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Abstract—This paper considers the integration of grid flexibil-
ity in the chance-constrained power system operation planning
framework. The particular challenge addressed comes from
the discrete nature of the respective controls, such as breaker
positions defining the topology of the network. We consider
a template short-term operation planning problem statement,
seeking to enable N-1 secure operation over a distribution of
power injections. We use a scenario-based approach to determine
a planning decision and rely on theoretical results to compute
an upper bound on the probability of being able to meet the
N-1 criterion in operation. We also estimate the actual value
of this probability through Monte Carlo simulation. Our results
indicate that both the bound and the actual value consistently
decrease when increasing the size of the considered scenario set,
even if the bound is quite conservative. Moreover, we showcase
that further from economic efficiency, grid flexibility can lead to
gains in operational reliability.

Index Terms—chance-constrained planning, grid flexibility,
scenario-based methods, optimal power flow under uncertainty.

I. INTRODUCTION

In the energy transition era, managing power injection un-
certainty is a major research theme on the fundamental optimal
power flow (OPF) [1] problem. While progress is made in the
field of robust optimization, extreme conservativeness is typ-
ically too costly to afford. Chance-constrained optimization,
seeking to ensure that the grid shall remain functional with
high enough probability, is a more general approach allowing
to avoid such economic burden while holding a desirable
explicit guarantee of operability.

To date, most notable contributions to the chance-
constrained OPF (CC-OPF) literature invoke linearity and/or
convexity modeling assumptions on the power system, as per
the properties of respective solution approaches. The works in
[2], [3] adopt the linear DC power flow approximation and the
convex SDP relaxation respectively to employ the ‘scenario-
approach’ from [4] while ensuring the probability of achieving
N-1 security. Reference [5] exploits the linearity of DC power
flow to analytically reformulate individual chance-constraints
expressing the system operational limits, while in [6] this
approach is tested in the AC context by linearizing the power
flow model around a forecasted operating point (i.e., assuming
that the impact of uncertainty on the power flows is linear).
Sundar et al. [7] introduced a comprehensive unit commitment
framework taking into account injection uncertainty and N-
1 contingencies. The reformulation approach as per [5] is

invoked to handle chance-constraints on power flows and
reserve adequacy. Finally, reference [8] adopts the non-convex
AC-QP physical model while evaluating only a posteriori the
constraint violation probability, on the basis of the theoretical
results introduced in [9].

Our research work is motivated by the fact that while grid
flexibility (e.g., topology changes, phase-shifting transformers,
etc.) is indispensable to modern power system operation, dis-
crete power flow controls remain outside the realm of the state-
of-the-art of chance-constrained power system operational
planning. With this in mind, we focus on a short-term power
system operational planning problem under injection uncer-
tainty, subject to N-1 security constraints and while explicitly
modeling discrete grid flexibility. Our goal is to develop
an efficient chance-constrained framework for tackling power
systems planning problems with such features. As a first step,
in this paper we seek to interpret in a power systems context
the theoretical result from [10], providing an a posteriori upper
bound on the constraint violation probability implied by the
solution of a scenario-program. More specifically, we explore
the potential to attain theoretical probabilistic guarantees of
relevant order of magnitude and the practical substance of said
guarantees for power system operation planning applications.

To do so, we study a representative set of operation planning
scenario-program instances, progressively analyzing the effect
of the size of the scenario set under consideration and the
availability of grid flexibility on the probability of feasible
N-1 secure system operation. For each solution instance, we
compute the theoretical constraint violation probability upper
bound as in [10] and we estimate the actual constraint violation
probability by means of Monte Carlo simulations. We find
that, for the problem under consideration, the theoretical upper
bound values appear conservative with respect to the actual
values. Moreover, we also find that, while reducing economic
cost, using grid flexibility implies a greater probability of
achieving N-1 secure power system operation.

The remainder of this paper is organized as follows. Section
II describes the power system operation planning problem
under consideration while the algorithmic framework devel-
oped to facilitate our studies is presented in section III. The
study results are introduced and discussed in section IV. We
conclude the main body of the paper with section V, while also
discussing the outline of an iterative algorithmic approach,
towards solving chance-constrained operation planning with
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discrete controls on grid flexibility. Finally, the paper appendix
includes the mathematical formulation of the scenario-program
under consideration.

II. PROBLEM DESCRIPTION

We consider the mission of planning to enable the secure
operation of the system for a single forthcoming period under
uncertainty on the nodal power injections/demands and on the
occurence of transmission component outages. More specifi-
cally, to achieve secure operation with (high) probability, we
sample scenarios of nodal power injections/demands i.i.d. from
a given probability model, and the scenario-program aims
at identifying minimum cost operational planning decisions,
such that for all gotten scenarios the system can be operated
while complying with the N-1 security criterion. The resulting
problem formulation is the scenario-based counterpart of the
robust formulation in [11].

To model operation seeking to comply with the N-1 security
criterion, we represent both preventive and corrective control
stages. The former stage responds to the realization of the
true nodal injections while the network remains intact, and,
given such realizations, the latter responds to the occurrence
of a transmission element outage. At both these stages, we
explicitly model closed-loop controls as in (i.) generators
balancing the mismatch between their dispatch and realized net
load as prescribed by automatic generation control (AGC) par-
ticipation factors, and (ii.) phase-shifting transformers (PSTs)
injecting phase-angle differences as per rule-based operating
principles1. In corrective mode, we consider that the operator
may adapt the network topology through opening/closing bus
splitting breakers, with a possible limit on the admissible
number of simultaneous actions.

We define the task of the operational planner to find first-
stage decisions, i.e. a minimum cost ‘base-case’ generation
dispatch, AGC participation factors, and a ‘base-case’ network
topology, while jointly anticipating (a.) power injection scenar-
ios, and, (b.) network component outages, and, (c.) the action
of closed-loop controls, and, (d.) the recourse topological that
could be carried out by the operator in post-contingency mode.
The set of the problem constraints includes,

• bounds on AGC participation factors;
• for all injection scenarios:

– generation lower & upper bounds;
– for the intact network and all credible component

outages:
∗ nodal power balance & power flow ratings;
∗ disjunctive inequalities expressing the operating

modes of PSTs;
∗ disjunctive inequalities modeling the position of

bus splitting breakers;
∗ connectivity constraints enforcing that no part of

the system is islanded;

1As detailed in §III.C of [11] and the appendix of this paper.
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Fig. 1. Algorithmic framework overview

– coupling constraints limiting the number of admissi-
ble breaker position changes between the preventive
and any corrective stage.

Adopting the linear DC-power flow approximation the
aforementioned problem can be cast as a Mixed-Integer Lin-
ear Programming (MILP) problem, the detailed statement of
which is presented in appendix B.

III. ALGORITHMIC FRAMEWORK

This paper concerns the practical interpretation of the
theoretical results from [10] in a power systems operational
planning context. The results in [10] provide, under very loose
conditions, upper bounds on how well the optimal solution
(u?N ), gotten from of a scenario-program with N scenarios
i.i.d. along a certain probability distribution, generalizes to
other scenarios drawn according to the same distribution.

To this end, [10] considers the notion of support subset
of the scenario-program, i.e., a subset of the full set of N
scenarios that would yield the same solution (u?N ). They show
that if we can find a support subset of k scenarios then the
probability that (u?N ) is infeasible for independent scenarios
gotten from our generative model is upper bounded2 by

ε(u?N ) =


1, if k = N,

1− N−k

√
β

N(Nk)
, else.

(1)

For a given value of N , the smaller k the smaller this bound;
conversely for a given value of k, the larger N the smaller
the bound. The smaller β, the larger the bound; however the
influence is not very strong, so that in practice one can use
quite small values of β (see [10], for further details).

With this in mind, we developed an algorithmic framework
that targets the identification of both the optimal solution of
a given scenario-program as well as an as small as possible
support subset of it.

A. Overview

The overarching structure of our framework is illustrated
in Fig. 1. In a first forward-pass, we start with an empty

2Here 1 − β is a confidence level, meaning that the upper bound will be
satisfied for any given problem for a proportion of at least (1 − β) of the
scenario sets of size N that could be obtained by sampling i.i.d. from the
target distribution.
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scenario subset and grow its members while updating 1st-
stage decisions, until no other constraint violating scenario
can be identified. Since the objective function only depends
on 1st-stage decisions, the termination of this step returns the
optimal solution to the scenario program under consideration.
Moreover, the subset of injection scenarios progressively fil-
tered to identify the said optimal solution is also a support
subset to the scenario-program under consideration. However,
it remains possible that the latter subset could be reducible,
as several of its members may dominate other members. To
address this eventuality, in a second backward-pass we attempt
to identify and remove dominated scenarios from the filtered
subset. Given the final support set cardinality resulting from
these two steps, we compute the upper bound on the constraint
violation probability as per (1).

B. Forward-pass: growing a support subset

As a first step, we build the optimal solution of the consid-
ered scenario-program as well as a (potentially reducible) first
support subset by means of a column & constraint generation
approach [12]. To do so, we initialize the program 1st-stage
decisions (u?0) while only taking into account the forecast
injections, and the set of filtered scenarios including only the
forecast injections as (F0). At each iteration j ≥ 1, given the
latest 1st-stage decisions (u?j−1) we:

1) assess the feasibility of all unfiltered N − (j − 1)
injection scenarios, by solving in parallel sub-problems
quantifying the respective degree of constraint violation,

2) include the most-infeasible injection scenario (ij) to a
larger subset of filtered scenarios Fj = Fj−1 ∪ ij ,

3) update 1st-stage decisions (u?j ) while solving a
scenario-program vs the filtered subset Fj ,

4) return to step 1, until no further constraint-violating
injection scenario is identified,

5) define the optimal solution as u?N = u?j and the
respective filtered scenario subset as F(u?N ) ≡ Fj .

Stressing that the problem objective only accounts the cost
of the generation dispatch, at termination this iterative process
returns the optimal solution of the full scenario-program u?N .
Moreover, the filtered subset F(u?N ) of cardinality j + 1 is
a support subset to the respective set of all N scenarios.
We should also clarify here that the feasibility assessment
subproblems involved in step 1 are scenario-specific variants
of the full problem statement, considering 1st-stage decisions
as fixed and modified to search for the minimal degree
of constraint violation (i.e., returning a zero optimal value
for feasible combinations of 1st-stage decisions and injection
scenario). We refer the reader to appendix C for the detailed
statement of this feasibility assessment problem.

C. Backward-pass: eliminating dominated scenarios

As a second step, we search the filtered set F(u?N ) for dom-
inated scenarios, that can be removed without any impact on
the optimal 1st-stage decisions. Notice that such an eventuality
may occur due to the iterative progression of the forward-
pass. Indeed, the feasibility domain of a scenario filtered at a

latter step n > 0 may encompass the feasibility domain(s)
of other scenario(s) already in the subset, filtered at steps
m < n. To check for dominated scenarios we adopt the
proposal from §II of [10], and, going through the filtering
sequence n = 0, . . . , j − 1:

1) solve a scenario-program vs subset F(u?N )\ in (i.e., ex-
cluding the concerned scenario from the filtered subset),

2) if the resulting 1st-stage decisions match those of the
already known optimal solution u?n = u?N , update the
filtered subset as F(u?N ) = F(u?N ) \ in,

3) update the scenario-program support cardinality as k =
|F(u?N )|.

IV. CASE STUDY RESULTS

A. Test-system description

We adopt the test-system presented in [11], which is a
modified version of the IEEE 30 bus system including 7
bus breakers (at nodes 4, 6, 7, 12, 21, 24, 30) as well
as 3 phase-shifting transformers (at branches 22, 28, 33)
and we consider N-1 security w.r.t. the loss of transmission
elements only and while considering a single forthcoming
period only. The contingency list under consideration includes
33 single transmission element outages, excluding 8 elements
whose outage (given the presence of PSTs) would bring the
system to an islanded condition. To generate credible injection
scenarios we employ, as in [13], a load forecast error model
consisting of a zero mean, normally distributed global error
term (i.e., common to all system loads) and a zero mean,
normally distributed nodal error term. That is, under scenario
i the load demand at any network node n is assumed as
din = (1 + εi0 + εin) · d̂in, where, d̂in represents the respective
forecast value, εi0 is a scalar modeling the global error and εin
is a scalar modeling the nodal error. The standard deviation of
the global error term is assumed to be equal to 0.015 while the
standard deviation of the nodal error term is, for any network
node, assumed equal to 0.05.

In the context of this problem, the upper bound on constraint
violation probability as per (1) should be interpreted as an
upper bound on the probability of failing to operate the system
with N-1 security, given the uncertainty on the nodal load
demand. In what follows, we evaluate such upper bound while
setting the confidence parameter as β = 0.0001. Moreover,
given optimal 1st-stage decisions, we also perform Monte
Carlo assessments to empirically evaluate the probability of
failing to meet the N-1 criterion in operation, using a set of
10000 injection scenarios.

B. Reference results

To facilitate the presentation of our findings, let us start
by introducing the solution to the problem in question, while
considering a set of 50 nodal demand scenarios.

First, table I reports on an indicative single problem in-
stance, used here to also explain the functionalities of our
developed algorithm. The 1st-row of such table shows the
problem optimal objective value, while the cardinalities of the
support sets identified after the forward- and backward- pass of
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TABLE I
REFERENCE RESULT vs 50 SCENARIOS

Cost ($) 592.245

Filtered support cardinality 6
Reduced support cardinality 4

ε – upper bound 0.4252
ε – empirical 0.0526

Fig. 2. 50 scenario-program constraint violation probability

the iterative algorithm are listed in the table 2nd and 3rd rows.
Our detailed results indicate that the final support set retained
after the backward-pass includes the lowest net load realization
and three scenarios with active constraints on post-contingency
power flow and on the coupling of pre- and post-contingency
changes on breaker positions. The two dominated scenarios not
retained after the forward pass are the forecast (i.e., no error)
realization used to initiate the iterative procedure as well as
the scenario with the greatest net load realization.

Most notably the two last rows of Table I present re-
spectively the theoretical upper bound on constraint violation
probability as per (1) as well as the empirical value of the
probability of not being N-1 secure as per the ex-post Monte
Carlo simulations. Examining such results, one could well
argue that for the problem in question, a set of 50 scenarios
appears too small to practically exploit the theoretical result
from [10]. Indeed, holding a theoretical guarantee that the
chance of complying with the N-1 criterion is at most ∼ 60%,
appears to have limited practical relevance as power system
security standards would typically be more restrictive. Be that
as it may, what is more important to underline here is the
vast difference between the theoretical upper bound and the
empirically evaluated probability value (last row). Indeed, the
latter value is one order of magnitude smaller than the former.

To further investigate the tightness of the theoretical upper
bound, we created a total of 20 problem instances while
considering sets of 50 nodal demand scenarios. The boxplots
presented in Figure 2 summarize the empirical probability
of failing to meet the N-1 criterion and its respective upper
bound. Such figures indeed confirm that the theoretical upper
bound is in practice not tight for the problem in question. On
average the ratio of the empirical violation probability to its

Fig. 3. 500 scenario-program constraint violation probability

theoretical upper bound is as small as 14.03 %. The difference
between these two quantities per instance is summarized as
‘Margin’ in Figure 2. It is important to notice here that two
factors are critical in computing a tight bound, namely both (a)
the size k of the support subset and (b) the size N of the full
scenario set of the stochastic program. Concerning the former,
we must underline that a computationally exhaustive brute-
force approach, providing an explicit guarantee of returning a
minimal and irreducible support set, is unattainable in practice.
With this in mind, we continue the analysis by focusing on
the second factor, namely the size of the problem scenario set.

C. On the size of the problem scenario set

In order to study the relationship between the size of
the scenario-program and its respective constraint violation
probability, we have resolved the 20 problem instances from
subsection IV-B after a tenfold increase of the size of the
considered set of scenarios. Precisely, per problem instance,
we add 450 different scenarios along with the original 50,
to increase the scenario set size to 500. Figure 3 presents the
updated boxplots on the theoretical upper bound and empirical
probability of violating the N-1 criterion in operation, as well
as on the difference between these two quantities which is
labeled as ‘Margin’.

The decrease in the order of magnitude for both quantities is
evident and consistent with the intuitive understanding that the
1st-stage decisions from the larger set scenario-program should
indeed generalize better. Concerning the theoretical upper
bound, the decrease implies that the cardinality of the support
set identified by our iterative algorithm grows weakly with
the size of the problem scenario set. Such feature is of course
problem specific and relates to the fact that given reasonable
power injection variability, few scenarios should be expected
to be binding the power flow constraints (while dominating all
others). On average, the case-by-case increase of the support
set size was found to be equal to 0.4. Moreover, with respect
to the values from the 50 scenario instances, the average
reduction of the constraint violation probability upper bound
was found equal to 81.70% while for the empirically evaluated
probability the average reduction was notably computed at
86.38%.
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TABLE II
AVERAGE COMPUTATIONAL TIME BREAKDOWN (SEC)

Problem Size Total Forward-pass Backward-pass

50 1431 683.7 747.3
500 2288.8 1578 710.8

To pursue the present analysis, we turn again our attention
on the tightness of the constraint violation probability upper
bound. The bound is anticipated to be less tight since, as
mentioned, on average its value is reduced less with respect
to the empirical probability value. Indeed, the average ratio
of the empirical violation probability to its theoretical upper
bound is reduced to 6.75%. The implication seems to be that a
considerably larger scenario set would be needed for comput-
ing a lower constraint violation probability upper bound from
(1). Just to give an order of magnitude, in average the support
set of the considered scenario-program with 500 scenarios has
5 members and the respective average empirical probability of
constraint violation was found equal to 0.00546. Using such
values in (1), the indicative problem size would be 11250
scenarios.

Given that the theoretical constraint violation probability
bound was shown to be generally loose, the practical interest
in solving such a large scale scenario-program depends on the
computational burden. To inform such considerations, table II
presents the breakdown of the average computational time to
solve the 50 and 500 scenario problem instances on a personal
computer featuring a 4-core, 4.2 GHz processor and 24 GB
of RAM. With the increase in problem size, the main increase
is in the computational time required for the forward-pass of
the algorithm. A main part of this step assesses (in parallel)
all problem scenarios to identify constraint violations, hence
it logically takes more time for larger problem instances.
The computational time spent for the backward-pass of the
algorithm is comparable between the two problem instances.
This is attributable to the fact that the size of the scenario
sets identified by the forward-pass is also comparable between
the two problem instances. We also note that the backward-
pass (employed only to obtain a more tight bound on the
constraint violation probability) is computationally inexpen-
sive in relation to the empirical evaluation with Monte Carlo
simulations. In our experiments, the average computational
time for a Monte Carlo simulation using 10000 realizations
was 6947.2 seconds.

Finally, for completeness, we should mention that the dif-
ference in economic cost between the 500 scenario and the 50
scenario problem instances is negligible. On average, over the
20 trials the solution of the former is more costly by 0.11%.

D. On discrete grid flexibility

To finish our analysis, we emphasize on the power system
perspective and particularly the grid flexibility offered by the
bus-splitting breakers. To do so, we solve a modified version
of the initial scenario-program, enforcing a priori that all

Fig. 4. ‘No-breaker’ vs ‘reference’ solution overview

bus splitting breakers should always remain closed. In what
follows, we label such situation as ‘no-breaker’ setting and the
original scenario-program as ‘reference’ setting. For the sake
of comparability, we re-use the same 20 problem instances of
500 scenarios from subsection IV-C.

First, we should briefly report on economic cost which, as
anticipated, is increased while disregarding the grid flexibility.
In particular, the average cost values of the ‘no-breaker’ and
‘reference’ settings are $594.4 and $593.0. Figure 4.a shows
the respective cost value distributions while Figure 4.b. has
the value distributions for the upper bound on constraint
violation probability. As seen in the latter figure, it appears
that the constraint violation probability upper bound is lower
for the ‘no-breaker’ setting with respect to the ‘reference’.
On a case-by-case basis, the average difference was found
equal to 0.0145. For scenario-programs considering the same
sets of uncertainty realizations, the implication is that the
support set to the optimal solution of the ‘no-breaker’ setting
is systematically smaller than the support set to the optimal
solution of the ‘reference’ setting. Indeed, on average the latter
was found to include 1.65 additional members than the former.
In our detailed results, we have identified additional scenarios
that need to be kept in the support set of the ‘reference’ setting
in order to optimally set the 1st-stage (i.e., intact network
state) breaker position decision variables. These variables are
of course fixed by default in the ‘no-breaker’ setting.

Comparing the empirical probability of violating the N-1
criterion, Figure 5, we however found that the solutions to
the ‘reference’ setting turn out to be in practice slightly more
reliable, with an average reduction in the empirical constraint
violation probability of 0.0025 (or, on average 25.05 % of
the ‘no-breaker’ empirical constraint violation probability).
In other words, our finding here indicates that the constraint
violation probability upper bound is less tight in the ‘reference’
setting. This may be explained by two factors. First, as
discussed, the ‘reference’ setting has a higher upper bound on
the constraint violation probability owing to the larger subset
of support scenarios. At the same time, owing to the additional
flexibility of adjusting the network topology once the power
injection/demand scenario has been realized, it has a lower
empirical constraint violation probability.

In any case, from a power systems standpoint, the results
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Fig. 5. ‘No-breaker’ vs ‘reference’ empirical constraint violation probability

indeed showcase that grid flexibility contributes to greater
economic efficiency as well as enhanced operational reliability.
Thus, these results are in support of our interest towards lever-
aging discrete grid flexibility in chance-constrained operational
planning.

V. CONCLUDING REMARKS

In this work we studied the generalization property of
scenario-based power system operation planning decisions,
that is the probability of achieving N-1 secure operation with
respect to unseen realizations from the probability distribution
of uncertain power injections that is also used to generate
the set of scenarios used to compute an optimal solution.
We focused on an planning problem explicitly modeling grid
flexibility, with the interest in progressively developing a
practical chance-constrained decision making framework ca-
pable of exploiting the respective discrete power flow controls.
Our analysis indicates the potential utility of grid flexibility,
enabling to reduce the economic cost of operation decisions
while increasing the probability of achieving N-1 secure
operation.

Building on a recent result from the general scenario theory,
we analyzed the theoretical upper bound of the probability in
question along with its respective empirically estimated value.
Concerning the theoretical upper bound, we have first observed
that the size k of the support-sets that we could construct with
our greedy growing-pruning approach grows quite weakly with
the size of the scenario-set used while searching to identify op-
timal operation planning decisions. In other words, increasing
the number of scenarios taken into account leads to a stronger
guarantee on the probability of achieving N-1 security. In the
more general context of power system operational planning,
and given a reasonable range of injection variability, this
condition should be anticipated to remain valid, as evidenced
from the vast literature exploiting the concept of umbrella
(a.k.a. dominant) injection realizations and contingencies in
algorithmic approaches to security constrained optimal power
flow. We have however also observed that the theoretical upper
bound in question appears to be generally quite conservative,
and potentially even more conservative in the presence of grid
flexibility. Such issue is not to be underestimated, as relying

on the theoretical probability bound could in practice imply
taking unnecessary costly operation planning decisions.

To conclude, we underline that both the theoretical upper
bound as well as the empirically estimated probability values
were found to systematically decrease while growing the size
of the scenario-set. These results imply the potential to solve
chance-constrained operation planning problems while taking
into account grid flexibility in the style of sequential ran-
domization [14]. Indeed, in principle, one may algorithmically
achieve a set target on the constraint violation probability by
progressively increasing the size of the scenario set under
consideration. We will explore such potential in the subsequent
stage of this research effort. The first practical challenge
to further study is how to optimally trade-off the easier to
evaluate, yet conservative, theoretical upper bound and the
more accurate, yet computationally more costly, empirical
estimation.
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APPENDIX

A. Nomenclature
The main mathematical symbols used in this appendix are defined

as follows. Others may be defined as needed within the text.
Indices & sets:

b ∈ B bus breakers;
c ∈ C contingencies (including the pseudo-contingency of no

outage, denoted by the index c = 0) ;
g ∈ G dispatchable generating units;
i ∈ I injection scenarios;
` ∈ L transmission lines;
n ∈ N nodes;
s ∈ S phase shifting transformers;
e ∈ E generic transmission element (i.e., transmission line `,

phase shifting transformer s or bus breaker b) with
superset E ≡ B ∪ L ∪ S.

Nb: Subscripts will be used to define subsets wherever needed (e.g.,
subset Gn ⊆ G shall denote the generating units connected at node
n ∈ N ).

Continuous Variables:
ag AGC participation factor of generating unit g;
pg dispatch of generating unit g;
f i,c
e power flow through transmission element e ∈ {b, `, s}

under injection scenario i and contingency c;
θi,cn voltage angle at node n under injection scenario i and

contingency c;
dθi,cs shift of phase shifting transformer s under injection sce-

nario i and contingency c;
qi,ce fictitious flow through transmission element e ∈ {b, `, s}

under injection scenario i and contingency c (full connec-
tivity variable).

Binary Variables:
zi,cb status of bus breaker b under injection scenario i and

contingency c;
dzi,cb indicator showing a change in the status of bus breaker b

under injection scenario i and contingency c ∈ C \ 0 with
respect to the no outage pseudo-contingency (c = 0);

χi,c
s,j indicator of phase shifting transformer s operating mode

under injection scenario i and contingency c, for j ∈
[1; 2; 4; 5].

Parameters:
cg marginal running cost of generating unit g;
p
g

minimum stable generation of generating unit g;
pg capacity of generating unit g;
d̂n forecasted active power demand at node n;
din active power demand at node n under injection scenario i;
fe rated capacity of transmission element e ∈ {b, `, s};
Xe reactance of transmission element e ∈ {b, `, s};

βn,e element of the flow incidence matrix, taking a value of one
if node n is the sending node of transmission element e ∈
{b, `, s}, a value of minus one if node n is the receiving
node transmission element e or phase shifting transformer
s, and a zero value otherwise;

ys activation threshold of phase shifting transformer s;
dθs maximum shift of phase shifting transformer s;
dθs minimum shift of phase shifting transformer s;
uc
e availability of transmission element e under contingency c;
ζ maximum admissible number of post-contingency topolog-

ical changes;
M a large constant.

B. Scenario-program mathematical statement
The mathematical statement of the scenario-program under con-

sideration is as shown in (2–32).

min
∑
g∈G

cg · pg, (2)

for all generating units, g ∈ G:

0 ≤ ag ≤ 1, (3)
p
g
≤ pg ≤ pg, (4)

p
g
≤ pg + ag ·

∑
n∈N

(
din − d̂n

)
≤ pg, ∀i ∈ I; (5)

for all nodes, injections & contingencies (n, i, c) ∈ N × I × C:∑
g∈Gn

[
pg + ag ·

∑
n∈N

(
din − d̂n

)]
= din +

∑
e∈E

βn,e · f i,c
e ; (6)

for all lines, injections & contingencies (`, i, c) ∈ L × I × C:

f i,c
` −

uc
`

X`

∑
n∈N

βn,` · θi,cn = 0, (7)

− f ` ≤ f
i,c
` ≤ f `, (8)

− uc
` ·M ≤ qi,c` ≤ u

c
` ·M ; (9)

for all phase-shifting transformers, injections and contingencies,
(s, i, c) ∈ S × I × C:

f i,c
s −

uc
`

Xs

∑
n∈N

βn,s · (θi,cn + dθi,cs ) = 0, (10)

(χi,c
s,1 − 1) ·M + dθs ≤ dθi,cs ≤ dθs + (1− χi,c

s,1) ·M, (11)

− uc
s

Xs
·
∑
n∈N

βn,s · θi,cn − ys ≤ χi,c
s,1 ·M, (12)

uc
s

Xs
·
∑
n∈N

βn,s · θi,cn + ys ≤ (1− χi,c
s,1) ·M, (13)

(χi,c
s,2 − 1) ·M ≤ dθi,cs ≤ dθs + (1− χi,c

s,2) ·M, (14)

− uc
s

Xs
·
∑
n∈N

βn,s · θi,cn − ys ≤ (1− χi,c
s,2) ·M, (15)

uc
s

Xs
·
∑
n∈N

βn,s · θi,cn + ys ≤ (1− χi,c
s,2) ·M, (16)

−
∑

j∈{1;2;4;5}

χi,c
s,j ·M ≤ dθ

i,c
s ≤

∑
j∈{1;2;4;5}

χi,c
s,j ·M, (17)

(χi,c
s,4 − 1) ·M + dθs ≤ dθ

i,c
s ≤ (1− χi,c

s,4) ·M, (18)

− uc
s

Xs
·
∑
n∈N

βn,s · θi,cn + ys ≤ (1− χi,c
s,4) ·M, (19)

uc
s

Xs
·
∑
n∈N

βn,s · θi,cn − ys ≤ (1− χi,c
s,4) ·M, (20)

(χi,c
s,5 − 1) ·M + dθs ≤ dθ

i,c
s ≤ dθs + (1− χi,c

s,5) ·M ; (21)
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uc
s

Xs
·
∑
n∈N

βn,s · θi,cn − ys ≤ χi,c
s,5 ·M, (22)

uc
s

Xs
·
∑
n∈N

βn,s · θi,cn − ys ≥ (χi,c
s,5 − 1) ·M, (23)

qi,cs = 0; (24)

for all breakers, injections & contingencies (b, i, c) ∈ B × I × C:(
1− zi,cb

)
·M ≤

∑
n∈N

βn,b · θi,cn ≤
(
1− zi,cb

)
·M, (25)

− zi,cb ·M ≤ f
i,c
b ≤ zi,cb ·M, (26)

− zi,cb ·M ≤ q
i,c
b ≤ z

i,c
b ·M, (27)

− dzi,cb ≤ z
i,c
b − z

i,0
b ≤ dz

i,c
b ; (28)

for all injections & contingencies (i, c) ∈ I × C:∑
b∈B

dzi,cb ≤ ζ, (29)

θi,cn0
= 0, (30)∑

e∈En0

qi,ce + 1− |N | = 0, (31)

∑
e∈En

qi,ce + 1 = 0, ∀n ∈ N \ n0. (32)

Objective function (2) seeks to minimize the cost of the generation
dispatch. Inequalities (3) set the range of admissible values for the
participation factors of generating units, while expressions (4 - 5)
impose the minimum stable generation and maximum generation
capacity limits for the dispatch state and all considered uncertainty
realizations respectively. Expressions (6 - 8) are standard nodal power
balance and power flow expressions of the contingency constrained
optimal power flow problem under the DC power flow approximation.
Inequalities (9) impose that any line on outage does not contribute
to the network connectivity.

Similarly, constraints (10 - ??) define the active power flow
through PSTs and impose the respective limits. The value of the
phase-shift variable (dθi,cs ) appearing in (10) is set through constraint
block (11 - 23), according to the magnitude and direction of the
respective nodal voltage angle difference, as per the following five
PST operating modes:

M1: negative flow below the respective activation limit⇒ inject
the maximum positive phase angle difference to increase
flow (11 - 13).

M2: flow equals the negative activation limit ⇒ inject any
admissible non-negative phase angle difference to increase
flow (12 - 16).

M3: flow within both activation limits ⇒ do nothing (17).
M4: flow equals the positive activation limit ⇒ inject any

admissible non-positive phase angle difference to reduce
flow (18 - 20).

M5: positive flow above the respective activation limit ⇒ inject
the minimum negative phase angle difference to reduce flow
(21 - 23).

Notice that, for the sake of determining network connectivity PSTs
need to be considered as disconnected (24).

The group of inequalities (25 - 27) models the opening/closing
of breakers to split/merge the respective network nodes. First, in-
equalities (25) equate the voltage angles on the two sides of a
closed breaker only. Next, inequalities (26) allow unrestricted power
flow through a closed breaker, conversely no power flow through
an open breaker. Finally, inequalities (27) are used to model the
contribution of a closed breaker to the connectivity of the electrical
network. Expressions (28) are used to count the number of topological
changes in post-contingency states, with respect to the no outage

pseudo-contingency state (c = 0). Further, constraint (29) imposes
the applicable limit for such changes.

Equality constraints (30) set the network reference node (n0).
At last, equalities (31-32) establish the full connectivity of the grid
in pre- and post- contingency stages, by balancing the flow of the
respective fictitious quantity.

C. Feasibility assessment sub-problem mathematical state-
ment

The injection-specific feasibility assessment sub-problem is a
relaxation of the full scenario-program (2–32), given fixed 1st-stage
decision variables, annotated henceforth with a tilde (̃·). To derive
such injection-specific relaxation, ∀i ∈ I,
• non-negative slack variables

(
µi
g, ν

i
g

)
relax generation lower &

upper bounds in (5), taking positive values to indicate that the
generation - load mismatch cannot be balanced, as in,

for all generating units, g ∈ G:

µi
g ≥ 0, (6b)

νig ≥ 0, (6c)

p
g
− µi

g ≤ p̃g + ãg ·
∑
n∈N

(
din − d̂n

)
≤ pg + νig; (6d)

• non-negative slack variables
(
λi,c
`

)
relax the transmission ca-

pacity ratings in (8), taking positive values to indicate that there
is no feasible constrained power flow solution, as in,

for all lines & contingencies (`, c) ∈ L × C:

λi,c
` ≥ 0, (9b)

− (1 + λi,c
` ) · f ` ≤ f

i,c
` ≤ (1 + λi,c

` ) · f `; (9c)

• similarly, non-negative slack variables
(
λi,c
s

)
relax the PST

ratings in (??), taking positive values to indicate that there is
no feasible constrained power flow solution, as in,

for all phase-shifting transformers & contingencies (s, c) ∈
S × C:

λi,c
s ≥ 0, (12b)

− (1 + λi,c
s ) · fs ≤ f

i,c
s ≤ (1 + λi,c

s ) · fs; (12c)

• the problem objective seeks to minimize the sum of the afore-
mentioned non-negative variables should take the zero value for
feasible problem instances, as in,

min
∑
g∈G

(µi
g + νig) +

∑
c∈C

(∑
`∈L

λi,c
` +

∑
s∈S

λi,c
s

)
. (3b)
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