A NEW CHEMOSTAT SYSTEM TO INVESTIGATE COMBINED TEMPERATURE AND CO₂ EFFECTS ON MARINE PHYTOPLANKTON SPECIES

In order to better understand the consequences of global change on marine plankton and biogeochemical cycling we established a new continuous culture facility that enables the investigation of combined temperature and CO₂ effects. The facility consists of five independent chemostats to cultivate algae in physiological steady-state under a controlled temperature, p_{CO_2}, nutrient and light regime. Each chemostat is surrounded by a water jacket that controls temperature within a deviation of 0.2°C. In the incubators, the cultures are continuously aerated with gas of preset CO₂ concentrations. Distinct p_{CO_2} conditions, ranging from 0 to more than 5000 μatm (± <1.8%) can be created using a two-step CO₂ regulation system. To test the stability of the system and to assess the suitability for investigation of temperature and CO₂ effects on phytoplankton, we followed the growth of a calcifying strain of *Emiliania huxleyi* under three different CO₂ concentrations (180, 380 and 750 μatm) and two different temperatures (14°C and 18°C) simulating glacial, present day and future climate conditions. We will discuss the suitability of this system to investigate different scenarios of ocean warming and acidification.