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ABSTRACT 

We have previously shown that the proliferation of freshly isolated bovine WC1+ Ɣ𝛿 T cells to 

superantigens (SAgs) including staphylococcal enterotoxin A (SEA), and staphylococcal enterotoxin 

B (SEB) or toxic shock syndrome type-1 (TSST-1) required the presence of antigen-presenting cells 

(APC) and the addition of exogenous interleukin (IL)-2. The costimulatory activity provided by 

molecules expressed on professional APC for the proliferation of Ɣ𝛿 T cells has not been addressed 

hitherto. In the present study, we investigated the ability of two selected APC populations, the 

dendritic cells (DCs) highly expressing CD80 and CD86 molecules (CD80highCD86high) and the 

monocytes expressing the same molecules at a rather low level (CD80lowCD86low), to stimulate 

the proliferation of purified bovine WC1+ Ɣ𝛿 T cells to SAgs. DCs were more efficient than 

monocytes in inducing Ɣ𝛿 T-cell proliferation, and this response was dependent on exogenous IL-2 

in both presentation modes. Stimulating Ɣ𝛿 T cells with gradual doses of SAgs or concanavalin A 

(ConA) resulted in similar dose-dependent reaction profiles suggesting a minimal role of the major 

histocompatibility complex (MHC). However, significant proliferation was already obtained with 

the starting doses in the presence of DC compared with monocytes, and higher proliferation was 

reached with DC at optimal doses. Finally, the addition of monoclonal antibody (MoAb) anti-CD86 

markedly inhibited SAgs- and ConA-mediated proliferation, whereas MoAb anti-CD80 had no effect. 

The combination of both anti-CD80 and anti-CD86, however, suppressed this response. These 

results suggest that bovine Ɣ𝛿 T-cell proliferation response requires indubitably CD86 

costimulation. The role of CD80 molecule seems less clear. 
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Introduction 

T-cell activation and proliferation require two signals. One signal delivered via the T-cell receptor 

(TCR) is major histocompatibility complex (MHC)-restricted and antigen-specific. The other signal 

is delivered by costimulatory molecules of professional antigen-presenting cells (APC) and is 

nonspecific [1-3]. Two structurally related molecules expressed on the surface of T cells, CD28 and 

cytotoxic T-lymphocyte-associated molecule (CTLA-4), and their coreceptors CD80 and CD86 

expressed on a variety of professional APC including dendritic cells (DCs), activated macrophages 

and activated B cells [4,5], are the best-characterized costimulatory molecules identified to date 

[5-7]. CD28 and CTLA-4 costimulatory molecules have also been detected on bovine [8] and ovine 

[9] Ɣ𝛿 T cells. However, few studies have provided information concerning the costimulatory 

activity required for the activation of ruminant Ɣ𝛿 T cells. 

Most of the circulating bovine and ovine Ɣ𝛿 T cells express a unique family of high molecular 

weight surface molecules, termed workshop cluster 1 (WC1) [10-12]. These cells constitute up to 

30-50% in the peripheral blood in Ɣ𝛿ung ruminants [13,14], and are further characterized by a CD2-

, CD4-, CD8-, CD3+ and TCR Ɣ𝛿+ phenotype [10,12,15]. 

The absolute requirement of APC and exogenous interleukin (IL)-2 for the proliferation of purified 

Ɣ𝛿 T cells in vitro upon a stimulation with mitogens [16], specific antigen [17] and recently with 

superantigens (SAgs) has been repeatedly reported [18-20]. 

In order to assess the role of the costimulation provided by molecules expressed on APC, we 

analysed the proliferation of purified Ɣ𝛿 T cells to SAgs in the presence of two professional APC 

populations expressing different levels of CD80 and CD86 molecules: the DC and the monocytes. 

The respective role of either ligand was studied using blocking antibodies to CD80 and CD86. 

Materials and methods 

Reagents. The culture medium contained RPMI 1640, 2 mM L-glutamine, 25 mM HEPES buffer, 100 

IU/ml penicillin, 100 µg/ml streptomycin, 0.5 µg/ml fungizone and 10% foetal calf serum (FCS) 

(Gibco BRL, Grand Island, NY, USA). The murine monoclonal antibodies (MoAbs) CC8 

(immunoglobulin, IgG2a), CC63 (IgG2a), CC15 (IgG2a), CC-G33 (IgG1), ILA21 (IgG2a) and ILA30 (IgG1) 

specific for CD4, CD8, WC1, CD14, MHC-II and IgM, respectively, were purchased from SeroTec 

Immunological (Oxford, UK). The murine MoAbs BB1 (IgM) and IT2.2 (IgG2b) specific for human CD80 

and CD86, respectively, were purchased from Pharmingen (San Diego, CA, USA). Isotype-matched 

mouse IgM (M 5909), mouse IgG2b (M 5534) and mouse IgG2a (M5409) were from Sigma 

Immunochemicals (St. Louis, MO, USA). Staphylococcal enterotoxin A (SEA), staphylococcal 

enterotoxin B (SEB), toxic shock syndrome type-1 (TSST-1), concanavalin A (ConA), calcium 

ionophore A and phorbol myristate acetate (PMA) were from Sigma Immunochemicals. 
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Recombinant human IL-2 was from Boehringer (Engelheim, Germany). Lymphoprep and Nycodenz 

gradients (d = 1.068) were from Nycomed Pharma (Oslo, Norway). Calcium ionophore was 

dissolved in dimethyl sulphoxide (DMSO) and PMA in anhydrous ethanol at a concentration of 1 

mg/ml and 10 µg/ml, respectively. 

Purification of bovine WC1+ Ɣ𝛿 T cells. WC1+ Ɣ𝛿 T cells were negatively purified from peripheral 

blood as previously described. Using Lymphoprep, peripheral blood mononuclear cells (PBMCs) 

were isolated from heparinized peripheral venous blood from 6- to 12-month-old cattle. PBMCs at 

5 x 106 cells/ml were resuspended in culture medium and allowed to adhere for 60 min to plasma-

coated gelatin. Nonadherent cells were enriched in T cells by passing the cells through a nylon 

wool column to remove B cells and remaining monocytes. CD2+ T cells were depleted by rosetting 

T cells with 2-aminoethylisothiouronium bromide (AET)-treated sheep red blood cells (SRBC). WC1+ 

Ɣ𝛿 T cells were further separated from CD4+ and CD8+ T cells using the magnetic cell sorting 

(MACS) technique. The resultant population contained up to 97% of WC1+ Ɣ𝛿 T cells as stated by 

the fluorescence-activated cell sorter (FACS) phenotypic characterization of cells. 

Isolation of bovine DC and monocytes. DC (CD14-MHC-IIhigh) and monocytes (CD14+) were purified 

as described by Renjifo et al. PBMCs at 5 x 106 cells/ml were allowed to adhere for 2 h to plasma-

coated gelatin. Nonadherent cells were removed by washing three times with Hank's balanced salt 

solution (HBSS). Cells adhered to the gelatin were detached by incubating for 5 min with 

prewarmed HBSS containing 0.2% ethylenediaminetetraacetic acid (EDTA), washed three times, 

and cultured overnight. Plastic adherent cells were monocytes, while the supernatant contained 

nonadherent cells rich in DCs. DCs were further enriched by centrifugation in Nycodenz gradients 

(d = 1.068), washed three times, and separated from CD14+ and IgM+ cells using the MACS 

technique. 

Flow cytometry analysis. Cells, 106 per test, were washed twice with ice-cold phosphate-buffered 

saline (PBS) containing 1% bovine serum albumin (BSA), incubated on ice for 30 min with an 

appropriate dilution of MoAb, washed in PBS, and further incubated for 30 min on ice with 

fluorescein isothiocyanate (FITC)-labelled MoAb specific for kappa chain as the second reagent. 

After washing, phenotypic analysis was performed on FACS flow cytometer (FACScalibus; Becton-

Dickinson, Mountain View, CA, USA). 

Proliferation assays. PBMCs (2 x 105 cells in 0.2 ml) were stimulated in triplicate with ConA (1 

µg/ml), SEA (103 ng/ml), and PMA and/or ionomycine (40 ng/ml) for 4 days. Purified WC1+ Ɣ𝛿 T cells 

(2 x 105 cells) and autologous Ɣ-irradiated APC (5000 Rad of gamma-irradiation from a 137Cs source) 

were cultured in 0.2 ml in triplicate with SEA, SEB, TSST-1 or ConA for 4 days. When indicated, the 

recombinant human IL-2 was added at a final concentration of 50 units/ml. The cultures were 

pulsed for the final 18 h with 1 µCi of [3H]-thymidine, harvested and the incorporated radioactivity 

determined by liquid scintillation counting. To assess the effect of anti- CD80 and anti-CD86 on Ɣ𝛿 

T-cell proliferation, MoAbs were added to DC for 30 min before the beginning of the culture period 

at a predetermined dose (1 µg/ml). 

Statistical analysis. The results were expressed as the mean ± standard deviation (SD) and 

compared using a Student's t-test. The significance level was set at P < 0.05.
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Results 

FLOW CYTOMETRY ANALYSIS OF ENRICHED DC AND MONOCYTES 

Monocytes and DCs are characterized by a high CD14+ expression and a lack of CD14+ expression, 

respectively, and by MHC-II levels, high in DC and low in monocytes (Fig. 1). Flow cytometry 

analysis after purification shows 89% of the cells expressing CD14+MHC-IIlow, representing 

monocytes (Fig. 1A,C), and 85% of the cells, CD14- MHC-IIhigh , being DC (Fig. 1B,C). DCs also express 

CD80 and CD86 molecules at a higher level than the monocytes (Fig. 1D,E). Enriched DC contained 

<1% monocytes, <1% B cells, and T cells including ͠ 4% WC1+, ͠ 5% CD4+ and ͠ 3% CD8+ (FACS not 

shown).  

DC AND MONOCYTE ANTIGEN PRESENTATION NEEDS THE ADDITION OF 

EXOGENOUS IL-2 FOR THE PROLIFERATION OF WC1+ Ɣ𝛿 Ɣ𝛿 T CELLS TO SAGS 

AND CONA 

Isolated WC1+ Ɣ𝛿 T cells cultured with or without autologous Ɣ-irradiated DC or monocytes were 

pulsed in various combinations with SAgs (SEA, SEB or TSST-1), ConA and IL-2 (Table 1). The Ɣ𝛿 T 

cells responded to all SAgs and ConAs in the presence of DC or monocytes and IL-2, but failed to 

respond in the presence of either stimulus and/or IL-2 in the absence of APC. The amplitude of the 

responses to similar stimuli was significantly higher with DC than monocytes (P < 0.01). 

DC INDUCED HIGH PROLIFERATIVE RESPONSE OF WC1+ Ɣ𝛿 T CELLS TO SAGS 

AND CONA 

We next compared the ability of DC and monocytes to induce Ɣ𝛿 T-cell response in vitro. The 

proliferation of IL-2- dependent WC1+ Ɣ𝛿 T cells to SAgs or ConA in the presence of DCs or 

monocytes is depicted in Fig. 2. The response of purified Ɣ𝛿 T cells to SAgs and ConA was observed 

to decrease with the decreasing APC populations. In the presence of DC, wells containing 2 x 104 

DCs, at a ratio of 1 : 10 Ɣ𝛿 T cells, induced ͠ 43 x 103, ͠30 x 103, ͠ 31 x 103 and ͠ 27 x 103 counts per minute 

(cpm) for ConA, SEA, SEB and TSST-1, respectively. Monocytes at the same ratio induced ͠ 22 x 103, ͠ 

11 x 103, ͠ 12 x 103 and ͠ 9 x 103 cpm for ConA, SEA, SEB and TSST-1, respectively. At the ratio of 1 DC 

(2 x 103): 100 Ɣ𝛿 T cells, the magnitude of the proliferation was ͠ 21 x 103, ͠ 15 x 103, ͠ 16 x 103 and ͠ 13 x 

103 cpm for ConA, SEA, SEB and TSST-1, respectively, in the presence of DC, whereas proliferation 

responses equivalent to controls were obtained using monocytes. 
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Figure 1.  

 

Légende de la figure. Flow cytometry analysis of bovine dendritic cells (DCs) and monocytes. Monocytes (A) and DCs (B) 

were stained with CC-G33 monoclonal antibody (MoAb) specific for CD14 and fluorescein isothiocyanate (FITC)-labelled 

MoAb specific for kappa chain as secondary reagent. The indicated antigen-presenting cell (APC) populations were 

stained with ILA21 (C), BB1 (D) and IT2.2 (E) MoAb specific for major histocompatibility complex (MHC)-II, CD80 and CD86, 

respectively, and FITC-labelled MoAb specific for kappa chain. Negative controls consisting of APC populations were 

stained with FITC-labelled MoAb specific for kappa chain alone. (C-E) Controls staining for both APC (DC and monocytes) 

did not vary significantly. All stainings were performed in the presence of 10% fœtal bovine serum (FBS) in order to 

inhibit Fc receptor (FcR) binding of staining reagents. 

DOSE-DEPENDENT PROLIFERATIVE RESPONSE OF PURIFIED WC1+ Ɣ𝛿 T CELLS 

TO SAGS AND T-CELL MITOGENS IN THE PRESENCE OF DC OR MONOCYTES 

The proliferation of purified WC1+ Ɣ𝛿 T cells stimulated with increasing doses of SAgs and ConA in 

the presence of constant number of DC or monocytes and IL-2 is shown in Fig. 3. The Ɣ𝛿 T cells 

responded to minute amounts of SAgs and ConA in the presence of DC, while monocytes required 

high doses of stimulus to induce detectable levels of Ɣ𝛿 T-cell response. At the same antigen or 

mitogen doses, Ɣ𝛿 T-cell proliferation was consistently of higher magnitude with DC in comparison 

with monocytes. Control Ɣ𝛿 T-cell cultures with increasing doses of stimulus and IL-2 without APC 

did not proliferate.  
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Table 1. The proliferative response of WC1+ Ɣ𝛿 T cells to superantigens (SAgs) and concanavalin A (ConA) in the 

presence of professional antigen-presenting cell (APC) populations* 

 

Légende de la figure. *Purified WC1+ Ɣ𝛿 T cells (2 x 105/well) were cultured in triplicate in the presence or absence of Ɣ-

irradiated autologous APC (2 x 104 cells/ well) and stimulus, and the proliferation was assessed by [3H]-thymidine 

incorporation during the last 18 h of 4 days of culture. The results represent the mean counts per minute (cpm) ± 

standard deviation (SD) of three independent experiments from three animals. ●Interleukin (IL)-2 was added at a final 

concentration of 50 units/ml, SAg at 103 ng/ml and ConA at 10 µg/ml. △P < 0.01 (significant difference between DC and 

monocytes). 

Figure 2.  

 

Légende de la figure. Proliferative response of WC1+ Ɣ𝛿 T cells to superantigens (SAgs) and concanavalin A (ConA) in the 

presence of decreasing number of professional antigen-presenting cells (APC). WC1+ Ɣ𝛿 T cells (2 x 105/well) were cultured in 

triplicate with decreasing number of autologous Ɣ-irradiated dendritic cells (DCs) or monocytes in the presence of 

staphylococcal enterotoxin A (SEA), staphylococcal enterotoxin B (SEB) or toxic shock syndrome type-1 (TSST-1) (103 ng/ml) or 

ConA (10 µg/ml), and interleukin (IL)-2 (50 U/ml). Proliferation was assessed by thymidine incorporation during the last 18 h of 4 

days of culture. The results are expressed as counts per minute (cpm), and each point represents the mean ± standard deviation 

(SD) from three independent experiments. 
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BLOCKING OF BOVINE DC COSTIMULATORY MOLECULES WITH HUMAN MOABS 

ANTI-CD80 AND ANTI-CD86 

Preliminary experiments were devised in order to establish the activity of MoAbs anti-CD80, anti-

CD86 and anti-MHC-II in the inhibition of bovine T-cell proliferation in vitro. PBMCs were stimulated 

with SAgs or T-cell mitogens (ConA, PMA and/or mitomycine) in the presence of antibodies to 

CD80, CD86, MHC-II, combination of CD80 and CD86, or combination of CD86 and MHC-II. Isotype-

matched mouse IgM, mouse IgG2a and mouse IgG2b were used as controls. Table 2 shows that the 

anti-CD86 but not anti-CD80 markedly inhibited SEA-mediated T-cell proliferation (P < 0.05), the 

combination of both anti-CD80 and anti-CD86 resulting in more significant inhibition (P < 0.01). 

Anti-MHC-II alone or in combination with anti-CD86 suppresses completely the proliferation (P < 

0.01). The addition of anti-CD86 alone significantly inhibits ConA-mediated T-cell proliferation (P < 

0.01), while anti-CD80 alone had no effect. A combination of both anti-CD80 and anti-CD86 strongly 

inhibited the proliferation induced by ConA (P < 0.01). In contrast to SAg, ConA-mediated T-cell 

response was not inhibited by the addition of anti-MHC-II. All combinations of isotype-matched 

controls remained ineffective. The specificity of the anti-CD80, anti-CD86 and anti-MHC-II-

mediated inhibition was further verified by analysis of the blocking properties of the MoAbs in the 

costimulatory-independent response. As shown in Table 2, the proliferation response induced by 

PMA + ionomycine was not inhibited by MoAbs to CD80, CD86, MHC-II, the combination of CD80 and 

CD86 or the combination of CD86 and MHC-II. PMA or ionomycine alone did not induce the 

proliferation of PBMC (not shown). 

To study the role of the DC costimulatory molecules on IL-2-dependent Ɣ𝛿 T-cell response, purified 

cells were cultured with SAgs SEA (Fig. 4A), SEB (Fig. 4B) or TSST-1 (Fig. 4C), 

or with ConA (Fig. 4D), in the presence of anti-CD80 and/or anti-CD86 antibodies. Anti-CD86, but 

not anti-CD80, significantly inhibited the proliferation of WC1+ Ɣ𝛿 T cells in response to all SAgs 

tested and to ConA. The combination of both MoAbs almost completely suppresses the 

proliferative response. All isotype-matched MoAb controls remained ineffective. 
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Figure 3.  

 

Légende de la figure. Proliferative response of WC1+ Ɣ𝛿 T cells to gradual doses of superantigens (SAgs) and concanavalin 

A (ConA) in the presence of dendritic cells (DCs) or monocytes. WC1+ Ɣ𝛿 T cells (2 x 105/well) were cultured in triplicate 

with or without autologous Ɣ-irradiated DC or monocytes (2 x 104 cells/well), in the presence of gradual doses of 

staphylococcal enterotoxin A (SEA) (A), staphylococcal enterotoxin B (SEB) (B), toxic shock syndrome type-1 (TSST-1) (C) 

or ConA (D) with or without interleukin (IL)-2 addition (50 U/ml). Proliferation was assessed by thymidine incorporation 

during the last 18 h of 4 days of culture. The results are expressed as counts per minute (cpm), and each point represents 

the mean ± standard deviation (SD) from three independent experiments. 

Discussion 

The costimulation requirement for bovine Ɣ𝛿 T-cell proliferative response constitutes the aim of 

this study. We previously reported that the proliferation of purified bovine WC1+ Ɣ𝛿 T cells, in 

response to bacterial SAgs (SEA, SEB and TSST-1) and T-cell mitogen (ConA), required the presence 

of APC and the addition of exogenous IL-2 [18]. The same observations have also been recorded 

with specific antigen [17]. To investigate how accessory cells mediate the proliferation of Ɣ𝛿 cells, 

we compared the efficiency of DC and monocytes to induce this response. DCs are APC with a 

strong capacity to stimulate T lymphocytes, owing to their high density of MHC-II and 

costimulatory molecules. Monocytes are also APC-identified by the low density of both MHC-II and 

costimulatory molecules [23]. Although DC and monocytes were able to present SAgs and induce 

Ɣ𝛿 T-cell proliferative response in the presence of exogenous IL-2, they showed a marked 

difference in their efficiency. The DC induced a much stronger Ɣ𝛿 T-cell response compared with 

monocytes. 

The usefulness of the addition of IL-2 to the cultures to induce the proliferation of Ɣ𝛿 T cells has 

been documented by many authors [16-18]. WC1+ Ɣ𝛿 T cells have been found to express the gene 
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for IL-2R [8,17] but not for IL-2 on SAg-activated cells [18], indicating the need of exogenous IL-2 

addition to SAgs- and ConA-mediated Ɣ𝛿 T-cell proliferation. 

We and others [9] have previously reported that uncultured WC1+ Ɣ𝛿 T cells negatively purified 

(97%) [8] expressed CD28 and CTLA-4 mRNA. The interaction of CD80 and CD86 on APC with CD28 

and CTLA-4 on T cells has been recognized as being of major importance in the stimulation of T-cell 

responses [24-26]. In addition, the level of costimulatory molecules and MHC antigen expression on 

APC has been suggested to reflect the amplitude of the T-cell response to SAgs [5,27]. Bovine DC 

and monocytes differ markedly in the expression of CD80, CD86 and MHC-II molecules, as shown in 

the FACS results. The efficiency of DC (MHC-IIhigh, CD80high and CD86high), compared with monocytes 

(MHCIIlow, CD80low and CD86low), in inducing WC1+ Ɣ𝛿 T-cell response to SAgs could, therefore, be 

related to the level of MHC-II antigen expression and/or to the expression of the costimulatory 

molecules. Using increasing doses of ConA and SAgs to stimulate purified Ɣ𝛿 T cells in the presence 

of either DC or monocytes resulted in different dose-dependent proliferation levels. The 

monocytes required higher doses of stimulus to induce detectable proliferative response of Ɣ𝛿 T 

cells to both SAgs and ConA. In contrast, DC induced significant responses of Ɣ𝛿 T cells at lower 

doses of stimulus, and the responses were even higher at optimal doses. ConA is known to mimic 

the cross-linking signal 1 provided by TCR interaction, resulting in the mitogenic stimulation of T 

cells independently of MHC-II antigen. Thus, the observed proliferation differences of Ɣ𝛿 T cells to 

ConA in the presence of monocytes or DC are rather due to the differences in the expression of 

CD80/CD86 molecules and not of the MHC-II antigens. By analogy, the pronounced expression of 

MHC-II on DC could be of lesser importance than the costimulatory molecules in the high induction 

of Ɣ𝛿 T cells observed in the presence of SAgs. The better Ɣ𝛿 T-cell response to SAgs and ConA in 

the presence of DC, in comparison with monocytes, suggests that the sensitivity of Ɣ𝛿 T cells to 

stimuli is a function of the expression level of CD80/CD86 costimulatory molecules on APC. The 

monocytes are generally regarded as less efficient APC for the activation of naive T cells in vitro 

[28]. This is attributed to the low expression of MHC-II and costimulatory molecules. 

All in all, the important role attributed to macrophages in the initiation of the immune response in 

vivo [29] would reside in their phagocytotic capacity and the resulting cooperation with DC for the 

specific response of T cells against antigen [30]. 

To further assess the role of CD80 and CD86 molecules, anti-CD80 and/or anti-CD86 antibodies 

were added as blocking agents. Our data demonstrate that WC1+ Ɣ𝛿 T-cell proliferation induced by 

SAgs and ConA in the presence of DC is dependent on the costimulatory signals. Indeed, while anti-

CD86 alone inhibited the proliferation, the combination of both anti-CD80 and anti-CD86 

suppressed the response. Moreover, the finding that both anti-CD80 and anti-CD86 MoAbs did not 

inhibit APC-independent bovine T-cell proliferation induced by PMA + ionomycine reagents 

strongly supports this conclusion. The possibility that MoAb anti- CD80 could cross-link human 

MHC-II molecules has been evoked [31]. Our data show, however, that this antibody does not 

influence the MHC-II/SAg presentation, as the addition of bovine anti-MHC-II but not anti-CD80 

suppresses SEA-mediated T-cell proliferation. Ɣ𝛿komizo et al. have shown that the bovine T-cell 

proliferation in response to SAg was MHC-II restricted [32]. The addition of anti-CD86 MoAb, but not 
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anti-CD80, in the cultures significantly inhibited the WC1+ Ɣ𝛿 T-cell proliferation, and the 

combination of both antibodies suppressed the response indicating the dominant role of CD86 in 

Ɣ𝛿 T-cell activation. In vitro studies suggest that the CD86 molecule on professional APC provides 

an initial signal to induce the proliferation of T cells, whereas CD80 interacting with CD28 provided 

a neutral differentiation signal [33,34]. The results of Liensley et al. showing that CD80 was a low-

affinity ligand for CD28 extended this hypothesis [35]. In the studies of other roles of the 

costimulatory molecules, several reports in vivo and in vitro [34,36-39] suggested that the 

engagement of CD86 provided an initial signal to induce naive T cells to become T-helper cells 

(Th2), whereas CD80 was believed to drive a neutral signal. 

In conclusion, our data demonstrate that: (i) DC and monocytes presenting the SAgs stimulate the 

proliferation of WC1+ Ɣ𝛿 T cells; (ii) this response requires exogenous IL-2 in both instances; (iii) DCs 

were more efficient than monocytes in inducing Ɣ𝛿 T-cell proliferation; and (iv) the costimulation 

delivered by the CD86 molecule or by the combination of CD80 and CD86 molecules expressed on 

APC was of primary significance for the activation of resting Ɣ𝛿 T cells. 
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Table 2. Specificity of anti-CD80, anti-CD86 and anti-major histocompatibility complex (MHC)-II-mediated 

inhibition of bovine T-cell proliferation in vitro† 

 

† Peripheral blood mononuclear cells (PBMCs) (2 x 105 cells/well) were incubated with monoclonal antibodies (MoAbs) 

anti-CD80, anti-CD86 and/or anti-MHC-II at a final concentration of 1 µg/ml and stimulated in vitro by concanavalin A 

(ConA) (10 µg/ml), staphylococcal enterotoxin A (SEA) (103 ng/ml) or combination of phorbol myristate acetate (PMA) (40 

ng/ml) and ionomycine (40 ng/ml), and the proliferation was evaluated by [3H]-thyidime incorporation during the last 18 

h of 4 days of culture. Isotype-matched mouse immunoglobulin (IgM) mouse IgG2b and mouse IgG2a were used as 

controls. Data represent mean counts per minute (cpm) and standard deviation (SD) (in parentheses) of triplicate 

cultures. Proliferation of PBMC in the presence of medium alone was 852 ± 102 cpm. - *P < 0.05; - **P < 0.01 - significant 

difference between SEA or ConA-mediated T-cell response in the absence or presence of indicated monoclonal 

antibodies. 
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Figure 4 

 
Blocking of CD80 and CD86 on dendritic cell (DC) affects differently the WC1+ Ɣ𝛿 T-cell proliferation. WC1+ Ɣ𝛿 T cells (2 x 

105/well) were cultured in triplicate with autologous Ɣ-irradiated DC (2 x 104 cells/well) with staphylococcal enterotoxin A 

(SEA) (A), staphylococcal enterotoxin B (SEB) (B), toxic shock syndrome type-1 (TSST-1) (C) at 103 ng/ml or concanavalin 

A (ConA) (D) at 10 µg/ml and interleukin (IL)-2 (50 U/ml) in the presence or absence of anti-CD80 and/or anti-CD86 

antibodies at a final concentration of 1 µg/ml. Isotype-matched mouse immunoglobulin (IgM) and mouse IgG2b were 

used as controls. Proliferation was assessed by thymidine incorporation during the last 18 h of 4 days of culture. The 

results are expressed as counts per minute (cpm), and each point represents the mean ± standard deviation (SD) from 

three independent experiments. NS, not significant; * P<0.05; ** P<0.01. 
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