Modeling present-day spatial and seasonal variability of carbon dioxide in surface waters of the Southern Bight of the North Sea

Gypens N., A.V. Borges, C. Lancelot, G. Lacroix

ECOLOGIE DES SYSTEMES AQUATIQUES

Southern Bight of the North Sea

-nutrient river loads

- What is the spatial and seasonal distribution of surface pCO₂?
- What the annual role as CO₂ sink or source?
- How do this vary between years?

• What the role of carbon and nutrient river loads? Does it change the sign of the annual CO_2 source/sink?

Mathematical tool

Surface Forcing: - 6h meteo RF (UKMO) -Weekly SST (BSH) -Monthly atm. CO₂ <u>Rivers</u>: Actual daily flow & (bi-)monthly carbon and nutrient loads

Methods

<u>Grid</u>: - 5.8 km long. x 4.6 km lat. - 5 σ layers <u>Period:</u> -1991-2004 (3y spin up) ASLO 2009 Nice, 27 January 2009

Model validation

Important spatial and seasonal variability of surface pCO_2 : from 100 ppm to 600 ppm

Surface pCO₂ (Winter)

•Surface waters are close to atmospheric pCO₂ except in the vicinity of river mouths characterized by high oversaturation.

•Low primary production, dominance of organic matter degradation in the nearshor water

•Control by temperature in offshore waters

Surface pCO₂ (Spring)

Increase of primary production

- •undersaturation except in the Thames plume
- •Biological control>>>Temperature
- •Dominance of primary production to organic matter degradation

Surface pCO₂ (Summer)

•Decrease of primary production and increase of heterotrophic activities

- •Surface waters oversaturated in most of the domain
- •Close to or below atmospheric CO₂ near shore where autotrophic activities stay significant

Results

•Biology>>Temperature

Surface pCO₂ (Autumn)

Reference (with biology)

Without biology (with temp. variation)

•Decrease of heterotrophy

•Oversaturation in the whole domain with highest values near the river mouths (especially Rhine and Scheldt river)

Results

•Temperature control excepted in nearshore coastal waters

2004 annual air-sea CO₂ fluxes

Spatial variability:
sources near estuaries
zero or moderate sink nearshore and offshore

Spatially integrated flux (mol m⁻² y⁻¹)

Western Channel

-0.2

Southern Bight -0.1

Belgian waters 0.2

Important interannual variability of annual air-sea CO₂ fluxes

•From –0.2 to 0.2 molC m⁻² y⁻¹ •No trends •From –0.4 to 0.1 molC m⁻² y⁻¹ •Sink tends to decreases

Results

•From –0.9 to 0.2 molC m⁻² y⁻¹ •Shift from sink to source

No relationship between annual air-sea CO₂ fluxes variability and annual SST

Increase of Atlantic water contribution increases the CO₂ sink in the Western Channel

Increased primary production increases (decreases) the annual sink (source) for CO₂ in the Southern Bight and in the Belgian waters. The effect in more pronounced in the Belgian waters du to nutrient river loads.

2004 annual air-sea CO₂ fluxes

Impact of C and nutrient river loads

Anomaly of the annual air-sea CO₂ fluxes: Reference-Scenario

Southern Bight

ASLO 2009

Nice, 27 January 2009

Belgian waters

• Important spatial and temporal (seasonal and interannual) variability of surface pCO_2 and air-sea CO_2 fluxes

- Western Channel
 - Annual air-sea CO₂ flux close to zero

- Interannual variability related to the importance of Atlantic water masse contribution

Southern North Sea and Belgian waters

-Annual sink for atmospheric CO₂ -Decrease of the magnitude of the sink from 1994 to 2004 related to primary production and nutrient river loads

Sigle carboocean

CARBOOCEAN

Belgian Science Policy

+ FNRS???

AMORE 3 (Advanced **Mo**deling and **R**esearch on **E**utrophication)

IAP TIMOTHY (**T**racing and **I**ntegrated **Mo**deling of Natural and Anthropogenic Effects on **Hy**drosystems (TIMOTHY) Case study:The Scheldt River Basin and Adjacent Coastal North Sea