
and enable further work both by industry and academia, in
order to speed up the practical adoption of machine learning
techniques for energy systems reliability management. To
do so, we analyse the recent machine learning applications
for electric power system reliability management over the
past 5 years. We focus on showcasing both the progress
achieved to date as well as the important future directions
for further research. In order to address audiences from both
communities, we briefly provide an adequate background in
the fields of reliability management and of machine learning.
Finally, while we focus here on the electrical power systems,
we also discuss how the progress with the use of machine
learning applications in this field can be the blueprint for
applying machine learning in the broader context of other
energy systems, such as distribution systems, micro-grids, and
multi-energy systems.

The rest of this paper is organised as follows: sections
II and III synthetically present the required background in
reliability management and in machine learning; section IV
provides statistics about the publications of ML applied to EPS
reliability management since the year 2000, while sections
V, VI and VII review published works over the last 5 years.
Section VIII discusses open problems and directions for future
work in the context of distribution systems, micro-grids and
multi-energy systems reliability management.

II. RELIABILITY MANAGEMENT BASICS

In this section we introduce electric power systems relia-
bility management, to set the background for sections IV-VI,
in the interest of readers outside the electric power systems
community. In particular, we introduce the decisions, time
horizons and uncertainties related to reliability management,
the differences between security and adequacy, as well as
between static and dynamic security, and finally the functions
of reliability assessment and reliability control and the current
challenges to tackle these tasks.

A. Types of decisions, time horizons & uncertainties

In general terms, (electric power) system reliability ex-
presses a level of confidence in providing a continuous supply
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Fig. 1. State transition diagram for security control (Adapted from [2])

(of electricity) to the system end-users. Reliability manage-
ment concerns taking decisions to ensure that, in spite of
uncertainties, the system reliability shall be suitable over some
specified future time horizon.

With a long-term perspective (indicatively, 10-30 years
in advance), the main decision is to define the additional
infrastructure investments needed to keep the future system
reliable enough. Next, in a mid-term context (typically 1-
5 years ahead in time), the prevailing question is how to
maintain the functionality of the existing system through
repairs and/or replacements of its individual components. Last,
but certainly not the least, short-term operation planning (a
few months to a few hours ahead) and real-time operation
jointly aim at deciding how to optimally deliver electricity
from the producers to the end-users while enabling equipment
maintenance and infrastructure building activities.

Various types of uncertainties and various spaces of can-
didate decisions challenge all these complex and large-scale
decision making problems. Better uncertainty modelling, en-
hanced probabilistic and/or robust decision making frame-
works, and more effective algorithms for optimal decision
making under uncertainties are therefore main directions of
R&D in electric power systems reliability management.

B. Adequacy & security

From a functional standpoint, power system reliability can
be sub-divided into adequacy and security [3], respectively
defined as,
Adequacy – the ability to supply with high enough probability
the end-users at all times, taking into account outages of
system components;
Security – the ability to withstand sudden disturbances such
as electric short circuits or nonanticipated loss of system
components without major service interruptions.

A reliable power system thus exhibits both (i) redundancy
to adequately supply the load demand even when some of

its components remain unavailable, and (ii) plasticity to se-
curely ride-through sudden, unanticipated disturbances and/or
disconnections of some of its components.

Adequacy emphasises on the system dimensioning to ac-
commodate the variability and stochasticity of the end-user
demand, while also taking into account the (random) un-
availabilities of system components. Typically, (in)adequacy
is evaluated over a period of time, ranging from a few months
to many years, and expressed by indicators such as loss of load
probability or expected energy not supplied [3]. It may also
be quantified in terms of the socio-economic impact of service
interruptions to the system end-users, through indicators such
as the expected cost of energy not supplied. Explicit adequacy
criteria are commonly used in long-term planning applications
adopted by many system operators [4].

Security complements adequacy by focusing on the opera-
tion of the system while it undergoes state transitions initiated
by unexpected exogenous disturbances and is canalised by
various preventive or corrective control actions (cf. “The
adaptive reliability control system” of T. Dy Liacco [5]). The
diagram shown in Fig. 1, originally introduced in [2] based on
a simpler version already given in [5], depicts the transitions
among power system states from the security perspective.
Security assessment aims at determining at which security
level the system is currently residing, whereas security control
aims at deciding control actions to move towards a more
secure state. The vast domain of security (assessment and/or
control) is further decomposed into dynamic and static security
(assessment and/or control).

Dynamic security characterises the ability of the system
to complete the transition from the pre-disturbance operating
state to a post-disturbance stable equilibrium state. Here, three
main physical phenomena are at (inter)play, giving rise to
respective classes of (in)stability, namely rotor-angle, voltage
and frequency (in)stabilities [6]. We refer the reader to the
textbook of Kundur [7] for an explanation of the physical and
mathematical modeling properties of these phenomena.

Rotor-angle stability concerns the equilibrium between the
mechanical (input) and electromagnetic (output) torque of
synchronous generators, keeping all machines of an intercon-
nected power system rotating at a common angular speed. It
is further classified into small-signal and transient rotor-angle
stability, according to the magnitude of the studied distur-
bances. Transient rotor-angle stability concerns the ability to
sustain large disturbances such as short-circuits followed by
the disconnection of one or more transmission lines, whereas
small-signal stability concerns the ability to absorb stochastic
variations of demand and generation. The physics of both
concern relatively fast dynamics ranging over a few seconds
following a disturbance.

Voltage stability refers to the ability of the power system
to avoid an uncontrollable deterioration of the voltage level
at its buses. At the extreme, voltage collapse is the situation
wherein the system bus voltages reduce to unacceptably low
levels. The behaviour of electrical loads and tap-changing
voltage transformers restoring the consumed power after a
disturbance is the main phenomenon potentially driving the
system to voltage collapse. The dynamics of these phenomena
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are typically slower than those concerning rotor-angle stability,
and they may range over several minutes.

Frequency stability concerns the ability of the system to
contain the frequency deviations caused by large mismatches
between generation and demand resulting for example from
the loss of large generators or fast variations of the load.
Frequency stability is an issue of major concern under islanded
operation, following some event that results in splitting the
interconnected power system into disconnected under-/over-
generated sub-parts. In systems with low electromechanical
inertia, such as systems with predominantly photovoltaic and
inverter-connected wind-power generation systems, frequency
(in)stability is likely to become a major problem. While loss of
synchronism typically takes at most a few seconds, frequency
instability may take up to a few minutes to develop, and its
study thus requires the modeling of slower processes such as
boiler dynamics and load recovery mechanisms.

Finally, static security characterises the viability (typically
over a period of 5 − 60 minutes) of the steady-state reached
by the system following a contingency (i.e. a sudden line,
transformer or generator outage). The main physical aspect of
interest is compliance with the permanent capabilities of the
system components (e.g. current carrying or electric isolation
capabilities). Static Security Assessment (SSA) can be carried
out by using a Power Flow (PF) solver to calculate a post-
contingency state for each element of a set of contingencies.
In current practice the so-called “N-1” contingency set is most
often used: it is the set of disturbances corresponding to single-
component trippings (“N” denotes the total number of such
components). On the other hand, the Optimal Power Flow
(OPF) problem may be solved in order to determine least cost
decisions making a steady state viable.

C. Reliability assessment vs reliability control

Managing the aforementioned aspects to ensure the re-
liable supply of electricity is in practice achieved through
the functions of reliability assessment and reliability control.
Reliability assessment concerns evaluating the security and
adequacy metrics necessary to assess whether the system
reliability level is acceptable with respect to a certain reliability
criterion. It can be performed ex-ante to determine whether
taking a certain candidate decision suffices to achieve the
reliable operation of the system over a future horizon, or ex-
post to evaluate the effect of already taken decisions over some
past operational period. Reliability control concerns finding
the decisions so as to ensure that the system will comply
with a certain reliability criterion, and while optimising a
socio-economic objective [8]. The formalisation of reliability
assessment and control problems, as well as the challenges for
tackling these, depend on the precise reliability management
context of interest.

Starting from the shortest horizon, in the context of real-time
operation, the salient feature is the lack of computational time
to simulate the behaviour of the system in the time-domain,
re-evaluate the static operability of the system vs credible
contingencies and search for appropriate remedial actions. It
is thus necessary to rely on security rules prepared off-line

to classify the system dynamic security, while monitoring
its operation and its compliance with static security limits.
Similarly, emergency controls need to be implemented as soon
as possible to contain the unwanted deterioration of the system
state before it escalates, and thus can only be triggered on
the basis of pre-defined strategies. The challenge is therefore
to design simple yet robust assessment rules and closed-loop
control strategies, while also taking into account the reliability
of protection, control and communications infrastructures.

In the short-term operation planning context, reliability
management is further complicated by the need to take into
account (i) the uncertainty on the potential pre-disturbance
operating state of the system and the temporal evolution
thereof, and, (ii) the future remedial actions to be implemented
as per the respective real-time operation strategies. Analytical
methods, such as time-domain simulations for dynamic secu-
rity, power flow and optimal power flow for static security and
adequacy are the primary tools for reliability assessment. The
approach boils down to using such tools over a representative
sample of potential operating conditions, to compute estimates
of the respective metrics. The challenge is of course related
to the size of the sample needed to reach acceptable accuracy.
The Security Constrained Optimal Power Flow (SCOPF) is the
fundamental statement expressing the operation planning reli-
ability control problem, focusing mostly on static security [9]–
[11]. Different variants of this problem are cast under different
assumptions to fit specific operation planning questions (e.g.
from the linear, so-called Direct Current or DC approxima-
tions employed in market-based generation dispatching to the
optimisation of preventive/corrective actions under the non-
linear Alternating Current or AC power flow model). Further
from the dimensionality issues associated with injection (i.e.
load and generation) uncertainties, a key issue here is how
to effectively integrate dynamic security limitations in the
framework of such problem.

Taking the mid-term asset management perspective, the cen-
tral question for reliability assessment concerns the criticality
of a certain asset for the power system functionality, with
emphasis on the adequacy and static security aspects. Answer-
ing this question entails essentially simulating the operation
of the system with and without the asset in question, using
again power flow and optimal power flow methods in a Monte
Carlo style approach. Reliability control seeks to identify
which assets to maintain and when to do so. Component-
based reliability rules, triggering maintenance activities by age,
condition, maintenance frequency etc. are useful in practice
to answer the former question, taking into account the large
number of system components. The problem of maintenance
scheduling includes logistical considerations on top of the crit-
icality of assets for the network functionality. Such logistical
considerations reduce the (theoretically large) set of potential
maintenance schedules in a calendar year, to a smaller subset
of alternative moments per component in question. Still, the
scheduling question implies a large-scale stochastic mixed-
integer programming problem and the typical approach is to
use heuristics for finding a suitable moment for each prioritised
maintenance activity, while minimising the impact on reliable
operation.
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Finally, given the vast uncertainties in a long-term horizon,
reliability management can only be achieved by a recursive ap-
proach integrating assessment and control. The first step entails
identifying the needs of the future power system, employing
both adequacy/static security tools in Monte Carlo simulations
as well as dynamic security consideration to frame potential
future reliability problems. Exhaustive search is far from
being an option here and the challenge is to combine micro-
and macro- assumptions to generate manageable subsets of
future operational conditions. Based on identified problems,
expert knowledge as well as considerations on project timeline
feasibility, public acceptability, etc. are employed to arrive
at a small, manageable subset of potential solutions to the
identified needs. These solutions then need to be re-assessed
over a new set of realisations from the uncertainty models
while the final choice requires detailed study of both the static
and the dynamic behaviour of the resulting grid, as well as
socio-economic analysis with a view on electricity markets
and on the impact on the natural environment.

III. MACHINE LEARNING CONCEPTS

Machine learning exploits data gathered from observations
or experiments on a system to automatically build models
predicting or explaining the behaviour of the system, or
decision rules to interact in an appropriate way with it. In
this section we introduce the basic concepts of this field, to
serve as the background for sections IV-VI, in the interest of
readers outside the machine learning community. In particular,
we introduce the different types of machine learning problems
with a focus on supervised learning, feature selection and
engineering, how to choose a method, and how to assess the
accuracy of a model.

A. Different types of machine learning problems

To introduce the main types of machine learning problems,
we will use the probabilistic/statistical formalisation and ter-
minology and restrict to the so-called batch-mode setting. We
refer the interested reader to more general textbooks for further
information [12]–[14].

1) Supervised learning (SL): Given a sample {(xi, yi)}ni=1

of input-output pairs, a (batch-mode) supervised learning algo-
rithm aims at automatically building a model ŷ(x) to compute
approximations of outputs as a function of inputs.

The standard probabilistic formalisation of supervised learn-
ing considers x ∈ X and y ∈ Y as two (vectors of) random
variables drawn from some (joint) probability distribution Px,y
over X×Y , a real-valued loss function ` defined over Y ×Y ,
and a hypothesis space H of “predictors” (i.e. functions from
X to Y ), and measures the inaccuracy (named the expected
loss, or average loss, or risk) of a predictor h ∈ H by

L(h) = E{`(y, h(x))} =
∫
X×Y

`(y, h(x))dPx,y. (1)

Denoting by (X × Y )∗ the set
⋃∞
n=1(X × Y )n of all finite

size samples, a (deterministic) supervised learning algorithm
A can thus formally be stated as a mapping

A : (X × Y )∗ → H (2)

from (X×Y )∗ into a hypothesis space H. Statistical learning
theory studies the properties of such algorithms, in particular
how well they behave in terms of loss L when the sample size
n increases [12].

Since SL is the most common type of machine learning
problem treated in reliability management, we describe in
more details the characteristics of SL in section III-B.

Methods: Methods like decision trees, neural networks,
linear regression, nearest neighbor, support vector machines
etc. belong to this category.

Power system example: A first example application is
the assessment of system stability after the occurence of a
disturbance [15]. In that case, the target output y typically
can take two values, stable or unstable, and the inputs x
could be real-time measurements of voltage at each bus and
power flow in each branch of the system. The problem then
amounts to building a model ŷ(x) that predicts, based on the
measurements, if the system is stable or unstable.

2) Reinforcement learning (RL): Given a sample of n
trajectories of a system

{(xiτi , d
i
τi , r

i
τi , x

i
τi+1, . . . , d

i
τi+hi−1, r

i
τi+hi−1, x

i
τi+hi

)}ni=1,

batch-mode reinforcement learning aims at deriving an approx-
imation of an optimal decision strategy d̂∗(x, t) maximising
system performance in terms of a cumulated index (named
reward) over a certain horizon T , defined by

R =

T−1∑
t=0

γtrt, (3)

where γ ∈ (0, 1] is a discount factor. In this framework, xt
denotes the state of a dynamic system at time t, dt is the
control decision applied at time t, and rt is an instantaneous
reward signal [14].

From a theoretical point of view, reinforcement learning
can be formalised within the stochastic dynamic programming
framework. In particular, supposing that the system obeys to
time invariant dynamics

xt+1 = f(xt, dt, wt), (4)

where wt is a memoryless and time invariant random process
and obtains a bounded time invariant reward signal

rt = r(xt, dt, wt), (5)

over an infinite horizon (T → ∞), one can show that the
two following (Bellman) equations define an optimal decision
strategy

Q(x, d) = E{r(x, d, w) + γmax
d′

Q(f(x, d, w), d′)}, (6)

d∗(x) = argmax
d

Q(x, d). (7)

Reinforcement learning can thus be tackled by developing
algorithms to solve these equations approximately when the
sole information available is provided by a sample of system
trajectories. The theoretical questions that have been studied
in this context concern the statement of conditions on the
sampling process and on the learning algorithm ensuring
convergence to an optimal policy in asymptotic conditions (i.e.
when n→∞).
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Methods: Methods such as Q-learning, State-Action-
Reward-State-Action (SARSA), and more recently Deep Q
Network (DQN) belong to this category.

Power system example: A possible application of rein-
forcement learning in power systems is emergency control,
where an RL algorithm could take a sequence of actions dt
when the system is in an emergency state in order to come
back to a normal state, as in [16]. Other examples can be
found in [17].

3) Unsupervised learning (UL): Given a sample of obser-
vations {zi}ni=1 obtained from a certain sampling distribution
Pz over a space Z, the objective of unsupervised learning
is essentially to determine an approximation of the sampling
distribution. In the most interesting case, Z is a product space
Z1 × · · · × Zp defined by p discrete or continuous random
variables, and the main objective of unsupervised learning is to
identify the relations among these latter, such as (conditional)
independence relations or colinearity relations, as well as the
parameters of their distributions.

Methods: Earlier work in this field concerned clustering
(for instance with the k-means algorithm), Principal Compo-
nent Analysis (PCA) and hidden Markov models. More recent
research topics, still very active today, concern independent
component analysis as well as the very rich field of graphical
probabilistic models, such as Bayesian belief networks [13].

Power system example: In the context of powers systems
reliability, unsupervised learning can be used for segmenting
automatically large scale power grids into coherent zones to
ease the management of the grid for control room operators
[18].

4) Semi-supervised learning: Semi-supervised learning
concerns a situation where the dataset is composed of a
labelled sample {(xi, yi)}ni=1 drawn from a joint distribution
Px,y and a second (unlabelled) sample {(xj)}n′

j=1 drawn from
the corresponding marginal distribution Px. Semi-supervised
learning algorithms aim at exploiting both samples together to
find a predictor h that is hopefully more accurate than what
could be produced by a supervised learning algorithm using
only the labelled sample.

These types of methods are useful when it is relatively
‘easy’ to collect unlabelled data but relatively ‘difficult’ to
obtain labelled data.

Methods: Methods based on self-training, tri-training
and other algorithms such as semi-supervised support vector
machines belong to this category.

Power system example: In the context of dynamic secu-
rity assessment, one could use time-consuming simulations to
label as stable or unstable only a part of a database, and then
use semi-supervised learning to exploit the whole database in
order to build a classifier, as in [19].

B. Characteristics of supervised learning algorithms

In supervised learning a first main distinction concerns the
nature of the output space. When Y is a finite set of ‘class
labels’ one talks about classification problems (e.g. stable vs
unstable), while when Y is embedded in the set of real num-
bers (respectively in a finite dimensional euclidean space) one

talks about regression (respectively multiple-regression) prob-
lems (e.g. stability margin). But, beyond these two standard
types of supervised learning problems, there are many other
ones, as many as one can imagine output spaces structured in
some meaningful way.

Once an output space Y is defined, one can further refine
the nature of the problem by defining a particular loss function
`(y, y′) over Y × Y . For example, for classification problems
one often uses the so-called 0/1-loss, which is defined by
`(y, y′) = 1(y 6= y′) and counts the number of misclassifi-
cations, whereas for regression problems one often uses the
square-loss (y − y′)2. Once the loss function ` is defined, it
means that one targets the so-called “Bayes” model, which is
defined in a point-wise way by

hB(x) = arg min
y′∈Y

∫
Y

`(y, y′)dPy|x, (8)

and is among all functions h of x the one minimising the
average loss L(h), defined as in (1). For example, in the case
of regression problems and with the square-loss, hB(x) is
identical to the conditional expectation of y given x, whereas
using the absolute loss |y − y′| would instead yield the
conditional median.

The next step in defining a supervised learning algorithm
consists of choosing a hypothesis space of functions H. As far
as loss minimisation is concerned, this space should ideally
contain the (problem-specific) Bayes model or at least models
sufficiently close to it in terms of the chosen loss function.

Given a choice of H, the empirical risk minimisation prin-
ciple then reduces supervised learning to solving the following
minimisation problem:

A({(xi, yi)}ni=1) = arg min
h′∈H

n∑
i=1

`(h′(xi), yi). (9)

One can show that if H is ‘sufficiently’ small, it produces
models whose loss L converges towards minh∈H L(h), when
the sample size n increases, and that it converges faster if H
is of smaller ‘size’. As far as accuracy is concerned, the SL
algorithm should thus use an as small as possible hypothesis
space containing good enough approximations of hB .

Nevertheless, in addition to accuracy, computational com-
plexity of learning algorithms is often a concern. Indeed,
solving an empirical loss minimisation problem may require
huge computational resources if the hypothesis space is very
complex and the sample size n is very large.

Finally, beyond making ‘low loss’ predictions, the goal
of a machine learning application is often to help human
experts to understand the main features of the problem at
hand. Therefore, interpretability of the output of the machine
learning algorithm is another often highly desired feature.

C. Feature selection and feature engineering

When considering a particular application of machine learn-
ing, the raw datasets that are available are typically recorded
values of a large number of low-level individual variables
zj , some of which could be either inputs xj , outputs yk, or
decisions dl of some supervised and/or reinforcement learning
problem of interest.



6

Often, it is suspected that some (or even a majority) of
these variables are actually irrelevant for the resolution of
some particular prediction or optimal control task. In other
applications, one would like to find a minimal subset of input
variables to be used by a supervised or reinforcement learning
method, so as to facilitate the practical application of the
resulting predictor or control policy without sacrificing too
much in terms of accuracy.

Thus, the machine learning field has developed various
methods for selecting “optimal” subsets of input variables
(feature selection) and for computing useful functions of the
original variables (feature extraction), based on the informa-
tion provided in a dataset [20].

D. Practical choice of a supervised learning method

The different supervised learning algorithms available today
(see [12], [13]), yield different compromizes between inter-
pretability, computational efficiency, and accuracy.

The choice of the most suitable algorithm is thus highly
application dependent, for several reasons: (i) the application
determines which one of these three criteria is the most
important one in practice; (ii) the application determines the
data-generating mechanism and loss function, hence the Bayes
model hB and thus how well different hypothesis spaces allow
to approximate this ideal target predictor; (iii) the application
domain conditions the size of the possibly available datasets,
impacting both accuracy and computational efficiency of most
algorithms, but in different ways.

This situation means that, typically, the one who is faced
with a particular application will try out a (more or less large)
subset of machine learning algorithms, analyse their behaviour
and results, and select the one which seems to fit in the best
way the need of the considered application. This “trial and
error” type of approach is the price to pay for the very broad
scope of machine learning applications.

E. Overfitting and honest model assessment

Because the empirical risk minimisation chooses models
to minimise the average loss over the learning sample, this
empirical risk is in practice strongly biased in an optimistic
way. It means that even if the selected predictor works very
well on the learning sample, there is no guarantee that it will
work well also on an independent test sample drawn from the
same distribution.

In order to assess the accuracy in an honest way, various
approaches have been developed and studied, such as the
“hold-out” method which keeps part of the data as a test
sample and uses only the rest of them to apply the learning
algorithm, or the k-fold cross-validation approach, which uses
the data in a more effective way at the price of higher
computational requirements [12].

Often, the cross-validation approach is also used in order to
select among several algorithms the one more suited to a par-
ticular dataset, or to adapt some algorithm’s “meta-parameters”
(e.g. number of hidden neurons, training epochs, strength of
weight decay penalisation), or even to help identifying a subset
of relevant input features. If this is the case, then a nested

model assessment approach is needed in order to honestly
assess the accuracy of the finally produced predictor [12].

IV. PUBLICATION STATISTICS SINCE 2000

In this section, we survey recent contributions to the field
of machine learning for electric power systems reliability. We
found (via Google Scholar and Scopus)1 366 papers in this
subject field that were published between January 2000 and
October 2019; their yearly counts are shown in Figure 2, which
clearly shows a strong growth over the last 5 years.
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Figure 3 shows the statistics of these papers in terms of
the different types of reliability management problems they
address. We observe that more than 50% of them address the
problem of dynamic security assessment. On the other hand,

1We used the following keywords to gather these papers: i. power system,
reliability, security, stability, learning; ii. power system, reliability, security,
stability, assessment, control, learning; iii. power system, reliability, security,
stability, assessment, control, learning, neural network, ANN, support vector,
SVM, nearest neighbours, decision tree, random forest. The retrieved papers
were analysed one by one to eliminate irrelevant ones from the statistics.
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we have observed a recent growth of the number of papers
applying machine learning to power flow and optimal power
flow computations (which are classified into the SSA and SSC
categories respectively).

Another interesting analysis is the type of machine learning
protocol exploited in our set of papers. Figure 4 shows the
number of papers using supervised learning, unsupervised
learning and reinforcement learning. It is clear that supervised
learning is by far the most popular type of machine learning
protocol used in these reliability management applications.

In the following two sections, we present in more details
how the different reliability management problems are ad-
dressed in the literature with a machine learning approach. We
first present papers exploiting machine learning for dynamic
security assessment, as well as (dynamic) emergency and
preventive control, since they constitute the largest part of our
survey. Then we present how machine learning was applied
for static security assessment and control, and to speed up
optimal power flow and power flow computations. We focus
this literature survey on the last 5 years. Table I presents an
overview of the works discussed in the next two sections,
classified in terms of the respective power system reliability
management application (i.e. transient, voltage, frequency or
small-signal stability, dynamic and static security).

V. WORKS ON ML FOR DSA & DSC SINCE 2015
Dynamic security is a particularly suitable application for

machine learning, given the need for fast assessment and
control and the computational burden inherent to classical
approaches such as time-domain simulations. Figure 5 shows
the four steps generally followed to exploit machine learning
in this context. We discuss them one-by-one hereafter.

A. Database building

The first step to apply machine learning for security assess-
ment and control is the database building. In most papers, due
to lack of historical data availability, simulations are used to
generate a security database. Another advantage of simulation
is that it allows to sample operating points defining well
the security boundary, which is typically not the case with
historical data, for which most operating points are stable [21].
The database generation is then usually done offline, given the
extensive simulation cost to build it, while the application of
the resulting model trained on the dataset can be done offline
or online, depending on the application and the context.

TABLE I
MAIN SECURITY PROBLEMS ADDRESSED WITH A MACHINE LEARNING

APPROACH AND CORRESPONDING REFERENCES

Security problems addressed References

Transient stability

[15], [16], [19], [22], [27]–[29],
[32], [34], [35], [37], [38], [41],

[43], [45], [47], [49]–[52],
[54]–[56], [63], [64], [67]–[73],
[75], [76], [81]–[83], [85]–[88],

[90], [92], [93], [98], [102], [105],
[107], [113], [115]–[117]

Voltage stability

[26], [30], [39], [40], [42], [44],
[46], [48], [53], [60], [65], [66],

[78], [79], [89], [91], [97], [100],
[103], [108]–[110], [114], [123]

Small-signal stability [21], [22], [61], [62], [74], [120],
[121]

Frequency stability [80], [84], [104], [106], [112]

Dynamic security
[25], [31], [33], [36], [57]–[59],

[77], [94], [95], [99], [101], [118],
[119], [122]

Static security [18], [23], [24], [74], [96], [111],
[120], [121], [124]–[175]

In order to generate a database based on simulations, the
first step is to generate representative operating states of the
system. The main uncertainties in power systems relate to
load patterns, topology configuration and generation. It is
impossible to sample all operating conditions and therefore
Monte-Carlo simulations are used in most papers, but other
techniques to sample from a multi-dimensional distribution
are possible, such as the latin hypercube sampling [22].

In DSA and DSC applications, the input-features of the
database often come from Phasor Measurement Units (PMU),
which are devices allowing to monitor the power system state
in real-time. They measure synchronously voltage phasors
at buses where they are located and current phasors in the
branches connected to these buses.

The target output of the database depends on the task. Most
studies build classifiers to predict the stability status of the
system, considering either transient, small-signal, voltage or
frequency stability. Others are more interested in quantifying
the distance to instability, by exploiting regressors to predict
for instance the security margin, the voltage stability index, the
so-called Critical Clearing Time (CCT), i.e. the maximum time
available to clear a disturbance before the system becomes
unstable, etc. Finally, for control purposes, some predict
directly which decisions, such as generation re-dispatch, to

Model 
learning

Database
building

Data 
pre-processing

Model 
validation & 
maintaining

Simulations
Real data collection

Feature engineering
(Feature selection, 
Feature extraction)

Class imbalance

DSA 
Emergency DSC
Preventive DSC

Adaptation to system changes
Missing/erroneous data

Fig. 5. Usual steps followed to exploit machine learning in DSA & DSC
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apply. These outputs are usually obtained with time-domain
simulations of the power system.

The quality and representativity of the database has a major
impact on the effectiveness of the ML approach. For instance,
for a database based on simulation, if the representation
of the problem is too simple, this could lead to a learnt
model with very good performance on data generated with
the same distribution as the database but bad performance
when it is used in practice, in a real situation. Furthermore,
the input variables must allow one to discriminate well the
target output(s). If it is not the case, the problem may be
hard to learn and one may overfit noise, which could lead to
difficulties to obtain an efficient model. The database must
also be large enough for the model to be able to capture all
the subtleties of the studied problem, in order to obtain high
generalisation performances. Another important aspect for the
person exploiting the database is to know the hypotheses used
to generate it, if this is a database based on simulations, and to
know the data collection process, if if it is based on real-life
data. In general, when the quality and/or representativity of
the database is insufficient, the learnt models cannot be used
to perform security assessment and/or control in practice.

Recently, given the importance of the database genera-
tion step, papers focusing mainly on building more effective
databases for machine learning-based security assessment and
control were published [21], [23], [24]. In [23], the authors
propose an approach using Vine-Copulas to generate more
representative states of power systems. They show on a test-
case that the security classifier built with this approach is
superior to the one build with data obtained from a classical
approach. Thams et al. exploit in [21] convex relaxation
techniques and complex network theory to discard large parts
of the input space and thus focus on the regions closer to the
security boundary. In order to build a database representing
well the security boundary, they use a ‘Directed Walks’ algo-
rithm to identify the security boundary. Finally, [24] proposes
a method to generate datasets to characterise the security
boundary which cover equally the secure and insecure regions.
In particular, they introduce infeasibility certificates based on
separating hyperplanes to identify, for large portions of the
input space, the infeasible region.

Furthermore, to help dealing with a massive amount of data,
in [25], the authors propose a distributed computing platform
for data sampling, feature selection, knowledge discovery and
online security analysis.

B. Data pre-processing

Once a dataset is built, the data can be processed before
being fed to a learning algorithm. This step may in some cases
be mandatory. Processing the data can improve the quality
of the predictions of learning algorithms, increase training
speed and transform data in more meaningful representation
to facilitate model training. In this section, we distinguish
feature engineering and class imbalance management. Table II
provides an overview of the main data pre-processing methods
used for DSA and DSC discussed below.

TABLE II
MAIN DATA PRE-PROCESSING METHODS USED FOR DSA & DSC OVER

THE LAST FIVE YEARS AND CORRESPONDING REFERENCES

Methods References

Feature
engineering

Feature
selection

Filter methods [22], [26]–[36]
Wrapper methods [34], [35], [37]

Genetic algorithms [38], [39]
Tree-based
algorithms [40]–[43]

Feature
extraction

PCA and variants [44]–[46]
Fisher’s linear
discriminant [47]

Shapelets for time
series [48]

Deep learning
auto-encoders [49]–[52]

Class
imbalance

Oversampling [24], [53], [54]
Cost-sensitive

learning [53], [55]

Ensemble methods [41], [45], [56],
[57]

1) Feature engineering: Given the large number of features
necessary to fully describe the state of a power system and
the need for fast algorithms, feature selection techniques are
proposed in many papers. Too many features can lead to exces-
sive training time and, if many features are not relevant, could
decrease the performance of the learnt model. In the machine
learning literature, several techniques have been proposed to
reduce the number of features. In power systems applications,
the ‘Relief’ method, which is is a filter-based method, has been
used alone [22], [26], or combined with a PCA to reduce even
more the number of features [27], [28]. Variants of this method
such as ‘Relief-F’ have also been used [29]–[33], mostly to
improve the predictions of randomised learning algorithms
such as extreme learning machines.

Combining both filter and wrapper methods for feature
selection, Zhou et al. [34] use the improved ‘Relief-Wrapper’
algorithm to select a subset of features and in [35], the authors
propose a hybrid filter-wrapper feature selection algorithm
using the ‘Relief-F’ method to find top weighted features
and then the Sequential Floating Forward Selection method
to select the most relevant set. In [37] a backward feature
selection approach is used, on the other hand.

Genetic Algorithms (GAs) can also be used to select fea-
tures. In [38], the authors use Particle Swarm Optimization
(PSO) based feature selection. Packets of features are drawn
randomly with PSO and the selected packet is the one max-
imising the mean of the standard deviations of the packet. In
[39], the authors first apply a mutual information criterion to
remove less significant features from the dataset and then use
a multi-objective biogeography-based optimisation program to
keep the most relevant ones.

In [36], the authors use the symmetrical uncertainty to
reduce the number of features and improve the performance
of the algorithm. It consists in computing correlation between
pairs of features based on entropy and mutual information, to
keep relevant features and remove redundancy.

Another method for feature selection is based on tree-based
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learning algorithms. These algorithms allow to evaluate the
importance of each feature for predicting the target output.
Feature importances are by-products of the tree-based algo-
rithm and can be used to identify the most important features,
such as in [40]–[43]. This can also give insight about the
power system dynamic security assessment problem under
consideration.

Feature selection algorithms allow to select the most rel-
evant features. Another field of feature engineering is the
feature extraction field. It consists in transforming the data to
represent it in a more meaningful way, facilitating the learning.
Generally, it also reduces the dimensionality of data. PCA and
its variants are often used as a feature extraction tool [44]–
[46], as well as Fisher’s linear discriminant [47] and shapelets
for time series [48] but recently, an approach based on deep
learning auto-encoders was proposed [49]–[52].

Furthermore, feature selection can help to find the most
useful PMUs in a network, e.g. the least number and best
locations of PMUs for a given DSA application [37], [42].

2) Class imbalance: In most databases, the proportion of
stable observations is much larger than the proportion of
unstable ones. This is due to the high reliability of power
systems. However, this imbalance between classes can degrade
the quality of the learnt models, that could be biased toward
the majority class. The problem is particularly important, given
that unstable events must be detected to guarantee the relia-
bility of the system. To overcome this issue, several solutions
have been proposed in the literature, such as oversampling
the minority class [24], [53], [54], undersampling the majority
class, exploiting a cost-sensitive learning [53], [55] and using
ensemble methods [41], [45], [56], [57].

Oversampling is usually preferred to undersampling, to
avoid loss of information. The Synthetic Minority Oversam-
pling Technique (SMOTE) adds new observations of the
minority class by interpolating linearly data points between
adjacent observations of the minority class. A variant of
the SMOTE technique is used in [53], combined with cost-
sensitive learning to compensate for class imbalance. Cost-
sensitive learning consists in using different costs for different
classes during learning, in order to, for instance, avoid as much
as possible misclassifying unstable samples. Using another ap-
proach, suitable because of their data representation as images,
Hou et al. artificially increase the number of samples of the
minority class by using a multi-window sliding recognition
method [54]. The database generation method proposed by
Venzke et al. in [24] allows to generate balanced dataset
between secure and insecure labels.

Ensemble methods can also help for class imbalance prob-
lems. For instance, in [56] the authors exploit the diverse
extreme learning machine algorithm to determine transient sta-
bility. They show that adding diversity can improve accuracy
in case of the class imbalance problem. Another example is
the use of bagging and, instead of sampling uniformly in the
training set, sampling to obtain balanced subsets of training
set [45]. Finally, it is possible to use an Adaboost ensemble
method, which adapts itself to class imbalance [57], or a
‘Weighted Random Forest’, that gives more weight to the
unstable observations when learning [41].

Reference [55] uses an ad hoc loss to avoid instability
detection while [53] uses distinct costs for stable and unstable
observations while learning, in order to minimise the misclas-
sification of unstable samples.

C. Learning a model

Many learning algorithms have been tested to build models
for DSA & DSC. Most of the time, training is done of-
fline but the model is sometimes updated online. Recently,
given the success of deep (neural networks) learning, several
papers have proposed to use this technique. However, other
learning algorithms such as decision trees and Support Vector
Machines (SVMs) are still exploited. Ensemble methods are
also proposed in the literature to improve performances. In
this section, we present how ML algorithms are exploited for
dynamic security by considering first security assessment, then
emergency control and finally preventive control.

1) Security assessment : DSA applications are particularly
suitable to apply machine learning techniques and many papers
exploiting ML to improve DSA were found over the last five
years. Table III provides an overview of the main machine
learning algorithms used for DSA. The acronyms that appear
in the table are defined in the discussion below.

Since many learning algorithms exist, all with their advan-
tages and disadvantages, comparing several algorithms with
your dataset is the best way to know which algorithm is more
suitable for your application. In [28], a decision tree model
is compared to SVMs and neural networks for transient sta-
bility assessment. The same algorithms are compared in [58],
but this time considering also the random forest algorithm.
Reference [85] compares decision trees, SVMs, core vector
machines and naive Bayes models while [91] compares several
ensemble methods (XGBoost, Bagging, Random Forest, and
AdaBoost) with Naive Bayes, k Nearest Neighbor (kNN) and
decision trees, this time for voltage stability assessment. In
[59], the authors propose an automated multi-model approach
for online security assessment. In [60], several learning algo-
rithms such as random forests, Kohonen networks and hybrid
neural networks were tested to predict the security status,
considering several labels such as normal, alarm, serious alarm
and emergency. Note that, depending on the application, the
most suitable algorithms may change.

TABLE III
SUPERVISED LEARNING ALGORITHMS USED FOR DSA IN THE LAST FIVE

YEARS AND CORRESPONDING REFERENCES

Algorithms References

Neural Networks

FFNN [22], [28], [58]–[69]
CNN [49], [54], [55], [70]–[74]

ELM [19], [29]–[33], [35], [56],
[59], [75]–[80]

RNN [37], [81]–[84]

Support Vector Machines (SVM) [15], [28], [39], [50], [51],
[57]–[59], [85]–[90]

Tree-based methods
Decision trees [28], [36], [42], [44], [48],

[58], [59], [85], [91]–[96]

Ensemble [27], [40], [41], [43],
[58]–[60], [91], [97]–[101]

k Nearest Neighbor (kNN) [45], [91]
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Recently, due to the success of deep neural networks in other
applications, many researchers tackled the dynamic security
assessment problem with such an approach. Classical Feed-
Forward Neural Networks (FFNNs) are used as classifiers to
predict the small-signal stability [61], oscillatory stability [62]
or transient stability [63]; or as regressors to predict the CCT
or damping ratio [22], the CCT and final value of rotor angle
after a fault [64], the load stability margin [65] or a voltage
stability index [66]. In [67], a MapReduce algorithm is used
to parallelise the learning of several networks and predict both
stability status and the transient stability index. In [68], when
the prediction is not credible, time-domain simulations are
used to improve the efficiency and in [69], in the context of
pre-fault assessment, contingencies are first clustered and then
a multi-label neural network is learnt per cluster, to predict the
stability status after the occurrence of each contingency in the
cluster.

Reference [46] proposes to use deep belief neural networks
for voltage stability and another ensemble of neural networks
with random weights to predict first if there will be a voltage
collapse and then, if no voltage collapse is detected, the
transient voltage severity index [26]. Another neural network
approach is the Extreme Learning Machine (ELM) algorithm.
It is fast to train, and thus can be easily updated during
operation. In the literature, ensembles of ELMs are used
mostly for stability classification [19], [29], [32], [35], [56],
[75], [76], or combined with random vector functional links
[31], [33], [77]. It was also used for regression, to predict load
stability margins [78], the fault-induced voltage recovery [30],
[79], and maximum frequency deviation and time [80].

Convolutional Neural Networks (CNNs) have also been
used, in particular for transient stability assessment [49], [54],
[55], [70]–[73]. Reference [74] proposes to represent the
power system state as a (3-channel) image to take advantage
of the convolutional neural network algorithm for small-signal
stability. In [70], a twin convolutional SVM network is used
while in [72] a hierarchical self-adaptive method, with one
CNN per type of features, determines the stability of the
system. In [73], a cascade of CNNs works with time-domain
simulation to improve efficiency for pre-fault assessment. Time
domain simulations are performed one cycle at a time and are
used as inputs of the CNN. If the prediction of the CNN is
credible, time-domain simulations are stopped.

Recently, Recurrent Neural Networks (RNNs) were also
proposed, because of their ability to consider temporal cor-
relations, either with Long Short-Term Memory (LSTM) units
[37], [81], [82] or Gated Recurrent Units (GRU) [83], [84].

More classical algorithms are however still exploited in the
literature. For instance, SVM methods are used for transient
stability [50], [51], [86]–[88] or voltage stability [39], [89].
SVMs are easier to train than neural network models and they
can be used to predict the stability status of the power system
(stable or unstable) or a voltage stability margin index [89].
The parameters of the SVM can be optimised with a grid
search algorithm or particle swarm optimisation [88], [89]. In
order to increase the accuracy of the assessment, in [87], two
SVM models are used, an aggressive and a conservative one.
This allows to predict a third class, called the grey region,
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Fig. 6. Number of papers addressing power system dynamic security
assessment problems per machine learning algorithms

when both models disagree, to indicate when the assessment
is uncertain. Ensembles of SVMs [57], [90] or variants of
the SVM such as core vector machines [15] have also been
proposed to increase the accuracy of the classification.

Tree-based methods are still popular in the power system
literature. A huge advantage of them is their interpretability,
which is important in reliability management. Single Decision
Trees (DTs) are used to predict the stability status of the
system [36], [42], [44], [48], [92]–[94]. In [94], the authors ex-
plore a trade-off between predictive accuracy and interpretabil-
ity. To improve accuracy, ensembles of decision trees such as
Adaboost [27], [97], XGboost [43] and Random Forests [40],
[41], [98]–[101] are proposed. In [101], uncertain predictions
are checked with time-domain simulations. In the European
project iTesla, decision trees are used for online security
assessment. The platform developed within this project for
online static and dynamic security assessment is presented in
[95], [96].

The simple kNN algorithm is used in [45] with bagging to
predict transient stability. Logistic regression, after a stacked
denoising auto-encoder is used in [52] to predict post-fault
stability status. Less common approaches have also been
proposed, such as unsupervised learning with PCA [102] and
semi-supervised learning when few observations are labelled
[19]. In the latter, the ‘Tri-training’ algorithm is used, which
consists in training three models with a small subset of labelled
data and then adding an unlabelled sample to the training set
of a classifier only if the two other classifiers agree.

Figure 6 summarises the number of papers per learning
algorithm for DSA. One can notice that neural network
algorithms have been very popular in the last five years.

2) Emergency control: Instead of predicting the stability
state of the system, data-driven models can be used to choose
an emergency control decision, or to give insight about the
best corrective control actions for the actual situation. Table
IV provides an overview of the publications about dynamic
security emergency control according to the main machine
learning approach used.

Reinforcement learning [16], [103], [104] or adaptive dy-
namic programming [105], [106] are used to improve voltage,
frequency or transient stability. Supervised learning techniques
can also be used. For instance, in [47], the authors train
a decision tree classifier to evaluate transient stability and
thanks to the Fisher linear discriminant, they evaluate the
sensitivity of each generator and load to stability and then
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TABLE IV
ML PROTOCOLS AND SL ALGORITHMS USED FOR DYNAMIC SECURITY

EMERGENCY CONTROL OVER THE LAST FIVE YEARS

Methods References
Reinforcement learning [16], [103], [104]
Adaptive programming [105], [106]
Unsupervised learning [107]
Tree-based algorithms [47], [108]–[110]

Neural networks [111]–[113]

define emergency control actions accordingly. In [111], the
authors use a neural network to assess the generators that need
to be re-dispatched and the loads that need to be shed.

In [107], patterns of unstable dynamic behaviour in the
dataset are identified with an unsupervised learning technique
and then a classifier is used to determine in which pattern the
actual situation falls. This indicates which generators may lose
synchronism to help for emergency control decisions.

In [108], an ensemble of decision trees is used to assess and
control voltage stability. There is one decision tree per possible
combination of control action status (1 or 0, depending if they
are used or not), indicating which control combinations lead
to a secure system. The control actions combination chosen is
the one leading to a secure action with a minimum number of
control devices used. This approach is also used in [109], but
there is first identification of voltage control areas, to reduce
control candidates.

In [112], the authors propose to control a hybrid energy
storage system for load-frequency control. They design an
adaptive control based on a neural network, the design of
which being facilitated by a Hammerstein-type neural network
to identify the storage system. In [110], the authors use
a proximity driven streaming random forest algorithm with
L-index as indices for voltage stability. The algorithm can
determine corrective and/or preventive control actions, such
as additional reactive power injections, and localise critical
nodes, where the system is close to a stability loss.

In the context of transient stability, in [113] a neural
network is used to estimate the gain for a static synchronous
compensator auxiliary controller, that needs to be adjusted
according to the system operation point to obtain the desired
CCT. The gain computation is heavy and thus a neural network
model is proposed to reduce the computational burden.

3) Preventive control: Several approaches have been pro-
posed in the literature for preventive control regarding dynamic
security. Table V provides an overview of the publications
about dynamic security preventive control according to the
main machine learning approach used.

The first approach consists in using machine learning to
predict the preventive control scheme. For instance, in [114],
the authors propose to use multi-objective reinforcement learn-
ing for short-term voltage stability, in order to minimise both
voltage deviation and control action cost.

The second approach consists in identifying candidate con-
trol actions for preventive control. In [115], the authors pro-
pose a preventive control scheme by rescheduling generating
units. First, they assess the transient stability of the system

TABLE V
ML PROTOCOLS AND SL ALGORITHMS USED FOR DYNAMIC SECURITY

PREVENTIVE CONTROL OVER THE LAST FIVE YEARS

Methods References
Reinforcement learning [114]

SVM [34], [38], [115]
Neural networks [116]

Tree-based methods [117]–[121]
Linear models [122]

with a hybrid method based on a SVM model and time-domain
simulation. Then, if the system is unstable, they compute from
the SVM model the sensitivity of each generator to a transient
stability assessment index (derived from the SVM model) to
rank the generators and select the ones that are more effective
for improving the stability. In [38] the authors exploit SVMs
for determining the coherency of generating machines in the
context of transient stability. The purpose is to rank generators
according to their vulnerability, based on a transient stability
index, to facilitate preventive control (rescheduling of gener-
ation). Finally, in [32], the authors use the Relief-F feature
selection method to identify critical generators modifying the
security status of the operating condition. These generators are
then considered as candidate control variables for preventive
control. A bit different, but still to help preventive control,
Mokhayeri et al. propose a method based on decision trees
for detecting the apparition of islands [117].

Another main approach, quite recent, consists in building
models of dynamic security assessment and then extracting
security rules from these models that can be embedded in op-
timisation problems, to define control actions considering dy-
namic security. Indeed, classifiers built with machine learning
contain knowledge about stable and unstable regions. Cremer
et al. exploit decision trees to embed the rules determining the
output of the classifier in a decision-making problem (i.e. an
OPF) [118]. This allows to compute control decisions consid-
ering the stability boundary. In their paper, the authors present
the challenges of this approach, which are the computational
complexity to build the database and the accuracy of the
such sample-derived rules. This approach is further developed
in [119], where learnt condition-specific safety margins are
proposed to be incorporated in a decision-making program.
These margins allow, according to the authors, to improve the
risk/cost balance. An ensemble of decision trees (Adaboost)
is used to perform probabilistic security control.

In [120], the authors propose to build with machine learning
line flow constraints to be incorporated in a market clearing
program (under the form of a SCOPF) to improve both small-
signal stability and steady-state security. They use a decision
tree-based classifier to extract knowledge. The decision trees
rules consist in conditional line transfer limits, that can be
embedded in the SCOPF in order for the operator to take
decisions already in line with the small-signal stability margin.
An extension of this work to solve an AC-SCOPF instead of a
DC-SCOPF is proposed in [121], while still incorporating N-
1 security and small-signal stability with decision tree-learnt
rules. In [116], the authors are solving an OPF considering
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transient stability constraints. An artificial neural network
approximating the CCT of a fault is embedded in the OPF
formulation. This guarantees that the preventive decisions will
be such that the CCT of all considered faults is greater than a
defined minimum value. A bit different but still embedding
a machine learnt model in an optimisation program, the
authors of [34] build a two-stage SVM model to determine
the transient stability region that is embedded in a decision-
making program to determine preventive control actions. The
final transient stability-constrained OPF being non linear and
non convex, the authors propose to solve it with particle
swarm optimisation. Finally, in [122], the authors propose to
automatically learn operating rules for a stability constrained
system.

D. Validating and maintaining a machine learnt model

In this section, we present first how researchers in relia-
bility management proposed to deal with the frequent system
changes in a power system and then what can be done when
data is missing or erroneous.

1) Dealing with system changes: System changes such as
topology changes are common in power systems but they
can impact the quality of prediction of the machine learnt
models. To overcome this issue, several papers propose to
regularly retrain or update the model with new data acqui-
sition. Regarding neural network models, in [65], the model
is updated with misclassified samples when a certain number
of errors occurred. Online sequential ELM models were also
proposed, as in [32], [80], because they are fast to train
and can be updated regularly. Another approach is to use a
recurrent neural network. In [83], an online monitoring system,
consisting in a stacked GRU based recurrent neural network, is
shown to be able to adapt to topology change. Concerning tree-
based methods, Yang et al. update decision trees in real-time
using an online boosting method [108], while [97] presents
a very fast decision tree system based on Hoeffding trees
to quickly update online an Adaboost ensemble of decision
trees. Furthermore, Tomin et al. propose the proximity driven
streaming random forest algorithm that can independently and
adaptively change the model [110].

Another solution proposed in the literature is active learning
[71], [123]. For instance, in [123], the authors propose an
active learning solution that consists in updating the model
with real samples when the model prediction is not consistent
with the actual system condition. More specifically, they train
and update the model with data for which the prediction
contradicts with the actual stability state of the system.

2) Missing or erroneous data: During online assessment or
control, when exploiting PMU data, many events can occur
such as PMU malfunctioning, time delays, communication
loss, noise in the measurements and loss of data packets.
Therefore, it is important to develop models able to deal with
these missing data or erroneous measures. When erroneous
measure are outliers, they can be detected, for example by
using the Z-score algorithm [65]. Concerning missing data or
detected erroneous measures, it is possible to estimate their
values, either by interpolation techniques such as polynomial

curve fitting technique [65] or by using machine learning
techniques such as an ensemble of extreme learning machines
and random vector functional links [33] or the emerging deep
learning technique called Generative Adversarial Networks
(GAN) [77]. Instead of replacing missing data with estima-
tions, some authors try to build a model robust to incomplete
measurements by extending the training database with samples
containing incomplete measurements [86].

VI. RECENT WORKS IN SSA & SSC

The methodology to exploit machine learning for static
security assessment and control is similar to the one used
for dynamic security, although the input variables and target
outputs vary in function of the application. Therefore, we
directly present how ML is applied to solve the different static
security assessment and control problems. We organised this
section considering the power system tool that is considered
to be replaced or enhanced with machine learning techniques.
In particular, we consider power flow computation, optimal
power flow solving, and unit commitment optimisation.

A. Prediction of power flows

Table VI sets out the main target outputs of the ML methods
used in the context of static security assessment, to replace
or enhance power flow computations, the exploited learning
algorithms, as well as their corresponding references.

Some papers studied the possibility to replace the power
flow computation by a proxy, for a faster static security
assessment. For instance, [124] uses a deep neural network
to estimate power flows very quickly. The authors propose
to exploit it to help operators in the control room to choose
remedial actions such as network topology modification after
a contingency. Improving their previous work, they introduced
guided dropout to enable the estimation of flows for a range
of power system topologies [125]. The guided dropout method
uses some neurons that are only activated if the corresponding

TABLE VI
MAIN ML APPROACHES FOR POWER FLOWS PROBLEMS OVER THE LAST

FIVE YEARS AND CORRESPONDING REFERENCES

Predicted quantities Algorithms References
Power
flows

Neural networks [124]–[129]
SVM [130]

(Composite)
Security indices

Neural networks [131]–[133]
LASSO [134]

Security
status

Tree-based methods [135]–[140]
SVM [141], [142]

Security
margin

Neural networks [143], [144]
SVM [145]

Tree-based methods [146]

Critical
areas

Unsupervised learning [18], [147]
Neural networks [148]

SVM [149]
Transmission

reliability margin
Neural networks [150]

Total
transfer capability

Neural networks [151]
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line/breaker is disconnected, and the authors show that with
this approach, a proxy trained with only N-1 events can
generalise to N-2 events. This proxy is fast, and can be used to
rank (double) contingencies and estimate the risk of a grid state
[126], [127]. Finally, using historical data, a new type of neural
networks for predicting line flows in case of topology change
is presented in [128], where the authors introduce the Latent
Encoding of Atypical Perturbation (LEAP net) architecture, so
as to further improve the generalisation to unseen topologies.

Another proposal to predict line flows is to use SVMs with
linear kernels [130]. The proxy of power flows is used in
the context of designing a reserve policy, for better reserve
scheduling and allocation. In [129], a proxy of load flow
computation is built with an adaptive neuro-fuzzy inference
system to predict the voltage magnitude at all buses.

Load flow computations are also used to evaluate security
indices, indicating violation of transmission constraints, or
to evaluate composite security indices, indicating violation
of both bus voltage and power line transmission constraints.
Computing these indices can help the operator to rank the
considered contingencies according to their severity. In [131],
an artificial neural network is used to predict a security
index for each considered contingency. In [132], Radial Basis
Function neural networks are used to predict the composite
security index directly without computing load flows for each
contingency, in order to rank the contingencies. Features are
selected based on a Single Ranking and Correlation Coefficient
approach. In [133], the authors propose a neural network
trained with PSO, while, in [134], they use a LASSO (Least
Absolute Shrinkage and Selection Operator) method.

On the other hand, some papers assess the static security of
the system with security labels. For instance [135] uses deci-
sion trees and random forests for static security assessment.
[139] uses a deep auto-encoder to extract features and proposes
an objective-based loss function to learn the auto-encoder,
in such a way that it minimises the misclassification of
unstable observations. Multiway decision trees were exploited
in [140] to determine if the system is secure or insecure
while considering system topology. Furthermore, Stratified
Random Sampling was used to obtain the same proportion
of secure and insecure labels. In [141], the authors exploit
the SVM approach to classify contingencies as secure, alarm
or insecure and in [136], the authors test four decision tree
algorithms to classify the N-1 contingencies as secure or
insecure. Both papers also apply a sequential search algorithm
for feature selection. Finally, in [142] the authors propose
several Adaboost classifiers with SVMs as weak learners to
evaluate the static security state of the system and then evaluate
in case of insecure state the type of condition violation.
Feature selection is performed based on class separability and
correlation coefficient indices, while the class imbalance is
corrected using a SMOTE method.

In the context of static voltage stability assessment, several
load flows may be run to determine the voltage collapse
point and thus the voltage stability margin. In this context,
Fan et al. [152] propose a feature selection method based on
the maximum relevance minimum redundancy algorithm. The
authors repeat this procedure several times, starting with a

different feature each time, to obtain an ensemble of different
subsets of features. Then they perform curve fitting for each
subset in order to infer a relation between the features and
the voltage stability margin and they average the results to
obtain one prediction. In [137], the authors use PMU data for
online voltage stability assessment and deal with the problem
of frequent model update. Frequently updating the learning
model is useful to take system changes into account but it
can take time. To tackle this issue, the authors propose a
random forest algorithm, where only part of the decision trees
are updated each time instead of the whole model. They
use a weighted majority vote for the final prediction. They
also perform variable selection based on variable importances,
a by-product of random forest algorithms. Reference [145]
exploits the SVM learning algorithm (with a GA to optimise
the parameters of the SVM) to estimate the stability margin for
a given contingency. The final purpose is to estimate the static
voltage security risk. Reference [143] uses a neural network to
predict a unified voltage stability indicator and [144] exploits
a Radial Basis Function network to estimate a probabilistic
insecurity index. Finally, in [146], the authors compare two
feature selection methods, Relief-f and participation factor, to
predict the static voltage security margin with a decision tree.
They show that both methods are equivalent.

In [138], a hybrid approach of random forests and tree
boosting is used for the steady-state security analysis. They
consider four classes, normal, alarm, emergency correctable
and emergency non correctable.

Machine learning approaches can also be used for detec-
tion of critical areas. In [148], deep learning is used for
the detection of security weak spots using spatio-temporal
and meteorological data. In [147], the authors exploit the
unsupervised learning algorithm called k-means to identify
voltage stability critical areas, while in [149] SVMs are used to
detect these weak areas and then assess the voltage stability of
each area. Reference [18] proposes to exploit an unsupervised
learning technique to segment a power system into zones,
helping the operators managing the grid.

Finally, to help security assessment, [150] uses neural
networks to estimate the transmission reliability margin. On
the other hand, [151] proposes a method to predict total
transfer capability (available amount of power that can be
transferred on the tie-lines), which is an ensemble model with
adaptive hierarchical GA-based neural networks. A hybrid
feature selection based on Maximal Information Coefficient
(MIC) and nonparametric independence screening is used. The
maximal information method is used to reduce redundancy
between features by computing the MIC between two features
and eliminating one of them if the MIC value is greater than a
given threshold. Then the nonparametric independence screen-
ing evaluates the correlation between each resting feature and
the target output, to keep the ones with the highest correlation.

B. Prediction of optimal power flow features and outcomes

A more recent application scope of machine learning for
reliability management is to help out in solving OPF prob-
lems. OPF is extensively used by the operators for operation
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TABLE VII
MAIN ML APPROACHES TO SOLVE OPF PROBLEMS OVER THE LAST FIVE

YEARS AND CORRESPONDING REFERENCES

Predicted quantities Algorithms References

Decisions
Neural networks [153]–[155]

Tree-based methods [156], [157]
Related

costs
Several

algorithms
[158]–[160]

LOL
status

Neural networks [161], [162]

Features
of the OPF

Neural networks [163], [164]
Statistical learning [165], [166]
Linear regression [167]

planning, to find optimal decisions considering physical and
operational constraints. They are also solved repeatedly during
operation. However these problems are non linear and non
convex and generally large-scale. Furthermore, close to real-
time, they must be solved within a short period of time,
considering the uncertainties (e.g. demand and renewable gen-
eration). Solving OPF problems is thus still a computational
challenge, that has been recently addressed with the help of
machine learning techniques. In the literature, some papers
approach this problem by directly predicting the decisions or
related costs of an OPF while others try to learn features of
the OPF, in order to enhance its solving. To summarise the
different approaches and the exploited learning algorithms, the
references discussed below are sorted in Table VII.

Most papers predicting directly the outputs of an OPF
predict the decisions given by the program, which are usually
generator setpoints (generator active power and voltage magni-
tude). For instance, in [156], the authors predict the generation
dispatch, using random forest models. More recently, several
papers proposed to exploit Deep Learning (DL) for this pur-
pose. Pan et al. [153] use deep learning to predict the decision
of a DC-OPF while in [154], [155] the authors predict the
decision of an AC-OPF. In all these papers a post-processing
method ensuring the feasibility of the solution is described. In
[153], if the predicted solution is not feasible, the authors solve
an optimisation problem to find the feasible solution closest
to the predicted one. In [155], the output of the DL model is
constrained with a sigmoid function to adhere to active power
generation and voltage magnitude constraints and a power flow
problem is then solved based on the predictions. Finally, in
[154], the authors take advantage of previous optimal power
flow solutions computed at previous time steps as well as a
dual Lagrangian method to improve the solution and enforce
physical and operational constraints.

Rather than predicting the decisions obtained from an OPF,
some papers [158]–[160] are interested in the (optimal) cost of
operation related to the decisions. In these three papers, several
learning algorithms are tested and compared to predict the cost
of real-time operation obtained from an AC-OPF [158] and a
DC-SCOPF with N-1 security contraints [159], [160].

Another application of OPF is determining if the demand
could be met at all buses for given operating conditions.
Coupled with Monte-Carlo simulations to generate many op-

erating states, it can help assess reliability of the system with
reliability indices such as Loss Of Load Probability (LOLP).
In [161], [162], the authors use an RBF neural network to
predict if the demand is met at all buses. This allows them
to estimate LOLP indices without solving an OPF problem
for each state, accelerating the reliability assessment of the
system.

With a different approach, Baker proposes to learn the
outputs of an AC-OPF problem with a random forest but,
instead of directly using the predictions of the learnt model,
she proposes to exploit the predictions as a warm-start point
of the AC-OPF [157]. The author shows on some test systems
that it leads to a faster convergence time compared to other
warm-start methods.

To reduce the computational burden related to the OPF
solving, some papers [157], [163]–[167] propose to exploit
machine learning to reduce the search space of the OPF
problem and thus accelerate the resolution. In [165] and
[166], the authors propose a method to solve a stochastic DC-
OPF, considering uncertainties. This DC-OPF must be solved
within a short time period and one proposed approach is to
pre-define an ensemble control policy, before the realisation
of uncertainties. Then, in real-time, one has to find with
exhaustive search the optimal control policy for the realisation
of uncertainties, instead of solving the full OPF in real-time.
To define the ensemble control policy, one can search for all
the bases (i.e. the sets of active constraints, which are all
satisfied with equality for a given solution) of the DC-OPF,
given the distribution of uncertainties, and then to each set
associate an affine policy. When a scenario is realised, one
can look for the set of active constraints corresponding to
this scenario and then apply the corresponding affine policy.
In order to find an ensemble control policy more efficiently,
[165] proposes to leverage statistical learning to identify the
most important sets of active constraints of the real-time DC-
OPF, given the distribution of uncertainties; the most important
sets being the ones with a higher probability to be optimal
for the OPF. By computing affine control policies for only a
subset of bases, the authors reduce the computational burden
in real-time, allowing to solve these parametric programs more
efficiently online.

Following these works, Deka et al. [164] exploit neural
networks to learn a mapping between realised uncertainties
and the corresponding optimal set of active constraints, al-
lowing to enhance even more the computational efficiency of
the approach. The problem is tackled differently by Ardakani
and Bouffard in [163]. Instead of predicting the set of active
constraints, they propose to predict with an artificial neural
network the set of umbrella constraints, which corresponds to
the set with the minimum number of constraints such that if
one constraint is removed, the set of feasible solutions of the
original OPF problem is modified. Solving the OPF with only
the umbrella set of constraints may reduce significantly the
solution time of the OPF. Finally, Mezghani et al. propose
a different approach to deal with short-term uncertainties
when solving OPF. They use the scenario-based approach,
where power flows equations are solved for a number of
scenarios sampled from the distribution of uncertainties and
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TABLE VIII
MAIN ML APPROACHES TO SOLVE UNIT COMMITMENT (UC) PROBLEMS

OVER THE LAST FIVE YEARS AND CORRESPONDING REFERENCES

Predicted quantities Algorithms References

Decisions
kNN [168], [169]

Reinforcement
learning [170]–[174]

Features
of the UC

kNN [175]

they propose to exploit machine learning to reduce the number
of scenarios needed to solve the problem while keeping an
accurate uncertainty quantification [167].

C. Unit commitment prediction

The unit commitment problem consists in deciding in ad-
vance which generating units should be on or off for the
time horizon considered. Accelerating the solution of a unit
commitment problem is useful, especially in applications for
which a large number of unit commitment problems must be
solved. In order to summarise this section, Table VIII presents
the ML approaches used for solving the unit commitment
problem as well as the corresponding references.

For instance, in [168], the authors need to quickly evaluate
the outcome of short-term operation, for a long-term planning
purpose. They propose to use kNN as a proxy of short-term
operation and thus the predicted unit commitment schedule is
the schedule in the learning database with operating conditions
closest to the one evaluated. This proxy can be exploited for
maintenance scheduling, by using short-term operation proxies
to quickly evaluate the impact of a maintenance decision on
power system operation [169]. Managing the grid at different
time scales is a complex task. To reduce the computational
burden when considering different time scales for decision-
making (for instance day-ahead and real-time), Dalal et al.
exploit the reinforcement learning approach [170].

The approach for solving OPF can also be applied for unit
commitment problems. For instance, in [175], the authors pro-
pose to reduce the dimensional complexity of a transmission-
constrained unit commitment problem by learning the con-
gestion status of transmission lines and disregarding lines that
will not become congested; i.e. removing redundant or inactive
constraints. The learning algorithm chosen is also the kNN.

Finally, the unit commitment problem can also be addressed
with a reinforcement learning approach. In [171], the authors
exploit reinforcement learning to choose a unit commitment
and economic dispatch in a hierarchical way, while minimising
operation cost or CO2 emissions; and in [172] the unit com-
mitment problem is modelled as a Markov decision process.
The unit commitment problem can also be defined as a multi-
objective problem, for example to both minimise operating
costs and maximise system reliability [173] or minimise both
operation costs and wind curtailment [174]. To solve this
difficult problem, both papers exploit reinforcement learning
coupled with particle swarm optimisation.

VII. OTHER RELATED APPLICATIONS

In this section, we want to shortly point to three other areas
of application where machine learning has been proposed as a
tool, and which are related to power system reliability manage-
ment. For each category, we briefly explain the nature of the
application and its relation with reliability management, and
then point to some recent survey/review or tutorial publications
discussing machine learning in the context of the topic.

Fault detection, classification and localisation applications
consist respectively in detecting, identifying and localising
faults or disturbances in a power system. These methods
can help to improve significantly the reliability of power
systems by allowing faster and/or more selective reactions in
the context of protections, emergency and corrective control.
Over the years, several machine learning approaches have been
proposed in the scientific literature to address these problems,
and we refer the interested reader to [176], [177] for an
overview of recent literature on this subject.

Power system operation relies heavily on the availability in
the control centre of an accurate and timely characterisation of
the system state. State estimation refers to a set of methods and
algorithms exploiting real measurements and event recordings
to build up such a characterisation in real-time, in a way that
is robust to noise, gross errors, modelling uncertainty and
telecommunication delays and errors. The resolution of this
problem can be enhanced by leveraging machine learning. In
particular, in the context of active distribution systems man-
agement this may be useful, since in this area state estimation
is not yet a well established technology. We refer the reader
to [178], [179] for further information about ongoing works
in these directions.

Finally, load or renewable energy production forecasting
is an extremely important and multifaced class of problems
that becomes more and more important for suitable decision
making in operation and operation planning of electric power
systems. Many ML methods have been proposed to improve
the quality and the scope of the point forecasts of individual
quantities, to model spatio-temporal dependencies, and to
provide ensemble forecasts [180]–[182].

VIII. DISCUSSION

In this paper, we reviewed recent works tackling electric
power systems reliability assessment and control problems
with various machine learning techniques. Indeed, a large in-
crease in the number of publications in that particular field was
observed recently. Although most papers deal with reliability
assessment, more and more papers propose new applications
for reliability control, such as solving OPF problems with the
help of supervised learning or using reinforcement learning
for the design of closed loop control schemes.

However, despite the great potential of these techniques,
some challenges still must be faced before machine learning
becomes common practice for reliability assessment and con-
trol in the electric power system industry. We detail hereafter
some challenges that we believe should be addressed by further
research and development activities.
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A first challenge concerns the acceptance of these new
methods by the human users (operators and planners) in
the industry. The traditional approaches used in practice for
reliability management are model-based and take explicitly
into account well-known physical laws. Given the practical
consequences of a failure in assessment or control, moving
towards a data-driven approach is difficult. There is definitely
a need to convince the field experts that these methods
are actually efficient and reliable. First, approaches using
machine learning should be used in parallel with the more
traditional approaches, to allow the human experts to assess
their accuracy and usability; subsequently both approaches
could be used in symbiosis, where traditional approaches
would only be applied when the machine learnt predictors
are not confident enough in their predictions. Furthermore,
we believe that anyhow interpretability of the machine-learnt
models is something that could not be neglected in future
research. Another challenge comes with the fact that electric
power systems are constantly changing. Therefore, ensuring
the adaptability and proposing ways to maintain over time
the quality of the machine-learnt models used for assessment
and control is also a requirement for the practical acceptance
of machine learning applications to reliability management of
electric power systems.

With the rise of data-driven methods, vulnerability of
machine learnt models against man-crafted adversarial data
must also be considered [183] and techniques to detect these
adversarial examples should be developed. More broadly, an
important aspect not to be neglected is the study of guarantees
on the performances of machine learning algorithms, in par-
ticular to avoid unexpected or harmful behaviour [184]. This
is necessary for system operators to trust new proposals of
machine learning for reliability management.

Beyond these current practical challenges discussed here-
above, we also see many interesting future research directions
in the field of machine learning for reliability management of
large scale systems of systems such as electric power systems.

As a first direction for future research, we believe that
reliability databases and evaluation protocols should be built
and made publicly available. It would allow to more easily
compare the various methods proposed in the literature and
would help researchers in that field to advance more rapidly.
Similarly, data shared by the industrial system operators would
also help the research community, but other types of problems
such as privacy, safety, and commercial sensitivity, are major
obstacles for letting this happen in a near future.

Another direction of research, quite new, that we expect
to be more developed in a recent future, is the use of
machine learnt models, that are called proxies, to model the
behaviour of other parts of the overall multi-energy system.
These can be smaller subsystems or other large-scale systems
interacting with the managed one, such as distribution grids,
other interconnected transmission systems, gas transportation
systems, electric vehicle charging infrastructures, district heat-
ing systems, etc. One can also consider the integration of
different time scales for sequential decision-making, and then
use for instance proxies modelling the real-time operation in
order to enhance the decision making process in short-term

operation planning, or proxies of post-contingency behaviour
of emergency control systems to be exploited in the context
of preventive mode dynamic security assessment.

To conclude, we think that the proposed methods are of
great potential to improve reliability assessment and control
and we expect more and more applications, both in research
and in industry, to be developed while exploiting machine
learning techniques. Finally, we believe that the methods
mentioned and the identified challenges and future directions
of research are relevant for many other large scale systems
and infrastructures, even beyond energy systems, such as
distribution grids, micro-grids and multi-energy systems.
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